|
[1]
|
Cole, J.B. and Florez, J.C. (2020) Genetics of Diabetes Mellitus and Diabetes Complications. Nature Reviews Nephrology, 16, 377-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article 109119. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
American Diabetes Association (2017) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S13-S27. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kulkarni, K. (2006) Diets Do Not Fail: The Success of Medical Nutrition Therapy in Patients with Diabetes. Endocrine Practice, 12, 121-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
ElSayed, N.A., McCoy, R.G., Aleppo, G., Bajaj, M., Balapattabi, K., Beverly, E.A., et al. (2024) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes—2025. Diabetes Care, 48, S181-S206. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Davies, M.J., Aroda, V.R., Collins, B.S., Gabbay, R.A., Green, J., Maruthur, N.M., et al. (2022) Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 45, 2753-2786. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, H., Chen, Y., Linghu, K., Ren, P., Yao, Y., Jiang, F., et al. (2024) 1,8-Cineole Alleviates Nrf2-Mediated Redox Imbalance and Mitochondrial Dysfunction in Diabetes Mellitus by Targeting Sirt1. Phytomedicine, 135, Article 156099. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Patel, A., Rajgopal, B. and Jaiswal, M. (2025) Various Strategies to Induce Beta Cell Neogenesis: A Comprehensive Review for Unravelling the Potential Future Therapy for Curing Diabetes. Growth Factors, 43, 69-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fan, S. and Li, N. (2025) Obesity-Induced Adipocytes Promote Diabetes Mellitus by Regulating Β Islet Cell Function through Exosome Mir-138-5p. Scientific Reports, 15, Article No. 17275. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kuzminska, J., Szyk, P., Mlynarczyk, D.T., Bakun, P., Muszalska-Kolos, I., Dettlaff, K., et al. (2024) Curcumin Derivatives in Medicinal Chemistry: Potential Applications in Cancer Treatment. Molecules, 29, Article No. 5321. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Priyadarsini, K. (2014) The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules, 19, 20091-20112. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, Y., Pan, M., Cheng, A., Lin, L., Ho, Y., Hsieh, C., et al. (1997) Stability of Curcumin in Buffer Solutions and Characterization of Its Degradation Products. Journal of Pharmaceutical and Biomedical Analysis, 15, 1867-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kim, T., Davis, J., Zhang, A.J., He, X. and Mathews, S.T. (2009) Curcumin Activates AMPK and Suppresses Gluconeogenic Gene Expression in Hepatoma Cells. Biochemical and Biophysical Research Communications, 388, 377-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mirzaei, H., Shakeri, A., Rashidi, B., Jalili, A., Banikazemi, Z. and Sahebkar, A. (2017) Phytosomal Curcumin: A Review of Pharmacokinetic, Experimental and Clinical Studies. Biomedicine & Pharmacotherapy, 85, 102-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Cui, J., Li, H., Zhang, T., Lin, F., Chen, M., Zhang, G., et al. (2025) Research Progress on the Mechanism of Curcumin Anti-Oxidative Stress Based on Signaling Pathway. Frontiers in Pharmacology, 16, Article ID: 1548073. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Anand, P., Thomas, S.G., Kunnumakkara, A.B., Sundaram, C., Harikumar, K.B., Sung, B., et al. (2008) Biological Activities of Curcumin and Its Analogues (Congeners) Made by Man and Mother Nature. Biochemical Pharmacology, 76, 1590-1611. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ahsan, H., Parveen, N., Khan, N.U. and Hadi, S.M. (1999) Pro-Oxidant, Anti-Oxidant and Cleavage Activities on DNA of Curcumin and Its Derivatives Demethoxycurcumin and Bisdemethoxycurcumin. Chemico-Biological Interactions, 121, 161-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Obrzut, O., Gostyńska-Stawna, A., Kustrzyńska, K., Stawny, M. and Krajka-Kuźniak, V. (2025) Curcumin: A Natural Warrior against Inflammatory Liver Diseases. Nutrients, 17, Article 1373. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sahebkar, A. (2016) Curcumin: A Natural Multitarget Treatment for Pancreatic Cancer. Integrative Cancer Therapies, 15, 333-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wasim, R., Azmi, S., Owais, M. and Anwar, A. (2025) Curcumin in Type 2 Diabetes Mellitus: A Natural Approach to Modulating Metabolic Dysfunction. Drug Research, 75, 251-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C. and Jirawatnotai, S. (2012) Curcumin Extract for Prevention of Type 2 Diabetes. Diabetes Care, 35, 2121-2127. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Marton, L.T., Pescinini-e-Salzedas, L.M., Camargo, M.E.C., Barbalho, S.M., Haber, J.F.D.S., Sinatora, R.V., et al. (2021) The Effects of Curcumin on Diabetes Mellitus: A Systematic Review. Frontiers in Endocrinology, 12, Article ID: 669448. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tabanelli, R., Brogi, S. and Calderone, V. (2021) Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics, 13, Article 1715. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rouse, M., Younès, A. and Egan, J.M. (2014) Resveratrol and Curcumin Enhance Pancreatic β-Cell Function by Inhibiting Phosphodiesterase Activity. Journal of Endocrinology, 223, 107-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rashid, K. and Sil, P.C. (2015) Curcumin Enhances Recovery of Pancreatic Islets from Cellular Stress Induced Inflammation and Apoptosis in Diabetic Rats. Toxicology and Applied Pharmacology, 282, 297-310. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Duan, J., Yang, M., Liu, Y., Xiao, S. and Zhang, X. (2022) Curcumin Protects Islet Beta Cells from Streptozotocin-Induced Type 2 Diabetes Mellitus Injury via Its Antioxidative Effects. Endokrynologia Polska, 73, 942-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, P., Ding, L., Cao, S., Feng, X., Zhang, Q., Chen, Y., et al. (2020) Curcumin Metabolites Contribute to the Effect of Curcumin on Ameliorating Insulin Sensitivity in High-Glucose-Induced Insulin-Resistant HEPG2 Cells. Journal of Ethnopharmacology, 259, Article 113015. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sarmiento-Ortega, V.E., Moroni-González, D., Diaz, A., Brambila, E. and Treviño, S. (2024) Curcumin Treatment Ameliorates Hepatic Insulin Resistance Induced by Sub-Chronic Oral Exposure to Cadmium LOAEL Dose via NF-κB and Nrf2 Pathways. Biological Trace Element Research, 203, 2382-2393. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Fujiwara, H., Hosokawa, M., Zhou, X., Fujimoto, S., Fukuda, K., Toyoda, K., et al. (2008) Curcumin Inhibits Glucose Production in Isolated Mice Hepatocytes. Diabetes Research and Clinical Practice, 80, 185-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mohiti-Ardekani, J., Asadi, S., Ardakani, A.M., Rahimifard, M., Baeeri, M. and Momtaz, S. (2019) Curcumin Increases Insulin Sensitivity in C2C12 Muscle Cells via Akt and AMPK Signaling Pathways. Cogent Food & Agriculture, 5, Article 1577532. [Google Scholar] [CrossRef]
|
|
[31]
|
Kim, J.H., Park, J.M., Kim, E., Lee, J.O., Lee, S.K., Jung, J.H., et al. (2010) Curcumin Stimulates Glucose Uptake through AMPK‐p38 MAPK Pathways in L6 Myotube Cells. Journal of Cellular Physiology, 223, 771-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kang, C. and Kim, E. (2010) Synergistic Effect of Curcumin and Insulin on Muscle Cell Glucose Metabolism. Food and Chemical Toxicology, 48, 2366-2373. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Febriza, A., Zahrah, A., Andini, N., Usman, F. and Idrus, H. (2024) Potential Effect of Curcumin in Lowering Blood Glucose Level in Streptozotocin-Induced Diabetic Rats. Diabetes, Metabolic Syndrome and Obesity, 17, 3305-3313. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xia, Z., Chen, W., Shi, L., Jiang, X., Li, K., Wang, Y., et al. (2020) The Underlying Mechanisms of Curcumin Inhibition of Hyperglycemia and Hyperlipidemia in Rats Fed a High-Fat Diet Combined with STZ Treatment. Molecules, 25, Article 271. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Alsulaim, A.K., Almutaz, T.H., Albati, A.A. and Rahmani, A.H. (2023) Therapeutic Potential of Curcumin, a Bioactive Compound of Turmeric, in Prevention of Streptozotocin-Induced Diabetes through the Modulation of Oxidative Stress and Inflammation. Molecules, 29, Article 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Na, L.-X., Zhang, Y.-L., Li, Y., Liu, L., Li, R., Kong, T., et al. (2011) Curcumin Improves Insulin Resistance in Skeletal Muscle of Rats. Nutrition, Metabolism and Cardiovascular Diseases, 21, 526-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Özsan, M., Saygili Düzova, Ü. and Dönmez, N. (2024) Neuroprotective Role of Curcumin on the Hippocampus against the Oxidative Stress and Inflammation of Streptozotocin-Induced Diabetes in Rats. Metabolic Brain Disease, 40, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Abdulmalek, S., Eldala, A., Awad, D. and Balbaa, M. (2021) Ameliorative Effect of Curcumin and Zinc Oxide Nanoparticles on Multiple Mechanisms in Obese Rats with Induced Type 2 Diabetes. Scientific Reports, 11, Article No. 20677. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Panahi, Y., Khalili, N., Sahebi, E., Namazi, S., Simental-Mendía, L., Majeed, M., et al. (2018) Effects of Curcuminoids Plus Piperine on Glycemic, Hepatic and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Placebo-Controlled Trial. Drug Research, 68, 403-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lamichhane, G., Godsey, T., Liu, J., Franks, R., Zhang, G., Emerson, S., et al. (2025) Twelve-Week Curcumin Supplementation Improves Glucose Homeostasis and Gut Health in Prediabetic Older Adults: A Pilot, Double-Blind, Placebo-Controlled Trial. Nutrients, 17, Article 2164. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Shafabakhsh, R., Mobini, M., Raygan, F., Aghadavod, E., Ostadmohammadi, V., Amirani, E., et al. (2020) Curcumin Administration and the Effects on Psychological Status and Markers of Inflammation and Oxidative Damage in Patients with Type 2 Diabetes and Coronary Heart Disease. Clinical Nutrition ESPEN, 40, 77-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yaikwawong, M., Jansarikit, L., Jirawatnotai, S. and Chuengsamarn, S. (2024) Curcumin Extract Improves Beta Cell Functions in Obese Patients with Type 2 Diabetes: A Randomized Controlled Trial. Nutrition Journal, 23, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Thota, R.N., Rosato, J.I., Dias, C.B., Burrows, T.L., Martins, R.N. and Garg, M.L. (2020) Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3β and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer’s Disease. Nutrients, 12, Article 1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Adab, Z., Eghtesadi, S., Vafa, M., Heydari, I., Shojaii, A., Haqqani, H., et al. (2019) Effect of Turmeric on Glycemic Status, Lipid Profile, Hs‐CRP, and Total Antioxidant Capacity in Hyperlipidemic Type 2 Diabetes Mellitus Patients. Phytotherapy Research, 33, 1173-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
El-Rakabawy, O.M., Elkholy, A.A., Mahfouz, A.A., Abdelsalam, M.M. and El Wakeel, L.M. (2025) Curcumin Supplementation Improves the Clinical Outcomes of Patients with Diabetes and Atherosclerotic Cardiovascular Risk. Scientific Reports, 15, Article No. 28358. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Rahimi, H.R., Mohammadpour, A.H., Dastani, M., et al. (2016) The Effect of Nano-Curcumin on HbA1c, Fasting Blood Glucose, and Lipid Profile in Diabetic Subjects: A Randomized Clinical Trial. Avicenna Journal of Phytomedicine, 6, 567-77.
