|
[1]
|
Olczak, J., Fahlberg, N., Maki, A., Razavian, A.S., Jilert, A., Stark, A., et al. (2017) Artificial Intelligence for Analyzing Orthopedic Trauma Radiographs. Acta Orthopaedica, 88, 581-586. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
von Schacky, C.E., Wilhelm, N.J., Schäfer, V.S., Leonhardt, Y., Gassert, F.G., Foreman, S.C., et al. (2021) Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs. Radiology, 301, 398-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Choi, H., Kim, Y.K., Yoon, E.J., Lee, J. and Lee, D.S. (2019) Cognitive Signature of Brain FDG PET Based on Deep Learning: Domain Transfer from Alzheimer’s Disease to Parkinson’s Disease. European Journal of Nuclear Medicine and Molecular Imaging, 47, 403-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ren, S., He, K., Girshick, R. and Sun, J. (2017) Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yan, K., Tang, Y., Peng, Y., Sandfort, V., Bagheri, M., Lu, Z., et al. (2019) MULAN: Multitask Universal Lesion Analysis Network for Joint Lesion Detection, Tagging, and Segmentation. In: Shen, D.G., et al., Eds., Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Springer International Publishing, 194-202. [Google Scholar] [CrossRef]
|
|
[6]
|
Shelhamer, E., Long, J. and Darrell, T. (2017) Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z. and Ding, X. (2020) Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation. Medical Image Analysis, 63, Article ID: 101693. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al. (2019) VoxelMorph: A Learning Framework for Deformable Medical Image Registration. IEEE Transactions on Medical Imaging, 38, 1788-1800.
|
|
[9]
|
Haskins, G., Kruger, U. and Yan, P. (2020) Deep Learning in Medical Image Registration: A Survey. Machine Vision and Applications, 31, 1-18. [Google Scholar] [CrossRef]
|
|
[10]
|
Dutta, P., Upadhyay, P., De, M. and Khalkar, R.G. (2020) Medical Image Analysis Using Deep Convolutional Neural Networks: CNN Architectures and Transfer Learning. 2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, 26-28 February 2020, 175-180. [Google Scholar] [CrossRef]
|
|
[11]
|
Sistaninejhad, B., Rasi, H. and Nayeri, P. (2023) A Review Paper about Deep Learning for Medical Image Analysis. Computational and Mathematical Methods in Medicine, 2023, Article ID: 7091301. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chalmers, B.P., Borsinger, T.M., Quevedo Gonzalez, F.J., Vigdorchik, J.M., Haas, S.B. and Ast, M.P. (2023) Referencing the Center of the Femoral Head during Robotic or Computer-Navigated Primary Total Knee Arthroplasty Results in Less Femoral Component Flexion than the Traditional Intramedullary Axis. The Knee, 44, 172-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, X., Zhou, B., Gong, P., Zhang, T., Mo, Y., Tang, J., et al. (2022) Artificial Intelligence-Assisted Bone Age Assessment to Improve the Accuracy and Consistency of Physicians with Different Levels of Experience. Frontiers in Pediatrics, 10, Article ID: 818061. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Anandharaj, H.C., Hephzibah, R., Kowsalya, G., Jayanthi, R. and Chandy, D.A. (2023) Review on Deep Learning Methodologies in Medical Image Restoration and Segmentation. Current Medical Imaging Formerly Current Medical Imaging Reviews, 19, 844-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kausch, L., Thomas, S., Kunze, H., Norajitra, T., Klein, A., Ayala, L., et al. (2022) C-Arm Positioning for Standard Projections during Spinal Implant Placement. Medical Image Analysis, 81, Article ID: 102557. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xia, Y., Bauer, S., Maier, A., Berger, M. and Hornegger, J. (2015) Patient‐Bounded Extrapolation Using Low‐Dose Priors for Volume‐of‐Interest Imaging in C‐Arm CT. Medical Physics, 42, 1787-1796. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hosseinian, S., Arefi, H. and Navab, N. (2019) Toward an End-to-End Calibration for Mobile C-Arm in Combination with a Depth Sensor for Surgical Augmented Reality Applications. Sensors, 20, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
徐松, 叶哲伟. 人工智能在骨科的应用现状及前景[J]. 中国医刊, 2019, 54(2): 117-119.
