β-肾上腺素能受体激活促进头颈癌生长转移及干预措施的进展研究
The Role of β-Adrenergic Signaling in Head and Neck Cancer Progression and Emerging Therapeutic Strategies
DOI: 10.12677/acm.2026.161340, PDF, HTML, XML,   
作者: 袁 泽, 向 静, 李 勇*:重庆医科大学附属口腔医院,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 慢性应激β-肾上腺素能受体头颈癌肿瘤微环境Chronic Stress β-Adrenergic Receptor Head and Neck Cancer Tumor Microenvironment
摘要: 头颈部鳞状细胞癌(HNSCC)主要起源于黏膜鳞状上皮,高侵袭性威胁患者生存质量,慢性应激作为潜在诱因受到重视。因机体产生的高水平的肾上腺素(Epinephrine, E)与去甲肾上腺素(Norepinephrine, NE)可通过激活β-肾上腺素能受体(β-AR)从而调控肿瘤生物学行为。β-AR在肿瘤组织中表达显著升高,其中β2-AR高表达与肿瘤分化程度低、淋巴结转移率高及不良预后等密切相关,激活β-AR后能通过促进癌症干细胞样表型、上皮–间充质转化及重塑肿瘤微环境中多种信号分子等途径促进肿瘤进展。另一方面,多项研究表明β2-AR拮抗剂如普萘洛尔(Propranolol),可通过抑制血管生成、减轻化疗耐药、降低肿瘤发生率等发挥抗肿瘤作用,其与MAPK抑制剂、EGFR拮抗剂、COX-2拮抗剂等联合使用时能增强抑癌作用。本文主要研究β-肾上腺素能通路激活对HNSCCs进展的影响,并为长期处于慢性应激压力下的患者开发高选择性靶向制剂及多模式联合治疗,为头颈癌治疗提供新策略。
Abstract: Head and neck squamous cell carcinoma (HNSCC), which primarily originates from the mucosal squamous epithelium, poses a significant threat to patient survival and quality of life due to its highly aggressive nature. Chronic stress has gained attention as a potential contributing factor. This is because elevated levels of epinephrine (E) and norepinephrine (NE) produced by the body can activate β-adrenergic receptors (β-ARs), thereby modulating tumor biological behavior. β-AR expression is significantly upregulated in tumor tissues. Notably, high expression of β2-AR strongly correlates with poor tumor differentiation, high rates of lymph node metastasis, and unfavorable prognosis. Upon activation, β-ARs promote tumor progression through various mechanisms, including fostering a cancer stem cell-like phenotype, inducing epithelial-mesenchymal transition (EMT), and remodeling the tumor microenvironment by modulating multiple signaling molecules. On the other hand, numerous studies have shown that β2-AR antagonists, such as propranolol, can exert anti-tumor effects by inhibiting angiogenesis, alleviating chemotherapy resistance, and reducing tumor incidence. Their combination with other agents, including MAPK inhibitors, EGFR antagonists, and COX-2 inhibitors, has been demonstrated to enhance the anti-cancer efficacy. This review focuses on the impact of β-adrenergic pathway activation on HNSCC progression. It aims to explore the development of highly selective targeted agents and multimodal combination therapies for patients under chronic stress, thereby providing novel strategies for the treatment of head and neck cancer.
文章引用:袁泽, 向静, 李勇. β-肾上腺素能受体激活促进头颈癌生长转移及干预措施的进展研究[J]. 临床医学进展, 2026, 16(1): 2787-2800. https://doi.org/10.12677/acm.2026.161340

