|
[1]
|
Zhang, Y., Sun, N., Zhu, M., Qiu, Q., Zhao, P., Zheng, C., et al. (2022) The Contribution of Pore Size and Porosity of 3D Printed Porous Titanium Scaffolds to Osteogenesis. Biomaterials Advances, 133, Article 112651. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jiao, J., Hong, Q., Zhang, D., Wang, M., Tang, H., Yang, J., et al. (2023) Influence of Porosity on Osteogenesis, Bone Growth and Osteointegration in Trabecular Tantalum Scaffolds Fabricated by Additive Manufacturing. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1117954. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhuang, Y., Zhao, Z., Cheng, M., Li, M., Si, J., Lin, K., et al. (2022) HIF-1α Regulates Osteogenesis of Periosteum-Derived Stem Cells under Hypoxia Conditions via Modulating POSTN Expression. Frontiers in Cell and Developmental Biology, 10, Article ID: 836285. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, L., Zhu, J., Ge, N., Liu, Y., Yan, Z., Liu, G., et al. (2025) A Biodegradable Magnesium Alloy Promotes Subperiosteal Osteogenesis via Interleukin-10-Dependent Macrophage Immunomodulation. Biomaterials, 318, Article 122992. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gupta, S., Teotia, A.K., Qayoom, I., Shiekh, P.A., Andrabi, S.M. and Kumar, A. (2021) Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules, 22, 3237-3250. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nicolas, J., Magli, S., Rabbachin, L., Sampaolesi, S., Nicotra, F. and Russo, L. (2020) 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules, 21, 1968-1994. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kim, Y., Zharkinbekov, Z., Raziyeva, K., Tabyldiyeva, L., Berikova, K., Zhumagul, D., et al. (2023) Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics, 15, Article 807. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Eltit, F., Wang, Q. and Wang, R. (2019) Mechanisms of Adverse Local Tissue Reactions to Hip Implants. Frontiers in Bioengineering and Biotechnology, 7, Article ID: 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fan, L., Chen, S., Yang, M., Liu, Y. and Liu, J. (2023) Metallic Materials for Bone Repair. Advanced Healthcare Materials, 13, Article 2302132. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Han, H., Jun, I., Seok, H., Lee, K., Lee, K., Witte, F., et al. (2020) Biodegradable Magnesium Alloys Promote Angio‐osteogenesis to Enhance Bone Repair. Advanced Science, 7, Article 2000800. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Z., Mei, L., Liu, X. and Zhou, Q. (2021) Hierarchically Hybrid Biocoatings on Ti Implants for Enhanced Antibacterial Activity and Osteogenesis. Colloids and Surfaces B: Biointerfaces, 204, Article 111802. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S. and Liana Sukiman, N. (2021) A State-of-the-Art Review of the Fabrication and Characteristics of Titanium and Its Alloys for Biomedical Applications. Bio-Design and Manufacturing, 5, 371-395. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
赵冰净, 胡敏: 用于3D打印的医用金属研究现状[J]. 口腔颌面修复学杂志, 2015, 16(1): 53-56.
|
|
[14]
|
王庆, 翁益平, 刘宏伟, 张文, 施勤, 张润泽, 蒋俊锋, 王彩梅. 3D打印不同孔径钛合金支架修复兔股骨缺损: 600μm孔径更有利于骨整合[J]. 中国组织工程研究, 2021, 25(28): 4441-4446.
|
|
[15]
|
Drevet, R., Fauré, J. and Benhayoune, H. (2023) Bioactive Calcium Phosphate Coatings for Bone Implant Applications: A Review. Coatings, 13, Article 1091.
|
|
[16]
|
卢燕勤, 易芳, 鞠巍, 李文杰, 雷蕾. Ca-P涂层镁合金支架负载缓释微球修复股骨缺损[J]. 中国组织工程研究 2019, 23(2): 232-238.
|
|
[17]
|
宋美玲, 李征宇, 艾子政, 李京娜, 曾庆丰, 韩倩倩, 董谢平. 不同比例羟基磷灰石/β-磷酸三钙涂层支架修复骨缺损[J]. 中国组织工程研究, 2023, 27(30): 4809-4816.
|
|
[18]
|
刘兵, 马翔宇, 杨超, 解冰, 周大鹏. 抗生素骨水泥涂层髓内钉结合Masquelet技术治疗胫骨干感染性骨缺损[J]. 局解手术学杂志, 2020, 29(10): 791-795.
|
|
[19]
|
何进文, 岳学锋, 施建党, 杨宗强, 吴龙云, 王自立. 载HRZ乙酰乙酸涂层的自体髂骨修复兔脊柱结核骨缺损的病理学观察[J]. 中国脊柱脊髓杂志, 2018, 28(6): 552-561.
