|
[1]
|
姜亚玲, 李文渊, 冯爽, 等. 木犀草素的结构修饰及其生物活性研究进展[J]. 中草药, 2023, 54(20): 6889-6902.
|
|
[2]
|
王晶晶, 倪睿, 李紫薇, 等. 负载木犀草素纳米粒的壳聚糖/海藻酸钠水凝胶伤口敷料研究[J]. 中国药学杂志, 2025, 60(8): 856-865.
|
|
[3]
|
Zhu, M., Sun, Y., Su, Y., Guan, W., Wang, Y., Han, J., et al. (2024) Luteolin: A Promising Multifunctional Natural Flavonoid for Human Diseases. Phytotherapy Research, 38, 3417-3443. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Deniz, O.G., Soytürk, H., Him, A., Sağir, D. and Annaç, E. (2025) Luteolin Mitigates Hippocampal Damage in a Rat Model of Streptozotocin-Induced Diabetes. Biomolecules and Biomedicine, 25, 2364-2377. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
智婷, 赵一伍, 冉志芳, 等. 木犀草苷生物合成相关的尿苷二磷酸依赖的糖基转移酶研究进展[J]. 中药材, 2025(10): 2666-2673.
|
|
[6]
|
Falcone Ferreyra, M.L., Rius, S.P. and Casati, P. (2012) Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Frontiers in Plant Science, 3, Article ID: 222. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Marín, L., Gutiérrez-del-Río, I., Yagüe, P., Manteca, Á., Villar, C.J. and Lombó, F. (2017) De Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces Albus and Production Improvement by Feeding and Spore Conditioning. Frontiers in Microbiology, 8, Article ID: 921. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kong, L., Wu, W., Li, C., Ma, L., Ma, J., Pan, M., et al. (2025) Structure Modification of Luteolin and the Influence of Its Derivatives on Biological Activities. Frontiers in Nutrition, 12, Article ID: 1546932. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
O’Keefe, B.M., Simmons, N. and Martin, S.F. (2011) Facile Access to Sterically Hindered Aryl Ketones via Carbonylative Cross-Coupling: Application to the Total Synthesis of Luteolin. Tetrahedron, 67, 4344-4351. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Q., Zhang, J., Liu, M., Yang, J., Zhang, X., Zhou, L., et al. (2015) Modified Syntheses of the Dietary Flavonoid Luteolin. Journal of Chemical Research, 39, 550-552. [Google Scholar] [CrossRef]
|
|
[11]
|
Isika, D.K., Özkömeç, F.N., Çeşme, M. and Sadik, O.A. (2022) Synthesis, Biological and Computational Studies of Flavonoid Acetamide Derivatives. RSC Advances, 12, 10037-10050. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hung, W., Ho, C. and Hwang, L.S. (2011) Inhibitory Activity of Natural Occurring Antioxidants on Thiyl Radical-Induced Trans-Arachidonic Acid Formation. Journal of Agricultural and Food Chemistry, 59, 1968-1973. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Devi, K.P., Rajavel, T., Nabavi, S.F., Setzer, W.N., Ahmadi, A., Mansouri, K., et al. (2015) Hesperidin: A Promising Anticancer Agent from Nature. Industrial Crops and Products, 76, 582-589. [Google Scholar] [CrossRef]
|
|
[14]
|
Bailly, C. (2020) Regulation of PD-L1 Expression on Cancer Cells with Ros-Modulating Drugs. Life Sciences, 246, Article 117403. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Gao, G., Ge, R., Li, Y. and Liu, S. (2019) Luteolin Exhibits Anti-Breast Cancer Property through Up-Regulating Mir-203. Artificial Cells, Nanomedicine, and Biotechnology, 47, 3265-3271. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wu, H., Lin, J., Liu, Y., Chen, H., Hsu, K., Lin, S., et al. (2021) Luteolin Suppresses Androgen Receptor-Positive Triple-Negative Breast Cancer Cell Proliferation and Metastasis by Epigenetic Regulation of MMP9 Expression via the AKT/mTOR Signaling Pathway. Phytomedicine, 81, Article 153437. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, L., Liu, Q., Huang, L., Yang, F., Liu, A. and Zhang, J. (2020) Combination of Lapatinib and Luteolin Enhances the Therapeutic Efficacy of Lapatinib on Human Breast Cancer through the Foxo3a/nqo1 Pathway. Biochemical and Biophysical Research Communications, 531, 364-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, J., Li, C., Li, W., Shi, Z., Liu, Z., Zhou, J., et al. (2024) Mechanism of Luteolin against Non-Small-Cell Lung Cancer: A Study Based on Network Pharmacology, Molecular Docking, Molecular Dynamics Simulation, and in Vitro Experiments. Frontiers in Oncology, 14, Article ID: 1471109. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kato, H., Sato, M., Naiki‐Ito, A., Inaguma, S., Sano, M., Komura, M., et al. (2024) The Role of DPYD and the Effects of DPYD Suppressor Luteolin Combined with 5‐Fu in Pancreatic Cancer. Cancer Medicine, 13, e70124. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Rath, P., Chauhan, A., Ranjan, A., Aggarwal, D., Rani, I., Choudhary, R., et al. (2024) Luteolin: A Promising Modulator of Apoptosis and Survival Signaling in Liver Cancer. Pathology-Research and Practice, 260, Article 155430. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bhat, M.A. and Dhaneshwar, S. (2024) Neurodegenerative Diseases: New Hopes and Perspectives. Current Molecular Medicine, 24, 1004-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jiang, Q., Liu, J., Huang, S., Wang, X., Chen, X., Liu, G., et al. (2025) Antiageing Strategy for Neurodegenerative Diseases: From Mechanisms to Clinical Advances. Signal Transduction and Targeted Therapy, 10, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, Y., Dong, Y., Cao, Z., Ji, Y., Cheng, X. and Zheng, X. (2025) The Multi-Dimensional Action Map of Resveratrol against Alzheimer’s Disease: Mechanism Integration and Treatment Strategy Optimization. Nutrients, 17, Article 3451. [Google Scholar] [CrossRef]
|
|
[24]
|
Moaket, O.S., Obaid, S.E., Obaid, F.E., Shakeeb, Y.A., Elsharief, S.M., Tania, A., et al. (2025) GLP-1 and the Degenerating Brain: Exploring Mechanistic Insights and Therapeutic Potential. International Journal of Molecular Sciences, 26, Article 10743. [Google Scholar] [CrossRef]
|
|
[25]
|
Alkhammash, A., Alotaibi, G., Algethami, A. and Alqarni, M. (2025) Decoding Apoptosis-Associated Pathways in Inflammatory and Neurodegenerative Diseases: A Network Pharmacology Based Drug Discovery Approach. European Journal of Pharmacology, 1007, Article 178231. [Google Scholar] [CrossRef]
|
|
[26]
|
Kou, J., Shi, J., He, Y., Hao, J., Zhang, H., Luo, D., et al. (2022) Luteolin Alleviates Cognitive Impairment in Alzheimer’s Disease Mouse Model via Inhibiting Endoplasmic Reticulum Stress-Dependent Neuroinflammation. Acta Pharmacologica Sinica, 43, 840-849. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
He, Z., Li, X., Wang, Z., Cao, Y., Han, S., Li, N., et al. (2023) Protective Effects of Luteolin against Amyloid Beta-Induced Oxidative Stress and Mitochondrial Impairments through Peroxisome Proliferator-Activated Receptor Γ-Dependent Mechanism in Alzheimer’s Disease. Redox Biology, 66, Article 102848. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Elmazoglu, Z., Yar Saglam, A.S., Sonmez, C. and Karasu, C. (2020) Luteolin Protects Microglia against Rotenone-Induced Toxicity in a Hormetic Manner through Targeting Oxidative Stress Response, Genes Associated with Parkinson’s Disease and Inflammatory Pathways. Drug and Chemical Toxicology, 43, 96-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cordaro, M., Cuzzocrea, S. and Crupi, R. (2020) An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants, 9, Article 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Grabarczyk, M., Justyńska, W., Czpakowska, J., Smolińska, E., Bielenin, A., Glabinski, A., et al. (2024) Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants, 13, Article 1364. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Guida, G., Attanasio, A., Disabato, G., Paglione, G. and Piepoli, M. (2024) Editorial Comments: Focus on Cardiovascular Diseases. European Journal of Preventive Cardiology, 31, 501-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lavie, C.J. (2022) Progress in Cardiovascular Diseases Statistics 2022. Progress in Cardiovascular Diseases, 73, 94-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gentile, D., Fornai, M., Pellegrini, C., Colucci, R., Benvenuti, L., Duranti, E., et al. (2018) Luteolin Prevents Cardiometabolic Alterations and Vascular Dysfunction in Mice with HFD-Induced Obesity. Frontiers in Pharmacology, 9, Article ID: 1094. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yu, X., Xu, L., Su, C., Wang, C., Wang, Z., Wang, Y., et al. (2024) Luteolin Protects against Vascular Calcification by Modulating SIRT1/CXCR4 Signaling Pathway and Promoting Autophagy. The AAPS Journal, 26, Article No. 111. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, J., Qian, L., Zhang, F., Wang, J., Ai, H., Tang, L., et al. (2015) Cardioprotective Effects of Luteolin on Ischemia/Reperfusion Injury in Diabetic Rats Are Modulated by Enos and the Mitochondrial Permeability Transition Pathway. Journal of Cardiovascular Pharmacology, 65, 349-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Liu, D., Luo, H. and Qiao, C. (2022) SHP-1/STAT3 Interaction Is Related to Luteolin-Induced Myocardial Ischemia Protection. Inflammation, 45, 88-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, H., Zhao, Z., Song, M., Zhang, W., Liu, C. and Chen, S. (2024) Luteolin Detoxifies DEHP and Prevents Liver injury by Degrading Uroc1 Protein in Mice. EMBO Molecular Medicine, 16, 2699-2724. Https:// [Google Scholar] [CrossRef]
|
|
[38]
|
Singh, D., Khan, M.A. and Siddique, H.R. (2024) Unveiling the Therapeutic Promise of Natural Products in Alleviating Drug‐Induced Liver Injury: Present Advancements and Future Prospects. Phytotherapy Research, 38, 22-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Han, Z., Batudeligen, Chen, H., Narisu, Anda, Xu, Y., et al. (2024) Luteolin Attenuates Ccl4-Induced Hepatic Injury by Inhibiting Ferroptosis via SLC7A11. BMC Complementary Medicine and Therapies, 24, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cao, L., Lei, Q., Dong, Y., Meng, C., Qi, Q., Li, L., et al. (2025) Luteolin Protects against Alcoholic Liver Injury by Restoring NRF2 Stability to Suppress ACSS2 Nuclear Accumulation. npj Science of Food, 9, Article No. 234. [Google Scholar] [CrossRef]
|
|
[41]
|
Taweesap, P., Potue, P., Khamseekaew, J., Iampanichakul, M., Jan-O, B., Pakdeechote, P., et al. (2025) Luteolin Relieves Metabolic Dysfunction-Associated Fatty Liver Disease Caused by a High-Fat Diet in Rats through Modulating the AdipoR1/AMPK/PPARγ Signaling Pathway. International Journal of Molecular Sciences, 26, Article 3804. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ye, Z., Yang, S., Chen, L., Yu, W., Xia, Y., Li, B., et al. (2025) Luteolin Alleviated Calcium Oxalate Crystal Induced Kidney Injury by Inhibiting NR4A1-Mediated Ferroptosis. Phytomedicine, 136, Article 156302. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wei, J., Zhao, B., Jiang, Z., Wang, P., Xu, Y., Ding, N., et al. (2025) Luteolin Mitigates Renal Ischemia-Reperfusion Injury via Anti-Inflammatory, Anti-Apoptotic, and NRF2/HO-1-Mediated Antioxidant Effects. European Journal of Pharmacology, 999, Article 177676. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Xin, S., Yan, H., Ma, J., Sun, Q. and Shen, L. (2016) Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice. Medical Science Monitor, 22, 5173-5180. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, F., Wei, R., Huang, M., Chen, J., Li, P., Ma, Y., et al. (2022) Luteolin Can Ameliorate Renal Interstitial Fibrosis-Induced Renal Anaemia through the SIRT1/FOXO3 Pathway. Food & Function, 13, 11896-11914. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xu, Z., Su, P., Zhou, X., Zheng, Z., Zhu, Y. and Wang, Q. (2024) Exploring the Mechanism of Action of Modified Simiao Powder in the Treatment of Osteoarthritis: An In-Silico Study. Frontiers in Medicine, 11, Article ID: 1422306. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, Y., Liu, F., Li, S., Huang, W., Zhou, S., Han, Y., et al. (2024) Luteolin Regulating Synthesis and Catabolism of Osteoarthritis Chondrocytes via Activating Autophagy. Heliyon, 10, e31028. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chai, S., Yang, Y., Wei, L., Cao, Y., Ma, J., Zheng, X., et al. (2024) Luteolin Rescues Postmenopausal Osteoporosis Elicited by OVX through Alleviating Osteoblast Pyroptosis via Activating PI3K-AKT Signaling. Phytomedicine, 128, Article 155516. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shivnath, N., Siddiqui, S., Rawat, V., Khan, M.S. and Arshad, M. (2021) Solanum Xanthocarpum Fruit Extract Promotes Chondrocyte Proliferation in Vitro and Protects Cartilage Damage in Collagenase Induced Osteoarthritic Rats (Article Reference Number: JEP 114028). Journal of Ethnopharmacology, 274, Article 114028. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Morimoto, R., Hanada, A., Matsubara, C., Horio, Y., Sumitani, H., Ogata, T., et al. (2023) Anti-Influenza a Virus Activity of Flavonoids in Vitro: A Structure-Activity Relationship. Journal of Natural Medicines, 77, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zima, V., Radilová, K., Kožíšek, M., Albiñana, C.B., Karlukova, E., Brynda, J., et al. (2020) Unraveling the Anti-Influenza Effect of Flavonoids: Experimental Validation of Luteolin and Its Congeners as Potent Influenza Endonuclease Inhibitors. European Journal of Medicinal Chemistry, 208, Article 112754. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Peng, M., Watanabe, S., Chan, K.W.K., He, Q., Zhao, Y., Zhang, Z., et al. (2017) Luteolin Restricts Dengue Virus Replication through Inhibition of the Proprotein Convertase Furin. Antiviral Research, 143, 176-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wen, D., Han, W., Chen, Q., Qi, G., Gao, M., Guo, P., et al. (2024) Integrating Network Pharmacology and Experimental Validation to Explore the Mechanisms of Luteolin in Alleviating Fumonisin B1-Induced Intestinal Inflammatory Injury. Toxicon, 237, Article 107531. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lin, Y., Yang, N., Bao, B., Wang, L., Chen, J. and Liu, J. (2020) Luteolin Reduces Fat Storage in Caenorhabditis elegans by Promoting the Central Serotonin Pathway. Food & Function, 11, 730-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liu, F., Hong, C., Gong, S., Fan, Z., Xiao, X. and Xiao, Y. (2025) Luteolin Decreases Fat Accumulation and Extends Lifespan in Caenorhabditis elegans via DAF-16/FOXO and NHR-49/PPAR-α. Journal of Agricultural and Food Chemistry, 73, 30749-30760. [Google Scholar] [CrossRef]
|
|
[56]
|
Mahin, M., Ali, A., Elahe, K., et al. (2019) Synthesis of a Copolymer Carrier for Anticancer Drug Luteolin for Targeting Human Breast Cancer Cells. Journal of Traditional Chinese Medicine, 39, 474-481.
|
|
[57]
|
Wang, M., Zhao, L., Liu, Y., et al. (2025) Chylomicron-Mimicking Supramolecular Nanoemulsion for Oral Luteolin Delivery against Hyperuricemia. Pharmaceutical Development and Technology, 30, 1543-1556.
|
|
[58]
|
Shinde, P., Agraval, H., Singh, A., Yadav, U.C.S. and Kumar, U. (2019) Synthesis of Luteolin Loaded Zein Nanoparticles for Targeted Cancer Therapy Improving Bioavailability and Efficacy. Journal of Drug Delivery Science and Technology, 52, 369-378. [Google Scholar] [CrossRef]
|
|
[59]
|
Sinha, A. and Suresh, P.K. (2019) Enhanced Induction of Apoptosis in HaCat Cells by Luteolin Encapsulated in Pegylated Liposomes—Role of Caspase-3/Caspase-14. Applied Biochemistry and Biotechnology, 188, 147-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Xu, Q., Zhang, W., Xu, H. and Zhang, Q. (2023) Fabrication of Luteolin Loaded Zein-Caseinate Nanoparticles and Its Bioavailability Enhancement in Rats. Journal of Pharmaceutical Sciences, 112, 3056-3066. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Lu, Z., Liu, J., Zhao, L., Wang, C., Shi, F., Li, Z., et al. (2023) Enhancement of Oral Bioavailability and Anti-Colitis Effect of Luteolin-Loaded Polymer Micelles with RA (Rosmarinic Acid)-Ss-Mpeg as Carrier. Drug Development and Industrial Pharmacy, 49, 17-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Mao, J., Gao, T., Wang, L., Lv, X. and Zhao, X. (2025) Luteolin Phospholipid Complexes Improves the Bioavailability of Luteolin and Exhibits Potent Protection and High Safety in Mice with Gouty Nephropathy. Natural Product Research, 1-5. [Google Scholar] [CrossRef] [PubMed]
|