1. 引言

头颈部鳞状细胞癌(HNSCC)主要起源于黏膜鳞状上皮,涵盖口腔、咽喉及鼻咽等多个解剖部位[1]。这类疾病不仅具有高侵袭性特征,更对患者生存质量构成多重威胁。其中,舌鳞状细胞癌(TSCC)展现出尤为显著的局部浸润能力,其临床进程较其他头颈部肿瘤更为迅猛[2]。除烟酒等传统危险因素外,慢性应激作为潜在诱因正逐渐受到重视[3]。值得注意的是,头颈癌患者往往承受着远超其他癌种的生理疼痛与心理负担[4],因其治疗过程引发的呼吸、吞咽功能障碍及面容改变,持续触发患者的心理应激反应。这种长期应激状态可能通过多种分子途径影响肿瘤微环境,最终加速恶性进程[5]。近年研究揭示,神经–肿瘤通信,在头颈癌的发生发展中扮演着日益重要的角色。肿瘤并非孤立的实体,而是与周围神经系统紧密相连,形成复杂的微环境。慢性应激激活的神经内分泌系统由下丘脑–垂体–肾上腺(HPA)轴和交感神经系统(SNS)组成,兴奋的SNS促进神经纤维释放去甲肾上腺素,同时也促进肾上腺素的合成和分泌。应激介质特别是肾上腺素与去甲肾上腺素,能通过激活肾上腺素能受体(ARs)调控肿瘤生物学行为[6]。作为广泛分布于肿瘤细胞表面的G蛋白偶联受体,β-肾上腺素能受体(β-AR)介导多种信号通路可调节细胞增殖、分化、凋亡及免疫应答等关键过程[7]。已有证据表明该受体在乳腺癌[8]、结肠癌[9]、卵巢癌[10]、前列腺癌[11]、胰腺癌[12]及头颈癌[13]等多种恶性肿瘤中异常活化,能通过增强神经浸润[14]、血管生成[15]和淋巴重塑[16]从而促进向远处器官的转移,而癌症相关生理与心理压力又进一步加剧慢性应激状态,形成恶性循环。本文系统阐述β-AR信号通路在头颈癌演进中的分子机制,解析其与慢性应激、癌痛形成的相互作用网络,并对靶向该受体的治疗策略进行前瞻性探讨,旨在为临床防治提供新的理论依据。

2. β-肾上腺素能受体在头颈癌中的表达与临床关联

2.1. β-AR在头颈癌组织中的表达

多项研究表明,与正常黏膜组织相比,HNSCC组织中β-AR的表达水平显著升高[17]-[19]。Hao Dong等人通过纳入100例口腔鳞状细胞癌(OSCC)患者,采用免疫组化法检测β-AR表达,并用Image J软件测定平均光密度,最后对β-AR表达差异及与临床病理因素的相关性进行统计学分析发现肿瘤组织中β1、β2、β3-AR的表达明显高于癌旁组织和正常口腔黏膜,其中β1和β2-AR参与淋巴转移并影响临床分期,而β3-AR的表达与肿瘤临床病理特征的关系,还有待进一步研究[18]。除此之外,Chong Zhang等人收集正常口腔黏膜上皮组织15例,头颈癌及癌旁组织60例,通过qT-PCR和Western blot检测,也观察到头颈癌组织和细胞中β1-AR和β2-AR的过度表达[17]。另外Shang ZJ及Krishna Akhilesh等人发现OSCC中β2-AR的表达显著升高,并且其表达水平与颈部淋巴结转移、年龄、不良生活习惯、肿瘤大小、临床TNM分期及不良预后密切相关[19] [20]

2.2. β-AR表达与头颈癌临床特征的关联

研究表明,β-AR的表达与头颈癌患者的一些人口学及肿瘤特征存在一定关联。Shang ZJ等人发现头颈癌组织中β2-AR的表达与患者的年龄显著相关,且肿瘤的大小也与β2-AR的表达呈正相关[19]。Lopes-Santos G等人通过一项针对520例HNSCC患者的研究发现,ADRB2 (编码β2-AR的基因)的表达与年龄、人种、肿瘤部位、组织学分级、神经周围侵犯以及HPV p16状态相关[21]。绝大多数HNSCC患者为男性且年龄大于55岁。ADRB2高表达组的年轻个体数量高于ADRB2低表达组。在种族方面,两组患者均以白人居多,ADRB2高表达组组的亚洲个体较多。在部位方面,ADRB2低表达组最常见的部位为喉部,而ADRB2高表达组最常见的肿瘤部位为舌部。在这两组中,中分化HNSCC更为常见,ADRB2高表达组较低表达组HNSCC分化程度更低。HNSCC的癌细胞传播和神经周围侵袭有关,ADRB2高表达组中神经生长因子(NGF)的表达更高,且发生肿瘤侵袭周围神经的比例更高。ADRB2高表达组几乎所有病例HPV p16表达均为阴性而低表达组组阳性率为35.48%。Hao Dong等人发现β1、β2-AR在有淋巴结转移患者中的表达强度高于无淋巴结转移的患者[18],Haichao Liu等人发现头颈癌组织中β2-AR的表达水平显著高于癌旁正常组织,且高表达与患者分化程度低、淋巴结转移率高以及总体生存率降低显著相关[2]。Ana Lívia Santos-Sousa等人发现多种心理和行为因素与口腔鳞状细胞癌组织中β-AR的表达水平相关[3],较高的β1-AR表达与较高的酒精摄入量、较高教育水平和较差的睡眠质量相关。而较高的β2-AR表达则与区域转移、较高的肿瘤相关疼痛水平、焦虑和抑郁症状、以及愤怒和疲劳情绪相关,多因素分析进一步证实,焦虑症状和疲劳情绪是β2-AR表达增加的独立影响因素。这些结果提示,心理应激和不良行为习惯可能通过调控β-AR的表达,进而影响头颈癌的进展。