|
|
[47]
|
Hou, K., Chen, Y., Zhu, D., et al. (2020) Curcumin Inhibits High Glucose Oxidative Stress and Apoptosis in Pancreatic Beta Cells via CHOP PCG-1a NBSP and pERK1 2. Frontiers in Bioscience, 25, 1974-1984. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, J., Wu, N., Chen, X., Chen, H., Yang, X. and Liu, C. (2019) Curcumin Protects Islet Cells from Glucolipotoxicity by Inhibiting Oxidative Stress and NADPH Oxidase Activity Both in Vitro and in Vivo. Islets, 11, 152-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Xie, Z., Wu, B., Shen, G., Li, X. and Wu, Q. (2017) Curcumin Alleviates Liver Oxidative Stress in Type 1 Diabetic Rats. Molecular Medicine Reports, 17, 103-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Pan, Y., Wang, Y., Cai, L., Cai, Y., Hu, J., Yu, C., et al. (2012) Inhibition of High Glucose‐Induced Inflammatory Response and Macrophage Infiltration by a Novel Curcumin Derivative Prevents Renal Injury in Diabetic Rats. British Journal of Pharmacology, 166, 1169-1182. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Pan, Y., Zhang, X., Wang, Y., Cai, L., Ren, L., Tang, L., et al. (2013) Targeting JNK by a New Curcumin Analog to Inhibit NF-kB-Mediated Expression of Cell Adhesion Molecules Attenuates Renal Macrophage Infiltration and Injury in Diabetic Mice. PLOS ONE, 8, e79084. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Badr, A.M., Sharkawy, H., Farid, A.A. and El-Deeb, S. (2020) Curcumin Induces Regeneration of Β Cells and Suppression of Phosphorylated-NF-κB in Streptozotocin-Induced Diabetic Mice. The Journal of Basic and Applied Zoology, 81, Article No. 22. [Google Scholar] [CrossRef]
|
|
[53]
|
Weisberg, S., Leibel, R. and Tortoriello, D.V. (2016) Proteasome Inhibitors, Including Curcumin, Improve Pancreatic β-Cell Function and Insulin Sensitivity in Diabetic Mice. Nutrition & Diabetes, 6, e205. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Abdel Aziz, M.T., El-Asmar, M.F., Rezq, A.M., Mahfouz, S.M., Wassef, M.A., Fouad, H.H., et al. (2013) The Effect of a Novel Curcumin Derivative on Pancreatic Islet Regeneration in Experimental Type-1 Diabetes in Rats (Long Term Study). Diabetology & Metabolic Syndrome, 5, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Song, Z., Wang, H., Zhu, L., Han, M., Gao, Y., Du, Y., et al. (2015) Curcumin Improves High Glucose-Induced INS-1 Cell Insulin Resistance via Activation of Insulin Signaling. Food & Function, 6, 461-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Zhong, Y., Xiao, Y., Gao, J., Zheng, Z., Zhang, Z., Yao, L., et al. (2022) Curcumin Improves Insulin Sensitivity in High-Fat Diet-Fed Mice through Gut Microbiota. Nutrition & Metabolism, 19, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Huang, J., Guan, B., Lin, L. and Wang, Y. (2021) Improvement of Intestinal Barrier Function, Gut Microbiota, and Metabolic Endotoxemia in Type 2 Diabetes Rats by Curcumin. Bioengineered, 12, 11947-11958. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xiao, Q., Zhong, Y., Kang, Z., Huang, J., Fang, W., Wei, S., et al. (2022) Curcumin Regulates the Homeostasis of Th17/Treg and Improves the Composition of Gut Microbiota in Type 2 Diabetic Mice with Colitis. Phytotherapy Research, 36, 1708-1723. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Pan, M., Huang, T. and Lin, J. (1999) Biotransformation of Curcumin through Reduction and Glucuronidation in Mice. Drug Metabolism and Disposition, 27, 486-494. [Google Scholar] [CrossRef]