|
|
[19]
|
Sheth, N.M., De Silva, T., Uneri, A., Ketcha, M., Han, R., Vijayan, R., et al. (2020) A Mobile Isocentric C‐Arm for Intraoperative Cone‐Beam CT: Technical Assessment of Dose and 3D Imaging Performance. Medical Physics, 47, 958-974. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Keating, J.F., Simpson, A.H.R.W. and Robinson, C.M. (2005) The Management of Fractures with Bone Loss. The Journal of Bone and Joint Surgery. British Volume, 87, 142-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Athanasiou, V.T., Papachristou, D.J., Panagopoulos, A., Saridis, A., Scopa, C.D. and Megas, P. (2010) Histological Comparison of Autograft, Allograft-DBM, Xenograft, and Synthetic Grafts in a Trabecular Bone Defect: An Experimental Study in Rabbits. Medical Science Monitor, 16, BR24-31.
|
|
[22]
|
Dimitriou, R., Jones, E., McGonagle, D. and Giannoudis, P.V. (2011) Bone Regeneration: Current Concepts and Future Directions. BMC Medicine, 9, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Roberts, T.T. and Rosenbaum, A.J. (2012) Bone Grafts, Bone Substitutes and Orthobiologics: The Bridge between Basic Science and Clinical Advancements in Fracture Healing. Organogenesis, 8, 114-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Khan, S.N., Cammisa, F.P., Sandhu, H.S., Diwan, A.D., Girardi, F.P. and Lane, J.M. (2005) The Biology of Bone Grafting. Journal of the American Academy of Orthopaedic Surgeons, 13, 77-86. [Google Scholar] [CrossRef]
|
|
[25]
|
Mayfield, C.K., Ayad, M., Lechtholz-Zey, E., Chen, Y. and Lieberman, J.R. (2022) 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering, 9, Article No. 680. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, L., Yang, G., Johnson, B.N. and Jia, X. (2019) Three-Dimensional (3D) Printed Scaffold and Material Selection for Bone Repair. Acta Biomaterialia, 84, 16-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Välimäki, V.V. and Aro, H.T. (2006) Molecular Basis for Action of Bioactive Glasses as Bone Graft Substitute. Scandinavian Journal of Surgery, 95, 95-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sasaki, G., Watanabe, Y., Miyamoto, W., Yasui, Y., Morimoto, S. and Kawano, H. (2017) Induced Membrane Technique Using Beta-Tricalcium Phosphate for Reconstruction of Femoral and Tibial Segmental Bone Loss Due to Infection: Technical Tips and Preliminary Clinical Results. International Orthopaedics, 42, 17-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sumer, M., Keles, G.C., Cetinkaya, B.O., Balli, U., Pamuk, F. and Uckan, S. (2013) Autogenous Cortical Bone and Bioactive Glass Grafting for Treatment of Intraosseous Periodontal Defects. European Journal of Dentistry, 7, 6-14.
|
|
[30]
|
Daga, D., Mehrotra, D., Mohammad, S., Chandra, S., Singh, G. and Mehrotra, D. (2018) Tentpole Technique for Bone Regeneration in Vertically Deficient Alveolar Ridges: A Prospective Study. Journal of Oral Biology and Craniofacial Research, 8, 20-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Jardini, A.L., Larosa, M.A., Filho, R.M., Zavaglia, C.A.d.C., Bernardes, L.F., Lambert, C.S., et al. (2014) Cranial Reconstruction: 3D Biomodel and Custom-Built Implant Created Using Additive Manufacturing. Journal of Cranio-Maxillofacial Surgery, 42, 1877-1884. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lee, M. and Wu, B.M. (2012) Recent Advances in 3D Printing of Tissue Engineering Scaffolds. In: Methods in Molecular Biology, Humana Press, 257-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
J. Panetta, N., M. Gupta, D. and T. Longaker, M. (2010) Bone Regeneration and Repair. Current Stem Cell Research & Therapy, 5, 122-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Brydone, A.S., Meek, D. and Maclaine, S. (2010) Bone Grafting, Orthopaedic Biomaterials, and the Clinical Need for Bone Engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224, 1329-1343. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Will, J., Melcher, R., Treul, C., Travitzky, N., Kneser, U., Polykandriotis, E., et al. (2008) Porous Ceramic Bone Scaffolds for Vascularized Bone Tissue Regeneration. Journal of Materials Science: Materials in Medicine, 19, 2781-2790. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, Q., Zhou, J., Zhi, P., Liu, L., Liu, C., Fang, A., et al. (2023) 3D Printing Method for Bone Tissue Engineering Scaffold. Medicine in Novel Technology and Devices, 17, Article ID: 100205. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cui, X., Breitenkamp, K., Finn, M.G., Lotz, M. and D’Lima, D.D. (2012) Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology. Tissue Engineering Part A, 18, 1304-1312. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xu, T., Binder, K.W., Albanna, M.Z., Dice, D., Zhao, W., Yoo, J.J., et al. (2012) Hybrid Printing of Mechanically and Biologically Improved Constructs for Cartilage Tissue Engineering Applications. Biofabrication, 5, Article ID: 015001. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Xie, R., Pal, V., Yu, Y., Lu, X., Gao, M., Liang, S., et al. (2024) A Comprehensive Review on 3D Tissue Models: Biofabrication Technologies and Preclinical Applications. Biomaterials, 304, Article ID: 122408. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ying, J., Cheng, L., Li, J., Wu, B., Qiu, X., Zhang, T., et al. (2023) Treatment of Acetabular Bone Defect in Revision of Total Hip Arthroplasty Using 3D Printed Tantalum Acetabular Augment. Orthopaedic Surgery, 15, 1264-1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zamborsky, R., Kilian, M., Jacko, P., Bernadic, M. and Hudak, R. (2019) Perspectives of 3D Printing Technology in Orthopaedic Surgery. Bratislava Medical Journal, 120, 498-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
A, L., Elsen, R. and Nayak, S. (2024) Artificial Intelligence-Based 3D Printing Strategies for Bone Scaffold Fabrication and Its Application in Preclinical and Clinical Investigations. ACS Biomaterials Science & Engineering, 10, 677-696. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huang, P., Yang, P., Liu, K., Tao, W., Tao, J. and Ai, F. (2022) Evaluation of “Surgery-Friendly” Bone Scaffold Characteristics: 3D Printed Ductile BG/PCL Scaffold with High Inorganic Content to Repair Critical Bone Defects. Biomedical Materials, 18, Article ID: 015021. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pugliese, R. and Regondi, S. (2022) Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches. Polymers, 14, Article No. 2794. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tibbits, S. (2014) 4D Printing: Multi‐Material Shape Change. Architectural Design, 84, 116-121. [Google Scholar] [CrossRef]
|
|
[46]
|
González-Henríquez, C.M., Sarabia-Vallejos, M.A., Sanz-Horta, R. and Rodriguez-Hernandez, J. (2022) Additive Manufacturing of Polymers: 3D and 4D Printing, Methodologies, Type of Polymeric Materials, and Applications. Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications, 1, 57-116.
|
|
[47]
|
Momeni, F., et al. (2017) A Review of 4D Printing. Materials & Design, 122, 42-79. [Google Scholar] [CrossRef]
|
|
[48]
|
Zhou, W., Qiao, Z., Nazarzadeh Zare, E., Huang, J., Zheng, X., Sun, X., et al. (2020) 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector. Journal of Medicinal Chemistry, 63, 8003-8024. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sharma, K.S. (2023) Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery. Current Drug Delivery, 20, 752-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ghidini, T. (2018) Regenerative Medicine and 3D Bioprinting for Human Space Exploration and Planet Colonisation. Journal of Thoracic Disease, 10, S2363-S2375. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Culmone, C., Smit, G. and Breedveld, P. (2019) Additive Manufacturing of Medical Instruments: A State-of-the-Art Review. Additive Manufacturing, 27, 461-473. [Google Scholar] [CrossRef]
|
|
[52]
|
Wazeer, A., Das, A., Sinha, A., Inaba, K., Ziyi, S. and Karmakar, A. (2022) Additive Manufacturing in Biomedical Field: A Critical Review on Fabrication Method, Materials Used, Applications, Challenges, and Future Prospects. Progress in Additive Manufacturing, 8, 857-889.
|
|
[53]
|
Muhindo, D., Elkanayati, R., Srinivasan, P., Repka, M.A. and Ashour, E.A. (2023) Recent Advances in the Applications of Additive Manufacturing (3D Printing) in Drug Delivery: A Comprehensive Review. AAPS PharmSciTech, 24, 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Dehghan-Manshadi, A., Yu, P., Dargusch, M., StJohn, D. and Qian, M. (2020) Metal Injection Moulding of Surgical Tools, Biomaterials and Medical Devices: A Review. Powder Technology, 364, 189-204. [Google Scholar] [CrossRef]
|
|
[55]
|
Goda, I., Nachtane, M., Qureshi, Y., Benyahia, H. and Tarfaoui, M. (2022) COVID-19: Current Challenges Regarding Medical Healthcare Supplies and Their Implications on the Global Additive Manufacturing Industry. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 236, 613-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Patpatiya, P., Chaudhary, K., Shastri, A. and Sharma, S. (2022) A Review on Polyjet 3D Printing of Polymers and Multi-Material Structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236, 7899-7926. [Google Scholar] [CrossRef]
|
|
[57]
|
Rouf, S., Malik, A., Singh, N., Raina, A., Naveed, N., Siddiqui, M.I.H., et al. (2022) Additive Manufacturing Technologies: Industrial and Medical Applications. Sustainable Operations and Computers, 3, 258-274. [Google Scholar] [CrossRef]
|