3. β-肾上腺素能受体激活重塑TME促进头颈癌进展

肿瘤微环境(TME)是一个复杂且高度动态的生态系统,由多种不同类型的细胞成分和非细胞成分共同构成[22]。其中,细胞成分包含癌细胞、癌症相关成纤维细胞(CAFs)、免疫细胞以及内皮细胞等;非细胞成分则涵盖细胞外基质、细胞因子、趋化因子和生长因子等。这些成分并非孤立存在,而是通过复杂的相互作用形成紧密的网络(见图1),不仅积极促进细胞间的肿瘤通讯,还借助一系列关键分子,如肿瘤坏死因子(TNF-α)、转化生长因子(TGF-β)、白细胞介素-6 (IL-6)以及白细胞介素-10 (IL-10)等,发挥全身性的生物学效应,进而推动肿瘤的进展、侵袭、转移过程,并增强肿瘤对治疗的耐药性[23]

3.1. 癌症干细胞(CSC)

癌症干细胞(CSC)是肿瘤细胞中的特定亚群,具有独特的自我更新能力,能快速增殖形成新肿瘤组织。CSC属低分化细胞,可持续分裂以维持组织稳定,其分裂缓慢且不对称,产生两个子细胞,一个保留干性,另一个进一步分化[24]。此外,CSC还拥有一种独特的防御机制,它们能够积极主动地将包括化疗药物在内的各类外源药物排斥在细胞质之外。这种特性使得CSC通常对传统的癌症治疗手段产生显著的耐药性,而成功的抗癌治疗只有在根除所有CSC的情况下才能治愈肿瘤[25]。值得注意的是,在HNSCC中同样发现了CSC的存在,他们与肿瘤的复发、转移以及耐药现象密切相关[26]。ZhangB等人发现NE处理SCC25和Cal27细胞后,口腔癌球的大小和数量显著增加,研究发现细胞中CSC相关标志物CD44、OCT4、SOX2和ALDH1表达增加从而促进口腔癌细胞CSC样表型[13]

3.2. 上皮-间充质转化(EMT)

上皮-间质转化(EMT)是肿瘤细胞获得侵袭性和转移能力的关键过程,在此过程中,细胞失去上皮细胞的特征,获得间质细胞的表型,它们失去了细胞间黏附和顶基极性,获得了迁移和侵袭的能力,从而更容易脱离原发肿瘤,进入血液循环并形成远处转移灶,而经历EMT的肿瘤细胞又会分泌细胞因子等物质,重组肿瘤微环境。EMT和肿瘤微环境之间互相作用,加重肿瘤的侵袭和转移[27]。Liu H等人研究发现β2‑AR的激活导致IL-6的表达增加,而IL-6是一种多效性细胞因子,能够激活下游的Stat3信号通路。活化的Stat3进入细胞核,促进Snail1的转录,进一步抑制上皮细胞标志物(如E-钙黏着蛋白)的表达,同时促进间质细胞标志物(如波形蛋白)的表达,最终导致舌鳞癌细胞EMT的发生,从而增强细胞的迁移和侵袭能力[2]。因此,β2-AR/IL-6/Stat3/Snail1信号轴在调控舌鳞癌细胞的EMT过程中扮演着关键角色。