|
|
[60]
|
Somparn, P., Phisalaphong, C., Nakornchai, S., Unchern, S. and Morales, N.P. (2007) Comparative Antioxidant Activities of Curcumin and Its Demethoxy and Hydrogenated Derivatives. Biological and Pharmaceutical Bulletin, 30, 74-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Nakmareong, S., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Kongyingyoes, B., Donpunha, W., et al. (2011) Tetrahydrocurcumin Alleviates Hypertension, Aortic Stiffening and Oxidative Stress in Rats with Nitric Oxide Deficiency. Hypertension Research, 35, 418-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wicha, P., Tocharus, J., Janyou, A., Jittiwat, J., Changtam, C., Suksamrarn, A., et al. (2017) Hexahydrocurcumin Protects against Cerebral Ischemia/Reperfusion Injury, Attenuates Inflammation, and Improves Antioxidant Defenses in a Rat Stroke Model. PLOS ONE, 12, e0189211. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Ozawa, H., Imaizumi, A., Sumi, Y., Hashimoto, T., Kanai, M., Makino, Y., et al. (2017) Curcumin Β-D-Glucuronide Plays an Important Role to Keep High Levels of Free-Form Curcumin in the Blood. Biological & Pharmaceutical Bulletin, 40, 1515-1524. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kim, S.S., Jang, H.J., Oh, M.Y., Lee, J.H. and Kang, K.S. (2018) Tetrahydrocurcumin Enhances Islet Cell Function and Attenuates Apoptosis in Mouse Islets. Transplantation Proceedings, 50, 2847-2853. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tsai, Y., Tsai, M., Hsu, L., Ho, C. and Lai, C. (2021) Tetrahydrocurcumin Upregulates the Adiponectin-Adipor Pathway and Improves Insulin Signaling and Pancreatic β-Cell Function in High-Fat Diet/Streptozotocin-Induced Diabetic Obese Mice. Nutrients, 13, Article 4552. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Yuan, T., Yin, Z., Yan, Z., Hao, Q., Zeng, J., Li, L., et al. (2020) Tetrahydrocurcumin Ameliorates Diabetes Profiles of Db/Db Mice by Altering the Composition of Gut Microbiota and Up-Regulating the Expression of GLP-1 in the Pancreas. Fitoterapia, 146, Article 104665. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R. and Srinivas, P. (1998) Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Medica, 64, 353-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Vareed, S.K., Kakarala, M., Ruffin, M.T., Crowell, J.A., Normolle, D.P., Djuric, Z., et al. (2008) Pharmacokinetics of Curcumin Conjugate Metabolites in Healthy Human Subjects. Cancer Epidemiology, Biomarkers & Prevention, 17, 1411-1417. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Cheng, A.L., Hsu, C.H., Lin, J.K., et al. (2001) Phase I Clinical Trial of Curcumin, a Chemopreventive Agent, in Patients with High-Risk or Pre-Malignant Lesions. Anticancer Research, 21, 2895-900.
