|
[1]
|
Xu, H., Hou, Y., Zhao, Z., Zhang, J., Li, P., Cao, Y., et al. (2025) Cbp/p300, a Promising Therapeutic Target for Prostate Cancer. Journal of Translational Medicine, 23, Article No. 1045. [Google Scholar] [CrossRef]
|
|
[2]
|
Ju, W., Zheng, R., Zhang, S., Zeng, H., Sun, K., Wang, S., et al. (2022) Cancer Statistics in Chinese Older People, 2022: Current Burden, Time Trends, and Comparisons with the US, Japan, and the Republic of Korea. Science China Life Sciences, 66, 1079-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, S. and Lu, X. (2025) γδ T Cells in Prostate Cancer. International Review of Cell and Molecular Biology, 397, 1-21.
|
|
[5]
|
Sumanasuriya, S. and De Bono, J. (2017) Treatment of Advanced Prostate Cancer—A Review of Current Therapies and Future Promise. Cold Spring Harbor Perspectives in Medicine, 8, a030635. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, X., Lian, J. and Lu, H. (2025) The Role of SPP1(+)TAMs in Cancer: Impact on Patient Prognosis and Future Therapeutic Targets. International Journal of Cancer, 157, 1763-1771. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brina, D., Ponzoni, A., Troiani, M., Calì, B., Pasquini, E., Attanasio, G., et al. (2023) The Akt/mTOR and MNK/eIF4E Pathways Rewire the Prostate Cancer Translatome to Secrete HGF, SPP1 and BGN and Recruit Suppressive Myeloid Cells. Nature Cancer, 4, 1102-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Feng, S., Yuan, W., Sun, Z., Guo, X., Ling, J., Chang, A., et al. (2022) SPP1 as a Key Gene in the Lymph Node Metastasis and a Potential Predictor of Poor Prognosis in Head and Neck Carcinoma. Journal of Oral Pathology & Medicine, 51, 620-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Briones-Orta, M.A., Avendaño-Vázquez, S.E., Aparicio-Bautista, D.I., Coombes, J.D., Weber, G.F. and Syn, W. (2017) Osteopontin Splice Variants and Polymorphisms in Cancer Progression and Prognosis. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1868, 93-108.A. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Xu, W., Bi, Z., Lu, L., Feng, F., Chen, L. and Zhang, C. (2025) Role of Osteopontin in Cancer: From Pathogenesis to Therapeutics (Review). Oncology Reports, 54, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, Y., Chen, C., Chen, R., Chen, H. and Chen, P. (2024) SPP1 mRNA Expression Is Associated with M2 Macrophage Infiltration and Poor Prognosis in Triple-Negative Breast Cancer. Current Issues in Molecular Biology, 46, 13499-13513. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Inoue, M. and Shinohara, M.L. (2010) Intracellular Osteopontin (Iopn) and Immunity. Immunologic Research, 49, 160-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kanayama, M., Xu, S., Danzaki, K., Gibson, J.R., Inoue, M., Gregory, S.G., et al. (2017) Skewing of the Population Balance of Lymphoid and Myeloid Cells by Secreted and Intracellular Osteopontin. Nature Immunology, 18, 973-984. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Panda, V.K., Mishra, B., Nath, A.N., Butti, R., Yadav, A.S., Malhotra, D., et al. (2024) Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines, 12, Article No. 1527. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Almgrami, R.T., Zhang, T., Zhao, Q., You, M., Liu, J. and Zhang, Y. (2025) Single-Cell Transcriptomic Analyses Provide Insights into SPP1+ Tam-Mediated Immune Suppression and CD8+ T Cell Dysfunction in Lung Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 319. [Google Scholar] [CrossRef]
|
|
[16]
|
Tan, Y., Zhao, L., Yang, Y. and Liu, W. (2022) The Role of Osteopontin in Tumor Progression through Tumor-Associated Macrophages. Frontiers in Oncology, 12, Article ID: 953283. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Palma, A. (2025) The Landscape of spp1+ Macrophages across Tissues and Diseases: A Comprehensive Review. Immunology, 176, 179-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lyu, A., Fan, Z., Clark, M., Lea, A., Luong, D., Setayesh, A., et al. (2024) Evolution of Myeloid-Mediated Immunotherapy Resistance in Prostate Cancer. Nature, 637, 1207-1217. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fejza, A., Carobolante, G., Poletto, E., Camicia, L., Schinello, G., Di Siena, E., et al. (2023) The Entanglement of Extracellular Matrix Molecules and Immune Checkpoint Inhibitors in Cancer: A Systematic Review of the Literature. Frontiers in Immunology, 14, Article ID: 1270981. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wu, T., Li, X., Zheng, F., Liu, H. and Yu, Y. (2025) Intercellular Communication between FAP+ Fibroblasts and SPP1+ Macrophages in Prostate Cancer via Multi-Omics. Frontiers in Immunology, 16, Article ID: 1560998. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zeng, P., Zhang, X., Xiang, T., Ling, Z., Lin, C. and Diao, H. (2022) Secreted Phosphoprotein 1 as a Potential Prognostic and Immunotherapy Biomarker in Multiple Human Cancers. Bioengineered, 13, 3221-3239. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gordon-Weeks, A. and Yuzhalin, A. (2020) Cancer Extracellular Matrix Proteins Regulate Tumour Immunity. Cancers, 12, Article No. 3331. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Z., Liu, B., Lin, Z., Mei, L., Chen, R. and Li, Z. (2024) spp1 Could Be an Immunological and Prognostic Biomarker: From Pan‐Cancer Comprehensive Analysis to Osteosarcoma Validation. The FASEB Journal, 38, e23783. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, H., Li, N., Liu, Q., Guo, J., Pan, Q., Cheng, B., et al. (2023) Antiandrogen Treatment Induces Stromal Cell Reprogramming to Promote Castration Resistance in Prostate Cancer. Cancer Cell, 41, 1345-1362.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pang, X., Xie, R., Zhang, Z., Liu, Q., Wu, S. and Cui, Y. (2019) Identification of SPP1 as an Extracellular Matrix Signature for Metastatic Castration-Resistant Prostate Cancer. Frontiers in Oncology, 9, Article No. 924. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sanchis, P., Sabater, A., Lechuga, J., Rada, J., Seniuk, R., Pascual, G., et al. (2025) PKA-Driven SPP1 Activation as a Novel Mechanism Connecting the Bone Microenvironment to Prostate Cancer Progression. Oncogene, 44, 3568-3579. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dovrolis, N., Katifelis, H., Grammatikaki, S., Zakopoulou, R., Bamias, A., Karamouzis, M.V., et al. (2023) Inflammation and Immunity Gene Expression Patterns and Machine Learning Approaches in Association with Response to Immune-Checkpoint Inhibitors-Based Treatments in Clear-Cell Renal Carcinoma. Cancers, 15, Article No. 5637. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cha, S.M., Park, J., Lee, Y.J., Lee, H.J., Lee, H., Lee, I.W., et al. (2024) SPP1+ Macrophages in HR+ Breast Cancer Are Associated with Tumor-Infiltrating Lymphocytes. NPJ Breast Cancer, 10, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mangiola, S., McCoy, P., Modrak, M., Souza-Fonseca-Guimaraes, F., Blashki, D., Stuchbery, R., et al. (2021) Transcriptome Sequencing and Multi-Plex Imaging of Prostate Cancer Microenvironment Reveals a Dominant Role for Monocytic Cells in Progression. BMC Cancer, 21, Article No. 846. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shi, W., Wang, Y., Zhao, Y., Kim, J.J., Li, H., Meng, C., et al. (2023) Immune Checkpoint B7-H3 Is a Therapeutic Vulnerability in Prostate Cancer Harboring PTEN and TP53 Deficiencies. Science Translational Medicine, 15, eadf6724. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Messex, J.K., Byrd, C.J., Thomas, M.U. and Liou, G. (2022) Macrophages Cytokine Spp1 Increases Growth of Prostate Intraepithelial Neoplasia to Promote Prostate Tumor Progression. International Journal of Molecular Sciences, 23, Article No. 4247. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
邓鑫, 刘豪, 陈猛, 等. FOXA1、GAD1、SPP1表达与去势抵抗性前列腺癌患者对恩杂鲁胺耐药的关系[J]. 中国性科学, 2025, 34(7): 28-33.
|
|
[33]
|
Cheng, J., Jin, Z., Su, C., Jiang, T., Zheng, X., Guo, J., et al. (2025) Bone Metastases Diminish Extraosseous Response to Checkpoint Blockade Immunotherapy through Osteopontin-Producing Osteoclasts. Cancer Cell, 43, 1093-1107.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhu, H., Lin, Q., Gao, X. and Huang, X. (2023) Identification of the Hub Genes Associated with Prostate Cancer Tumorigenesis. Frontiers in Oncology, 13, Article ID: 1168772. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Huang, T., Ye, W. and Lin, X. (2021) A Pan-Cancer Study: The Immunological and Prognostic Significance of Aberrant SPP1 Expression on Tumors.
|
|
[36]
|
Chen, S., Deng, B., Zhao, F., You, H., Liu, Y., Xie, L., et al. (2024) Silencing SPP1 in M2 Macrophages Inhibits the Progression of Castration-Resistant Prostate Cancer via the MMP9/TGFβ1 Axis. Translational Andrology and Urology, 13, 1239-1255. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cao, M., Deng, Y., Hao, Q., Yan, H., Wang, Q., Dong, C., et al. (2025) Single-Cell Transcriptomic Analysis Reveals Gut Microbiota-Immunotherapy Synergy through Modulating Tumor Microenvironment. Signal Transduction and Targeted Therapy, 10, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wei, F., Azuma, K., Nakahara, Y., Saito, H., Matsuo, N., Tagami, T., et al. (2023) Machine Learning for Prediction of Immunotherapeutic Outcome in Non-Small-Cell Lung Cancer Based on Circulating Cytokine Signatures. Journal for ImmunoTherapy of Cancer, 11, e006788. [Google Scholar] [CrossRef] [PubMed]
|