3.3. 信号分子重塑TME

在肿瘤演进过程中,TME内多种细胞成分通过释放转化生长因子-β (TGF-β)、单核细胞趋化蛋白-1 (MCP-1)、白细胞介素-6/8 (IL-6/IL-8)、肿瘤坏死因子-β (TNF-β)、C-X-C基序趋化因子1 (CXCL-1)及血管内皮生长因子(VEGF)等介质,共同构建有利于肿瘤发展的微环境。这些因子协同作用,不仅诱发促肿瘤炎症反应,还加速肿瘤细胞增殖迁移、诱导免疫抑制状态并推动转移进程[28]。作为肿瘤微环境中的核心调控因子,IL-6既可源自肿瘤细胞自身,亦可由癌相关成纤维细胞(CAFs)及肿瘤相关巨噬细胞(TAMs)分泌。其血清浓度升高已成为炎症反应、细胞衰老、肿瘤发生及精神类疾病的重要生物标志物[29]。Bernabé DG及Daniel G团队研究揭示,NE与β-AR激动剂异丙肾上腺素能显著增强SCC9、SCC25细胞系中IL-6的mRNA转录及蛋白表达,该效应在1小时达到峰值且可被普萘洛尔完全阻断,在6小时内可显著促进SCC9与SCC15细胞的增殖活性[30] [31]。与此同时,Megan等学者发现经NE刺激的HNSCC模型会大量分泌肿瘤坏死因子α (TNF-α)进而敏化三叉神经节神经元,导致癌痛,这一具有双向调节功能的促炎因子既可通过激活细胞内信号通路助推肿瘤增殖侵袭,又能激发免疫细胞发挥抗肿瘤效应[32]。值得关注的是,Cecilio团队通过实验证实,β受体阻滞剂普萘洛尔能有效降低化学诱导OSCC模型中IL-6与TNF-α的浓度水平[33]。这些发现共同指向β-AR信号通路在头颈癌肿瘤炎性微环境调控中的关键地位,提示其可作为通过调节炎症因子网络抑制头颈癌进展的潜在治疗靶点。

Figure 1. Remodeling of the tumor microenvironment by β-adrenergic receptor signaling

1. β-肾上腺素能受体激活重塑TME

4. β-肾上腺素能受体拮抗剂在头颈癌干预中的应用潜力

β-AR信号转导在慢性应激介导的肿瘤进展和转移中具有关键作用。普萘洛尔是一种非选择性β受体阻滞剂,具有显著的抗肿瘤转移作用。在肺癌小鼠中可抑制M2巨噬细胞极化和血管生成[34],在乳腺癌小鼠中减少巨噬细胞浸润和肿瘤转移[35],在肝癌小鼠中阻碍脾髓细胞再分配和肿瘤生长[36]。此外还能抑制胰腺癌小鼠的肝转移和载脂蛋白2配体(Apo2L)/肿瘤坏死因子相关凋亡诱导配体(TRAIL)及顺铂耐药[37]、抑制结肠癌小鼠的肝转移(与COX2抑制剂依托度酸联合使用) [38]、抑制卵巢癌小鼠的血管生成和肿瘤生长以及急性淋巴细胞白血病小鼠的肿瘤负荷[39]

4.1. 普萘洛尔减少头颈癌血管生成

血管生成是恶性肿瘤生长和进展的关键机制,其中血管内皮生长因子(VEGF)是肿瘤血管生成的重要调控因子,VEGF与其受体结合后,激活下游信号通路,促进肿瘤血管的生成,为肿瘤的生长和转移提供营养和氧气。Zhu等人的研究表明VEGF的产生以NF-κB依赖的方式促进血管生成和肿瘤细胞存活[40]。而Shibuya等人的研究表明,普萘洛尔处理的SCC-9和Cal27细胞系显著降低了p65磷酸化和VEGF水平[31]。这些发现表明普萘洛尔有效抑制OSCC血管生成的假设可能是由NF-κB通过VEGF介导的。Hoxhaj等人的研究强调了Akt在癌症生物学中的关键作用,如细胞增殖、代谢、凋亡逃避、局部侵袭、血管生成和代谢重编程等[41]。Wei-Kang等人研究发现普萘洛尔通过抑制ADRB/PI3K/Akt/VEGF途径有抗血管生成作用[42]。有趣的是,Shibuya等人同样研究发现SCC-9、Cal27和SCC-25细胞中,普萘洛尔显著抑制了这一途径,普萘洛尔诱导的阻断ADRB受体抑制了Akt/NF-ĸB/VEGF通路的激活,从而损害血管生成和细胞存活,所有检测的OSCC细胞系都表现出更少的迁移活性(见图2)。