|
|
[70]
|
Sharma, R.A., Euden, S.A., Platton, S.L., Cooke, D.N., Shafayat, A., Hewitt, H.R., et al. (2004) Phase I Clinical Trial of Oral Curcumin: Biomarkers of Systemic Activity and Compliance. Clinical Cancer Research, 10, 6847-6854. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ratnatilaka Na Bhuket, P., El-Magboub, A., Haworth, I.S. and Rojsitthisak, P. (2016) Enhancement of Curcumin Bioavailability via the Prodrug Approach: Challenges and Prospects. European Journal of Drug Metabolism and Pharmacokinetics, 42, 341-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Hirano-Kusuda, M., Setoguchi, S., Koga, M., Goto, S., Yamada, A., Watase, D., et al. (2023) Cationic Ester Prodrugs of Curcumin with N,N-Dimethyl Amino Acid Promoieties Improved Poor Water Solubility and Intestinal Absorption. Pharmaceutical Research, 40, 1299-1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Wu, X., Xu, J., Huang, X. and Wen, C. (2010) Self-Microemulsifying Drug Delivery System Improves Curcumin Dissolution and Bioavailability. Drug Development and Industrial Pharmacy, 37, 15-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Xiao, Y., Chen, X., Yang, L., Zhu, X., Zou, L., Meng, F., et al. (2013) Preparation and Oral Bioavailability Study of Curcuminoid-Loaded Microemulsion. Journal of Agricultural and Food Chemistry, 61, 3654-3660. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Teixeira, C.C.C., Mendonça, L.M., Bergamaschi, M.M., Queiroz, R.H.C., Souza, G.E.P., Antunes, L.M.G., et al. (2015) Microparticles Containing Curcumin Solid Dispersion: Stability, Bioavailability and Anti-Inflammatory Activity. AAPS PharmSciTech, 17, 252-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Kato, C., Itaya-Takahashi, M., Miyazawa, T., Ito, J., Parida, I.S., Yamada, H., et al. (2023) Effects of Particle Size of Curcumin Solid Dispersions on Bioavailability and Anti-Inflammatory Activities. Antioxidants, 12, Article 724. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Shakeri, A. and Sahebkar, A. (2016) Opinion Paper: Nanotechnology: A Successful Approach to Improve Oral Bioavailability of Phytochemicals. Recent Patents on Drug Delivery & Formulation, 10, 4-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Fathi Karkan, S., Mohammadhosseini, M., Panahi, Y., Milani, M., Zarghami, N., Akbarzadeh, A., et al. (2016) Magnetic Nanoparticles in Cancer Diagnosis and Treatment: A Review. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Madane, R.G. and Mahajan, H.S. (2016) Curcumin-Loaded Nanostructured Lipid Carriers (NLCs) for Nasal Administration: Design, Characterization, and in Vivo Study. Drug Delivery, 23, 1326-1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Fang, M., Jin, Y., Bao, W., et al. (2012) In Vitro Characterization and in Vivo Evaluation of Nanostructured Lipid Curcumin Carriers for Intragastric Administration. International Journal of Nanomedicine, 7, 5395-5404. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Liu, H., Huang, X., Liu, Y., Zheng, G., Yang, W. and Li, B. (2025) Development of Conjugated Linoleic Acid Nanostructured Lipid Carriers and Their Synergistic Efficacy with Curcumin. Foods, 14, Article 3104. [Google Scholar] [CrossRef]
|
|
[82]
|
Elkhateeb, O., Badawy, M.E.I., Tohamy, H.G., Abou-Ahmed, H., El-Kammar, M. and Elkhenany, H. (2023) Curcumin-infused Nanostructured Lipid Carriers: A Promising Strategy for Enhancing Skin Regeneration and Combating Microbial Infection. BMC Veterinary Research, 19, Article No. 206. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Sun, R., Wei, C., Tang, X., Sun, Y. and Ji, J. (2025) Nanostructured Lipid Carrier-Filled Hydrogel Beads for the Delivery of Curcumin: Digestion, Intestinal Permeation, and Antioxidant Bioactivity after Gastrointestinal Digestion. Pharmaceutics, 17, Article 541. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Zeng, X., Cai, D., Zeng, Q., Chen, Z., Zhong, G., Zhuo, J., et al. (2017) Selective Reduction in the Expression of UGTs and SULTs, a Novel Mechanism by Which Piperine Enhances the Bioavailability of Curcumin in Rat. Biopharmaceutics & Drug Disposition, 38, 3-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Bhardwaj, R.K., Glaeser, H., Becquemont, L., Klotz, U., Gupta, S.K. and Fromm, M.F. (2002) Piperine, a Major Constituent of Black Pepper, Inhibits Human P-Glycoprotein and CYP3A4. The Journal of Pharmacology and Experimental Therapeutics, 302, 645-650. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Kim, H.G., Lee, J.H., Lee, S.J., Oh, J., Shin, E., Jang, Y.P., et al. (2012) The Increased Cellular Uptake and Biliary Excretion of Curcumin by Quercetin: A Possible Role of Albumin Binding Interaction. Drug Metabolism and Disposition, 40, 1452-1455. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Zou, P., Helson, L., Maitra, A., Stern, S.T. and McNeil, S.E. (2013) Polymeric Curcumin Nanoparticle Pharmacokinetics and Metabolism in Bile Duct Cannulated Rats. Molecular Pharmaceutics, 10, 1977-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Chi, H., Zhang, X., Chen, Z., Chen, Q., Yang, B., Deng, H., et al. (2025) Lymph-Targeted Delivery of Cur-NLCs Enhances Oral Bioavailability: Evidence from a Double-Catheterized Rat Model. Pharmaceutics, 17, Article 1484. [Google Scholar] [CrossRef]
|
|
[89]
|
Baek, J. and Cho, C. (2017) Surface Modification of Solid Lipid Nanoparticles for Oral Delivery of Curcumin: Improvement of Bioavailability through Enhanced Cellular Uptake, and Lymphatic Uptake. European Journal of Pharmaceutics and Biopharmaceutics, 117, 132-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Tagde, P., Tagde, P., Islam, F., Tagde, S., Shah, M., Hussain, Z.D., et al. (2021) The Multifaceted Role of Curcumin in Advanced Nanocurcumin Form in the Treatment and Management of Chronic Disorders. Molecules, 26, Article 7109. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Zhang, Y., McClain, S.A., Lee, H., Elburki, M.S., Yu, H., Gu, Y., et al. (2016) A Novel Chemically Modified Curcumin “normalizes” Wound-Healing in Rats with Experimentally Induced Type I Diabetes: Initial Studies. Journal of Diabetes Research, 2016, Article ID: 5782904. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Deng, J., Golub, L.M., Lee, H., Raja, V., Johnson, F., Kucine, A., et al. (2021) A Novel Modified-Curcumin Promotes Resolvin-Like Activity and Reduces Bone Loss in Diabetes-Induced Experimental Periodontitis. Journal of Inflammation Research, 14, 5337-5347. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Abdel Aziz, M.T., El-Asmar, M.F., El-Ibrashy, I.N., Rezq, A.M., Al-Malki, A.L., Wassef, M.A., et al. (2012) Effect of Novel Water Soluble Curcumin Derivative on Experimental Type-1 Diabetes Mellitus (Short Term Study). Diabetology & Metabolic Syndrome, 4, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Rawat, A., Chauhan, S., Singh, R.P., Monika, Gupta, S. and Jhawat, V. (2025) Development and in-Vitro Optimization of Telmisartan-Curcumin Solid Dispersion Nanoparticles for the Management of Diabetic Nephropathy Using Doe Approach. Drug Development and Industrial Pharmacy, 51, 1244-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Khursheed, R., Singh, S.K., Kumar, B., Wadhwa, S., Gulati, M., A, A., et al. (2022) Self-Nanoemulsifying Composition Containing Curcumin, Quercetin, Ganoderma Lucidum Extract Powder and Probiotics for Effective Treatment of Type 2 Diabetes Mellitus in Streptozotocin Induced Rats. International Journal of Pharmaceutics, 612, Article 121306. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Ganugula, R., Arora, M., Jaisamut, P., Wiwattanapatapee, R., Jørgensen, H.G., Venkatpurwar, V.P., et al. (2017) Nano‐curcumin Safely Prevents Streptozotocin‐Induced Inflammation and Apoptosis in Pancreatic Beta Cells for Effective Management of Type 1 Diabetes Mellitus. British Journal of Pharmacology, 174, 2074-2084. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Shamsi-Goushki, A., Mortazavi, Z., Mirshekar, M.A., Mohammadi, M., Moradi-Kor, N., Jafari-Maskouni, S., et al. (2020) comparative Effects of Curcumin versus Nano-Curcumin on Insulin Resistance, Serum Levels of Apelin and Lipid Profile in Type 2 Diabetic Rats. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 13, 2337-2346. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Grama, C.N., Suryanarayana, P., Patil, M.A., Raghu, G., Balakrishna, N., Kumar, M.N.V.R., et al. (2013) Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model. PLOS ONE, 8, e78217. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Sharma, J.B., Bhatt, S., Saini, V. and Kumar, M. (2021) Pharmacokinetics and Pharmacodynamics of Curcumin-Loaded Solid Lipid Nanoparticles in the Management of Streptozotocin-Induced Diabetes Mellitus: Application of Central Composite Design. ASSAY and Drug Development Technologies, 19, 262-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Matacchione, G., Valli, D., Silvestrini, A., Giuliani, A., Sabbatinelli, J., Giordani, C., et al. (2022) Curcumin, Polydatin and Quercetin Synergistic Activity Protects from High-Glucose-Induced Inflammation and Oxidative Stress. Antioxidants, 11, Article 1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Chougala, M.B., Bhaskar, J.J., Rajan, M.G.R. and Salimath, P.V. (2012) Effect of Curcumin and Quercetin on Lysosomal Enzyme Activities in Streptozotocin-Induced Diabetic Rats. Clinical Nutrition, 31, 749-755. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Bodhankar, S.L., Mahadik, K.R., Sathiyanarayanan, A., et al. (2021) Pharmacological Effect of Curcumin in Combination with Piperine in Nicotinamide-Streptozotocin Induced Diabetic Nephropathy in Male Wistar Rats. Diabesity, 7, 10-18.
|
|
[103]
|
Hosseini, H., Bagherniya, M., Sahebkar, A., Iraj, B., Majeed, M. and Askari, G. (2024) The Effect of Curcumin‐Piperine Supplementation on Lipid Profile, Glycemic Index, Inflammation, and Blood Pressure in Patients with Type 2 Diabetes Mellitus and Hypertriglyceridemia. Phytotherapy Research, 38, 5150-5161. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Arcaro, C.A., Gutierres, V.O., Assis, R.P., Moreira, T.F., Costa, P.I., Baviera, A.M., et al. (2014) Piperine, a Natural Bioenhancer, Nullifies the Antidiabetic and Antioxidant Activities of Curcumin in Streptozotocin-Diabetic Rats. PLOS ONE, 9, e113993. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Wichitnithad, W., Nimmannit, U., Wacharasindhu, S. and Rojsitthisak, P. (2011) Synthesis, Characterization and Biological Evaluation of Succinate Prodrugs of Curcuminoids for Colon Cancer Treatment. Molecules, 16, 1888-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Joshi, R.P., Negi, G., Kumar, A., Pawar, Y.B., Munjal, B., Bansal, A.K., et al. (2013) SNEDDS Curcumin Formulation Leads to Enhanced Protection from Pain and Functional Deficits Associated with Diabetic Neuropathy: An Insight into Its Mechanism for Neuroprotection. Nanomedicine: Nanotechnology, Biology and Medicine, 9, 776-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Wdowiak, K., Miklaszewski, A. and Cielecka-Piontek, J. (2024) Amorphous Polymer-Phospholipid Solid Dispersions for the Co-Delivery of Curcumin and Piperine Prepared via Hot-Melt Extrusion. Pharmaceutics, 16, Article 999. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Zhang, J., Chuesiang, P., Kim, J.T. and Shin, G.H. (2022) The Role of Nanostructured Lipid Carriers and Type of Biopolymers on the Lipid Digestion and Release Rate of Curcumin from Curcumin-Loaded Oleogels. Food Chemistry, 392, Article 133306. [Google Scholar] [CrossRef] [PubMed]
|