|
|
[20]
|
Kołodziejska, B., Stępień, N. and Kolmas, J. (2021) The Influence of Strontium on Bone Tissue Metabolism and Its Application in Osteoporosis Treatment. International Journal of Molecular Sciences, 22, Article 6564. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Shan, Z., Xie, X., Wu, X., Zhuang, S. and Zhang, C. (2022) Development of Degradable Magnesium-Based Metal Implants and Their Function in Promoting Bone Metabolism (A Review). Journal of Orthopaedic Translation, 36, 184-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Makkar, P., Kang, H.J., Padalhin, A.R., Faruq, O. and Lee, B. (2020) In-Vitro and In-Vivo Evaluation of Strontium Doped Calcium Phosphate Coatings on Biodegradable Magnesium Alloy for Bone Applications. Applied Surface Science, 510, Article 145333. [Google Scholar] [CrossRef]
|
|
[23]
|
Balogh, E., Tóth, A., Csiki, D.M. and Jeney, V. (2024) Zinc Ameliorates High Pi and Ca-Mediated Osteogenic Differentiation of Mesenchymal Stem Cells. Nutrients, 16, Article 4012. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, Y., Wang, L., Dou, X., Du, M., Min, S., Zhu, B., et al. (2024) Osteogenesis or Apoptosis—Twofold Effects of Zn2+ on Bone Marrow Mesenchymal Stem Cells: An in Vitro and in Vivo Study. ACS Omega, 9, 10945-10957. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Satchanska, G., Davidova, S. and Petrov, P.D. (2024) Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers, 16, Article 1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jabeen, N. and Atif, M. (2023) Polysaccharides Based Biopolymers for Biomedical Applications: A Review. Polymers for Advanced Technologies, 35, e6203. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhao, L., Zhou, Y., Zhang, J., Liang, H., Chen, X. and Tan, H. (2023) Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics, 15, Article 2514. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Muir, V.G. and Burdick, J.A. (2020) Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 121, 10908-10949. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kim, Y., Kim, S., Byeon, J., Lee, H., Um, I., Lim, S., et al. (2010) Development of a Novel Bone Grafting Material Using Autogenous Teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 109, 496-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lujerdean, C., Baci, G., Cucu, A. and Dezmirean, D.S. (2022) The Contribution of Silk Fibroin in Biomedical Engineering. Insects, 13, Article 286. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chen, Y., Chen, M., Gao, Y., Zhang, F., Jin, M., Lu, S., et al. (2022) Biological Efficacy Comparison of Natural Tussah Silk and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration. ACS Omega, 7, 19979-19987. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gobi, R., Ravichandiran, P., Babu, R.S. and Yoo, D.J. (2021) Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers, 13, Article 1962. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Samir, A., Ashour, F.H., Hakim, A.A.A. and Bassyouni, M. (2022) Recent Advances in Biodegradable Polymers for Sustainable Applications. npj Materials Degradation, 6, Article No. 68. [Google Scholar] [CrossRef]
|
|
[34]
|
Cimatti, B., Santos, M.A.d., Brassesco, M.S., Okano, L.T., Barboza, W.M., Nogueira‐Barbosa, M.H., et al. (2018) Safety, Osseointegration, and Bone Ingrowth Analysis of PMMA‐Based Porous Cement on Animal Metaphyseal Bone Defect Model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 649-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Robo, C., Hulsart-Billström, G., Nilsson, M. and Persson, C. (2018) In Vivo Response to a Low-Modulus PMMA Bone Cement in an Ovine Model. Acta Biomaterialia, 72, 362-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bharadwaz, A. and Jayasuriya, A.C. (2020) Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Materials Science and Engineering: C, 110, Article 110698. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sagadevan, S., Schirhagl, R., Rahman, M.Z., Bin Ismail, M.F., Lett, J.A., Fatimah, I., et al. (2023) Recent Advancements in Polymer Matrix Nanocomposites for Bone Tissue Engineering Applications. Journal of Drug Delivery Science and Technology, 82, Article 104313. [Google Scholar] [CrossRef]
|
|
[38]
|
Rahman Khan, M.M. and Rumon, M.M.H. (2025) Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels, 11, Article 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhong, Y., Lin, Q., Yu, H., Shao, L., Cui, X., Pang, Q., et al. (2024) Construction Methods and Biomedical Applications of PVA-Based Hydrogels. Frontiers in Chemistry, 12, Article ID: 1376799. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chu, X., Xiong, Y., Lu, L., Wang, Y., Wang, J., Zeng, R., et al. (2024) Research Progress of Gene Therapy Combined with Tissue Engineering to Promote Bone Regeneration. APL Bioengineering, 8, Article 031502. [Google Scholar] [CrossRef] [PubMed]
|