4.2. 普萘洛尔减轻头颈癌化疗耐药

化疗所引发的不良反应,已然成为晚期头颈癌治疗进程中的重大阻碍之一。口腔癌的预后情况极易受到治疗中断的不利影响,而治疗中断往往源于免疫抑制、机会性感染、恶心以及虚弱等一系列严重症状[43]。鉴于此,当前医学研究的重点聚焦于探寻特异性更高且毒性更低的药物,以提高头颈癌的治疗效果。普萘洛尔的不良反应较少,它不仅可以提高CDDP (顺铂)和5-FU (5-氟脲嘧啶) (目前OSCC治疗的金标准)的疗效,还能显着降低所有检测的OSCC细胞系的细胞活力[31]。同样,Nikolaus等人也发现单独的喉部鳞状细胞癌细胞系中存在普萘洛尔和CDDP的协同作用,NF-κB已被用作化疗耐药的生物标志物,并作为细胞活力和化疗反应的关键调节因子[44]。Shibuya等人的研究表明,在OSCC细胞系中,普萘洛尔抑制Akt和s6的磷酸化,并增加PTEN的磷酸化[31]。S6是mTOR信号通路激活的关键标志,其过度磷酸化常与肿瘤耐药性及不良预后相关,S6又能直接磷酸化激活NF-κB轴,从而协同促进耐药蛋白合成、抑制凋亡,最终导致化疗失效。PTEN是一种肿瘤抑制蛋白,在几种癌症类型中经常下调,其表达降低是化疗耐药的另一个生物标志物。所有接受普萘洛尔处理的OSCC细胞系都表现出PTEN磷酸化至少三倍的增加,以上研究表明普萘洛尔在体外通过PTEN过表达从而减轻口腔癌患者的5-FU耐药(见图2)。

Figure 2. Propranolol attenuates angiogenesis and chemoresistance in head and neck cancer

2. 普萘洛尔减少头颈癌血管生成及化疗耐药

4.3. β2-受体阻滞剂降低头颈癌发生率和肿瘤负荷

β2-肾上腺素能受体拮抗剂在化学诱导性口腔癌模型中展现出显著的干预效果。Cecilio HP等人在一项基于4-硝基喹啉-1-氧化物(4NQO)构建的大鼠口腔癌实验中,发现与未干预的对照组相比,接受普萘洛尔治疗组动物的口腔鳞状细胞癌(OSCC)发生率下降达31%,且已形成肿瘤的厚度也显著减小。这一现象提示,β-肾上腺素能信号通路很可能参与了化学致癌物诱导口腔癌发生的早期过程;而β受体阻滞剂则可能通过阻断该通路的异常激活,进而发挥其抗肿瘤效应[33]

4.4. β2-AR拮抗剂联合MAPK抑制剂U0126抑制头颈癌进程

β2-AR信号激活多种通路,包括PI3K/AKT/mTOR和/或RAF-MEK-ERK通路,该受体在几种类型的HNSCC中过表达,并与较差的预后相关。Luigi Mele等人使用选择性抑制剂ICI118,551 (ICI)与MAPK抑制剂U0126联合研究了β2-AR在UMSCC103 (HNSCC细胞系)中的阻断作用[45]。U0126长期处理后,UMSCC103细胞的ERK通路被显著抑制,而ICI单独处理的抑制作用不显著。有趣的是,两种药物联合使用可以增强u0126诱导的ERK抑制并降低相关的细胞毒性。除此之外,p38激酶通过调节几种转录因子的活性来调节细胞因子的表达,其中NF-κB主要参与癌症的进展和复发[46],选择性阻断β2-AR信号通路可抑制p38和NF-κB的磷酸化。PI3K/Akt/mTOR轴是β2-AR的另一条下游信号通路,ICI可以诱导Akt活化降低和mTOR磷酸化,使用MEK1/2抑制剂治疗也观察到类似的效果。ERK在调节PI3K/Akt/mTOR通路中可以诱导mTOR激活,β2-AR激活p38和AKT参与NF-κB和其他途径,这些效应物与mTOR和ERK一起参与氧化应激和自噬的调节。由此可见,β2-AR阻断影响PI3K/Akt/mTOR、p38和NFkB的激活;而MEK1/2抑制剂影响ERK磷酸化,这两种药物的联合使用放大了它们对mTOR和ERK的作用(见图3)。

