|
[1]
|
王旭, 杨腾云, 熊波涵, 等. 肩袖腱骨愈合中组织工程学再生的机制及问题[J]. 中国组织工程研究, 2023, 27(18): 2928-2934.
|
|
[2]
|
Li, J., Ke, H., Wu, D., Shao, Y., Wen, Z., Zhong, S., et al. (2025) Bilayer Book-Like Decellularized Extracellular Matrix Scaffold with Bioactive Coatings for Rotator Cuff Repair. Materials Today Bio, 33, Article ID: 102038. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, D., Zhang, X., Huang, S., Liu, Y., Fu, B.S., Mak, K.K., et al. (2021) Engineering Multi-Tissue Units for Regenerative Medicine: Bone-Tendon-Muscle Units of the Rotator Cuff. Biomaterials, 272, Article ID: 120789. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bedi, A., Bishop, J., Keener, J., Lansdown, D.A., Levy, O., MacDonald, P., et al. (2024) Rotator Cuff Tears. Nature Reviews Disease Primers, 10, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Q., He, J., Zhu, D., Chen, Y., Fu, M., Lu, S., et al. (2025) Genetically Modified Organoids for Tissue Engineering and Regenerative Medicine. Advances in Colloid and Interface Science, 335, Article ID: 103337. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Jin, J. (2017) Stem Cell Treatments. JAMA, 317, 330-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Trompet, D., Melis, S., Chagin, A.S. and Maes, C. (2024) Skeletal Stem and Progenitor Cells in Bone Development and Repair. Journal of Bone and Mineral Research, 39, 633-654. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Calejo, I., Costa-Almeida, R., Reis, R.L. and Gomes, M.E. (2019) Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. Tissue Engineering Part B: Reviews, 25, 330-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ma, C., Zhai, Y., Li, C.T., Liu, J., Xu, X., Chen, H., et al. (2023) Translating Mesenchymal Stem Cell and Their Exosome Research into GMP Compliant Advanced Therapy Products: Promises, Problems and Prospects. Medicinal Research Reviews, 44, 919-938. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, L., Guan, C., Zhang, T., Zhou, Y., Liu, Y., Hu, J., et al. (2024) Comparative Effect of Skeletal Stem Cells versus Bone Marrow Mesenchymal Stem Cells on Rotator Cuff Tendon-Bone Healing. Journal of Orthopaedic Translation, 47, 87-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, X., Song, W., Liu, Y., Han, K., Wu, Y., Cho, E., et al. (2024) Healthy Tendon Stem Cell-Derived Exosomes Promote Tendon-To-Bone Healing of Aged Chronic Rotator Cuff Tears by Breaking the Positive-Feedback Cross‐Talk between Senescent Tendon Stem Cells and Macrophages through the Modulation of Macrophage Polarization. Small, 20, e2311033. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Shi, J., Yao, H., Chong, H., Hu, X., Yang, J., Dai, X., et al. (2024) Tissue-Engineered Collagen Matrix Loaded with Rat Adipose-Derived Stem Cells/Human Amniotic Mesenchymal Stem Cells for Rotator Cuff Tendon-Bone Repair. International Journal of Biological Macromolecules, 282, Article ID: 137144. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hoang, D.M., Pham, P.T., Bach, T.Q., Ngo, A.T.L., Nguyen, Q.T., Phan, T.T.K., et al. (2022) Stem Cell-Based Therapy for Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 272. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lv, M., Zhang, S., Jiang, B., Cao, S., Dong, Y., Cao, L., et al. (2021) Adipose‐Derived Stem Cells Regulate Metabolic Homeostasis and Delay Aging by Promoting Mitophagy. The FASEB Journal, 35, e21709. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Higa, K., Murata, D., Azuma, C., Nishida, K. and Nakayama, K. (2025) Promotion of Bone-Tendon Healing after ACL Reconstruction Using Scaffold-Free Constructs Comprising ADSCs Produced by a Bio-3d Printer in Rabbit Models. Journal of Orthopaedic Translation, 52, 265-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Long, S., Fu, Y., Zhang, Z., Tang, R., Yu, P. and Yang, W. (2025) Architecture Mechanics Mediated Osteogenic Progression in Bone Regeneration of Artificial Scaffolds. Science Advances, 11, eadv8804. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nakamichi, R. and Asahara, H. (2024) The Role of Mechanotransduction in Tendon. Journal of Bone and Mineral Research, 39, 814-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pouladzadeh, F., Bonakdar, S., Haghighipour, N., Katbab, A.A. and Bagheri-Khoulenjani, S. (2025) Bioinspired Osteoblast-Imprinted Piezoelectric PDMS/BaTiO3 Nanocomposites Accelerate the Osteogenic Differentiation of Adipose-Derived Stem Cells under Mechanical Stimulation. Journal of Materials Chemistry B, 13, 8542-8557. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Guex, A.G., Menzel, U., Ladner, Y., Armiento, A.R. and Stoddart, M.J. (2025) Conditioned Media from Mechanically Stimulated Macrophages Upregulate Osteogenic Genes in Human Mesenchymal Stromal Cells. Advanced Healthcare Materials, 14, e2500706. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dong, G., Chen, Z., Xia, B., Lv, Y. and Chen, G. (2025) Effects of Magnetic Responsive GelMA Hydrogel with Tensile Stimulation on Proliferation, Migration and Osteogenic Differentiation of Periosteum-Derived Cells. International Journal of Biological Macromolecules, 319, Article ID: 145525. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, Z., Jin, M., He, H., Dong, J., Li, J., Nie, J., et al. (2023) Mesenchymal Stem Cells and Macrophages and Their Interactions in Tendon-Bone Healing. Journal of Orthopaedic Translation, 39, 63-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Caballero Aguilar, L.M., Silva, S.M. and Moulton, S.E. (2019) Growth Factor Delivery: Defining the Next Generation Platforms for Tissue Engineering. Journal of Controlled Release, 306, 40-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gupta, A. and Singh, S. (2021) Potential Role of Growth Factors Controlled Release in Achieving Enhanced Neuronal Trans-Differentiation from Mesenchymal Stem Cells for Neural Tissue Repair and Regeneration. Molecular Neurobiology, 59, 983-1001. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shan, B. and Wu, F. (2023) Hydrogel‐Based Growth Factor Delivery Platforms: Strategies and Recent Advances. Advanced Materials, 36, e2210707. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yoon, J.P., Kim, H., Choi, J., Kang, H.R., Kim, D.H., Choi, Y.S., et al. (2021) Effect of a Porous Suture Containing Transforming Growth Factor Beta 1 on Healing after Rotator Cuff Repair in a Rat Model. The American Journal of Sports Medicine, 49, 3050-3058. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, X., Liu, S., Yu, T., An, S., Deng, R., Tan, X., et al. (2022) Inhibition of Integrin αvβ6 Activation of TGF‐β Attenuates Tendinopathy. Advanced Science, 9, e2104469. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Yao, S., Liang, Z., Lee, Y.W., Yung, P.S.H. and Lui, P.P.Y. (2023) Bioactive Decellularized Tendon-Derived Stem Cell Sheet for Promoting Graft Healing after Anterior Cruciate Ligament Reconstruction. The American Journal of Sports Medicine, 51, 66-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, L., Wan, L., Zhang, T., Guan, C., Hu, J., Xu, D., et al. (2024) A Combined Treatment of BMP2 and Soluble VEGFR1 for the Enhancement of Tendon-Bone Healing by Regulating Injury-Activated Skeletal Stem Cell Lineage. The American Journal of Sports Medicine, 52, 779-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Miron, R.J., Fujioka‐Kobayashi, M., Sculean, A. and Zhang, Y. (2023) Optimization of Platelet‐Rich Fibrin. Periodontology 2000, 94, 79-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Freire, M.R.d.M., da Silva, P.M.C., Azevedo, A.R., Silva, D.S., da Silva, R.B.B. and Cardoso, J.C. (2020) Efeito comparativo entre a infiltração de plasma rico em plaquetas e o uso de corticosteroides no tratamento de osteoartrite do joelho: Estudo clínico prospectivo e randomizado. Revista Brasileira de Ortopedia, 55, 551-556. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, J., Liu, Z., Tang, J., Li, Y., You, Q., Yang, J., et al. (2020) Fibroblast Growth Factor 2-Induced Human Amniotic Mesenchymal Stem Cells Combined with Autologous Platelet Rich Plasma Augmented Tendon-To-Bone Healing. Journal of Orthopaedic Translation, 24, 155-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, X., Jones, I.A., Togashi, R., Park, C. and Vangsness, C.T. (2019) Use of Platelet-Rich Plasma for the Improvement of Pain and Function in Rotator Cuff Tears: A Systematic Review and Meta-Analysis with Bias Assessment. The American Journal of Sports Medicine, 48, 2028-2041. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ahmad, Z. and Mckee, M. (2025) Editorial Commentary: Platelet-Rich Plasma for Rotator Cuff Repair Improves Retear Rate but Clinical Impact Is Yet to Be Seen. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 41, 302-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
周勇, 朱伟民, 彭亮权, 等. 构建组织工程软骨支架材料: 现状及未来[J]. 中国组织工程研究, 2017, 21(10): 1604-1610.
|
|
[35]
|
张正国. 天然高分子生物材料在新型医用敷料中的运用——评《生物降解高分子材料及其应用》 [J]. 化学工程, 2025, 53(6): 99.
|
|
[36]
|
Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi‐Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, e2202766. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Grelewski, P.G., Kwaśnicka, M. and Bar, J.K. (2023) Properties of Scaffolds as Carriers of Mesenchymal Stem Cells for Use in Bone Engineering. Polimery w medycynie, 53, 129-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Dong, H., Zhu, T., Zhang, M., Wang, D., Wang, X., Huang, G., et al. (2021) Polymer Scaffolds-Enhanced Bone Regeneration in Osteonecrosis Therapy. Frontiers in Bioengineering and Biotechnology, 9, Article 761302. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, L., Yang, G., Johnson, B.N. and Jia, X. (2019) Three-dimensional (3D) Printed Scaffold and Material Selection for Bone Repair. Acta Biomaterialia, 84, 16-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Du, L., Qin, C., Zhang, H., Han, F., Xue, J., Wang, Y., et al. (2023) Multicellular Bioprinting of Biomimetic Inks for Tendon‐To‐Bone Regeneration. Advanced Science, 10, e2301309. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhu, L., Liu, Y., Sun, Y., Che, Z., Li, Y., Liu, T., et al. (2025) Sustained Slow-Release TGF-β3 in a Three-Dimensional-Printed Titanium Microporous Scaffold Composite System Promotes Ligament-To-Bone Healing. Materials Today Bio, 31, Article ID: 101549. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bai, L., Kasimu, A., Wang, S., Qiu, Z., Xu, M., Qu, X., et al. (2024) Electrohydrodynamic‐Printed Dual‐Triphase Microfibrous Scaffolds Reshaping the Lipidomic Profile for Enthesis Healing in a Rat Rotator Cuff Repair Model. Small, 21, e2406069. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gao, M., Zhao, P., Xing, J., Wang, Z., Xu, Y., Yan, Y., et al. (2024) GelMA Encapsulating BMSCs-Exosomes Combined with Interference Screw or Suture Anchor Promotes Tendon-Bone Healing in a Rabbit Model. Scientific Reports, 14, Article No. 28212. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yuan, M., Dai, X., Yang, Y., Liu, S., Xu, Z., Wang, L., et al. (2025) An Injectable BMP‐2‐Releasing Porous Hydrogel Regulating the Paracrine Effects of ADSCs Promotes Tendon‐To‐Bone Healing in Rotator Cuff Repair. Advanced Science, 12, e15923. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Torres, H.M., Arnold, K.M., Oviedo, M., Westendorf, J.J. and Weaver, S.R. (2023) Inflammatory Processes Affecting Bone Health and Repair. Current Osteoporosis Reports, 21, 842-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Weivoda, M.M. and Bradley, E.W. (2023) Macrophages and Bone Remodeling. Journal of Bone and Mineral Research, 38, 359-369. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sunwoo, J.Y., Eliasberg, C.D., Carballo, C.B. and Rodeo, S.A. (2020) The Role of the Macrophage in Tendinopathy and Tendon Healing. Journal of Orthopaedic Research, 38, 1666-1675. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Du, L., Wu, J., Han, Y. and Wu, C. (2024) Immunomodulatory Multicellular Scaffolds for Tendon-To-Bone Regeneration. Science Advances, 10, eadk6610. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Jana, S. and Alayash, A.I. (2025) Exploring the Molecular Interplay between Oxygen Transport, Cellular Oxygen Sensing, and Mitochondrial Respiration. Antioxidants & Redox Signaling, 42, 730-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Mirchandani, A.S., Sanchez-Garcia, M.A. and Walmsley, S.R. (2024) How Oxygenation Shapes Immune Responses: Emerging Roles for Physioxia and Pathological Hypoxia. Nature Reviews Immunology, 25, 161-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Zhang, H., Wang, L., Cui, J., Wang, S., Han, Y., Shao, H., et al. (2023) Maintaining Hypoxia Environment of Subchondral Bone Alleviates Osteoarthritis Progression. Science Advances, 9, eabo7868. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chen, C., Song, C., Liu, B., Wang, Y., Jia, J., Pang, K., et al. (2024) Activation of BMP4/SMAD Pathway by HIF-1α in Hypoxic Environment Promotes Osteogenic Differentiation of BMSCs and Leads to Ectopic Bone Formation. Tissue and Cell, 88, Article ID: 102376. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Alif, I., Amalina, N.D., Nazar, M.A., Fredianto, M., Herman, H., Dias Ismiarto, Y., et al. (2022) Secretome of Hypoxia-Preconditioned Mesenchymal Stem Cells Enhance the Expression of HIF-1a and bFGF in a Rotator Cuff Tear Model. Medicinski Glasnik, 20, 242-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Deng, A., Zhang, H., Hu, Y., Li, J., Wang, J., Chen, X., et al. (2025) Microsphere Strategy to Generate Conformal Bone Organoid Units with Osteoimmunomodulation and Sustainable Oxygen Supply for Bone Regeneration. Advanced Science, 12, e01437. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
何树坤, 秦廷武. 肩袖损伤修复的界面组织工程研究进展[J]. 中国修复重建外科杂志, 2021, 35(10): 1341-1351.
|
|
[56]
|
Brody, H. (2018) Gene Therapy. Nature, 564, S5. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Major, R.M. and Juengst, E.T. (2025) Prenatal Gene Editing for Neurodevelopmental Diseases: Ethical Considerations. The American Journal of Human Genetics, 112, 201-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, D., Tai, P.W.L. and Gao, G. (2019) Adeno-associated Virus Vector as a Platform for Gene Therapy Delivery. Nature Reviews Drug Discovery, 18, 358-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Yan, Y., Liu, X., Lu, A., Wang, X., Jiang, L. and Wang, J. (2022) Non-Viral Vectors for RNA Delivery. Journal of Controlled Release, 342, 241-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Qian, Y., Zhu, J., He, Y., Qin, H., Qian, P., Sun, B., et al. (2025) Bioactive siRNA‐Based Liposomes Promoted Tendon‐bone Healing in Osteoporotic Mice by Recovering the Stemness of CD248+ TSPCs. Advanced Science, 12, e09883. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Bateman-House, A. (2024) Somatic Gene Therapy: Ethics and Access. Annual Review of Genomics and Human Genetics, 25, 421-438. [Google Scholar] [CrossRef] [PubMed]
|