Figure 3. Effects of ICI118551 in combination with U0126, CTX, and etodolac on HNSCC

3. ICI118551联合U0126、CTX、etodolac对HNSCC的作用

4.4.1. β2-AR和MEK1/2联合阻断抑制自噬

自噬是通过降解和回收受损细胞器、错误折叠蛋白质和不需要的细胞成分来动态调节细胞稳态的主要过程。PI3K/AKT/mTOR轴被认为对控制肿瘤微环境的自噬至关重要[47],HNSCC中通常上调的mTOR在疾病复发患者中表达水平较低,mTOR是一种自噬抑制剂,其在复发患者中的下调可能是因为自噬被认为是癌细胞用来克服药物细胞毒性的一种保护机制。p62是一种自噬清除标记物,参与了构成自噬体支架的蛋白质的周转[48],当使用ICI和U0126联合治疗时,p62的表达水平显著降低,并导致自噬体降解率增加。LC3 II/LC3 I是p62的直接相互作用物,被认为是早期自噬体支架囊泡形成的标志[49],联合用药治疗导致LC3 II/LC3 I水平显著增强,这与自噬体囊泡数量和大小的增加有关。这些结果表明,自噬通量损伤是由β2-AR抑制驱动,并且在与MEK1/2抑制剂联合使用时增加。在UMSCC103细胞中,β2-AR和MEK1/2阻断诱导自噬通量损伤响应药物介导的细胞损伤。ICI可以增强u0126诱导的ERK抑制并降低相关的细胞毒性,阻断ERK后在PI3K/Akt/mTOR通路中可以诱导Akt抑制和mTOR激活增加其细胞毒性。

4.4.2. β2-AR和MEK1/2联合阻断诱导氧化应激

越来越多的研究表明,活性氧(reactiveoxygenspecies, ROS)不仅对细胞凋亡、坏死有重要作用还参与细胞间信号转导,影响基因的表达。生理状态下,ROS保持氧化还原系统稳定,在人体生理过程中发挥着重要作用。一旦这种动态平衡受到破坏将会导致ROS大量生成,引起氧化应激(oxidative stress)的发生,对细胞造成损害,严重者导致细胞的死亡[50]。在氧化应激过程中,参与信号传递的一些转录因子被激活,Nrf2是细胞抗氧化应激反应的关键调控因子,在维持细胞氧化还原平衡中起着重要作用,在肿瘤细胞中,Nrf2的异常激活可以促进肿瘤细胞的存活和耐药性[51]。Luigi Mele等人发现β-受体阻滞剂可以通过抑制Nrf2的活性来增强肿瘤细胞对治疗的敏感性,ICI处理UMSCC103细胞时活性氧呈剂量依赖性增加,U0126处理细胞的影响较低,但联合用药可导致更高的活性氧产生。PI3K/Akt/mTOR和MAPK轴可以直接影响Nrf2的核易位[47],选择性阻断β2-AR可导致Nrf2滞留在细胞质中,通过抑制抗氧化细胞反应,促进活性氧产生增加,以及相关的凋亡程序激活。这些证据表明,在头颈癌中选择性靶向这些重要通路可能是减少癌细胞耐药和提高活性氧产生的抗癌作用的重要策略。

4.5. β2-AR拮抗剂联合CTX对头颈癌的作用

在HNSCC中,表皮生长因子受体(EGFR)嵌合单克隆抗体(西妥昔单抗-CTX)是难以用于顺铂治疗患者或高复发和转移患者的标准治疗方案[52]。EGFR与肿瘤发生和生长进展密切相关[53],癌细胞中异常的EGFR信号通过增强细胞增殖和通过影响抗肿瘤免疫应答建立免疫抑制肿瘤微环境来促进肿瘤的,其激活主要通过有丝裂原活化蛋白激酶(MAPKs)和PI3K/AKT/mTOR和JAK/STAT信号通路促进癌症生长和进展[54]。EGFR在超过80%的侵袭性HNSCC中过表达,并与患者预后不良相关[55]。ROS在HNSCC的发展和耐药过程中起着重要作用[56],最近的研究表明EGFR的激活显著影响活性氧平衡,特别是由于p38/Nrf-2/HO-1轴损伤和随后的细胞毒性[57],CTX能促进脂质过氧化积累。EGFR阻断通常会导致癌细胞氧化应激增加,而这反过来又会导致细胞死亡。然而,癌细胞可以增强它们的氧化还原平衡机器,并对这种治疗产生抗性。当Nrf2被激活时,细胞对化学致癌物质和炎症应激源产生抗性,β2-AR阻断通过抑制Nrf2来驱动细胞氧化应激。由于EGFR可直接被β2-AR激活[58],而CTX和ICI联合能显著减少Nrf-2核易位,Nrf-2通过其细胞质伴侣分子Kelch-like-ECH-associated protein 1 (Keap 1)被隔离在细胞质中,细胞暴露和氧化应激降低了Keap-1与Nrf-2的亲和力,它被释放到细胞核中可反式激活抗氧化反应元件(ARE)序列,导致抗氧化酶表达相对下调,如外源解毒酶NQO-1,GSH合成限速步骤的催化亚基GCLC,第一戊糖磷酸途径酶G6PD和血红素代谢酶HO-1 [59],从而使细胞活性氧稳态失衡。CTX能显著阻断MEK与ERK磷酸化,且与ICI结合时更明显,而MAPK信号与几种癌症的活性氧代谢密切相关,其中包括HNSCC [60]。综上所述,通过抑制β2-AR和EGFR途径影响ERK/MEK途径和Nrf-2活化从而阻断下游活性氧代谢酶,使细胞活性氧稳态失衡导致细胞毒性增强。

4.6. β2-AR拮抗剂联合COX-2拮抗剂对头颈癌的作用

环氧化酶-2 (cycloxygenase-2, COX-2)是合成前列腺素E2 (prostaglandin E2, PGE2)通路中的主要限速酶,其过表达与OSCC等恶性肿瘤的发生、转移、预后不良、化疗耐药等相关[61]。Huang Zeliu等人发现β2-AR拮抗剂联合cox-2拮抗剂(etodolac)治疗后,OSCC细胞的迁移和侵袭活性明显受到抑制,且发现转化生长因子-β1(TGF-β1)、白细胞介素-1β (IL-1β)、基质金属蛋白酶2 (MMP2)、和血管内皮生长因子A (VEGF-A)下调[62]。Zhang Zheng及Zhang Yibo等人发现在OSCC中,TGF-b1可促进EMT增强迁移和侵袭,这与淋巴结转移、复发、生存率差密切相关[63] [64]。Pomella Silvia及Lee Chia-Huei等人发现IL-1β同样能通过上调Snail和下调E-cadherin来促进oscc的EMT [65] [66]。MMP2是HNSCC中最常见的MMPs之一,可在淋巴结转移和肿瘤进展中发挥作用,Kang Chung-Jan等人发现大豆苷元(DZ)可抑制MMP-2和MMP-9表达,使MAPK信号传导(ERK1/2和p38)失活,并抑制EMT [67]。VEGF-A是肿瘤中表征最广泛的血管生成因子之一,它与肿瘤血管生成和免疫抑制肿瘤微环境密切相关,Shirogane Yoichiro等人发现抗VEGFR2中和抗体可减缓从口腔上皮发育不良(OED)到OSCC的进展[68]。鉴于β2-AR阻滞剂和COX-2抑制剂联合治疗可下调包括OSCC在内的恶性肿瘤相关基因的表达,联合使用b2-AR阻滞剂和COX-2抑制剂可能是OSCC的一种有希望的辅助治疗方法。

5. 争议与挑战

5.1. β2-AR矛盾作用揭示口腔鳞癌细胞特异性响应机制

Bowen Zhang等人发现慢性应激激素NE通过激活β2-AR,经ERK和CREB信号通路可促进OSCC细胞系Cal27增殖、侵袭及CSCs样表型,并加速体内肿瘤生长,而β2-AR阻断剂ICI118551可阻断以上效应[13]。然而,Shintaro Sakakitani等人发现观察到两种β2-AR激动剂异苏嘌呤和异丙肾上腺素抑制了OSCC细胞系SAS细胞的迁移,导致间充质细胞标记物的下调,并伴有细胞运动性降低,有效抑制原发肿瘤的生长[69]。这种差异可能是由于两组研究所使用的细胞模型造成的。Bowen Zhang在他们的研究中使用的Cal27细胞代表是腺样鳞状细胞癌,腺样结构表现为大小不一的囊泡。与其他典型OSCCs相比,其特定的生长方式和组织学特征可能会影响研究结果[70]。因此其对儿茶酚胺的反应可能不同于SAS细胞。

5.2. 迈向激素量化与长期随访的临床新阶段

肾上腺素介导的信号传导已被确定在癌症标志的调节中起着不可或缺的作用,因此为恶性肿瘤的治疗提供了新的治疗靶点。但是,关于癌症与其他应激介质(包括皮质醇、促肾上腺皮质激素释放激素、促肾上腺皮质激素和加压素)之间的关系,我们仍然知之甚少。更重要的是,应激与癌症之间的关系仍需要在分子水平上建立,并需要在这个方向上进行更多的在活体内的和临床研究。虽然已证实β2-AR在口腔癌中存在过表达并与患者的临床分期、组织学分级及生存预后不良有关,但为了研究β2-AR在OSCC中的绝对预后意义,还需要进一步开展大样本量的研究,对口腔癌患者进行治疗和预后生存分析,并进行长达5年的充分随访。除此之外,目前研究存在一些局限性,研究中缺乏关于患者精神状态的临床信息,无法确认患者是否确实患有临床慢性应激。因此,作为未来的观点,我们建议进行头颈癌患者血浆或唾液中应激激素剂量的临床研究。

5.3. 药物再利用的潜力与临床转化挑战

药物再利用是一种利用现有药物已建立的安全性和药理学特征的新方法,已成为传统药物开发的一种有希望的替代方法。这一策略大大加快了将新疗法引入临床使用的时间表。绕过了大部分早期开发过程。此外,考虑到它们原有的安全性,重新利用的药物在临床试验中往往表现出较低的失败率。尽管有这些优势,挑战仍然存在,包括需要精确的剂量优化以确保治疗效果,克服药代动力学和药效学限制,以及驾驭管理药物批准过程的复杂法律和监管框架。解决这些挑战对于充分利用肿瘤药物再利用的潜力至关重要。目前研究显示非选择性β受体阻滞剂普萘洛尔抑制肿瘤的生长和进展,并增强化疗、放疗等常规疗法的疗效导致协同效应。相对较低的毒性和成本效益使其成为头颈癌治疗方案中有吸引力的候选者,然而,需要进一步的研究来优化对他的使用,并在更大规模的临床试验中验证这些发现。

6. 总结与展望

β-肾上腺素能受体(β-AR)在头颈癌进展中具有多维度调控作用,不仅直接影响肿瘤细胞的增殖、侵袭与转移行为,还积极参与肿瘤微环境的重塑过程。尽管非选择性β受体阻滞剂(如普萘洛尔)已展现出抗肿瘤活性,但其临床应用受限于潜在副作用。为此,研究重点正逐步转向开发高选择性靶向制剂——包括针对ADRB2或ADRB3等特定亚型的拮抗剂,以及调控β-AR下游信号节点的抑制剂。值得关注的是,肿瘤与神经系统的交互作用已成为癌症研究的前沿领域。头颈部区域密集的神经支配为肿瘤–神经互作提供了解剖基础,这种细胞间信号传递深刻影响着肿瘤的演进轨迹。肿瘤并非孤立的实体,而是与周围神经系统紧密相连,形成复杂的微环境。通过干预这些神经–肿瘤之间的信号传递,有望成为头颈癌治疗的新策略。肿瘤微环境中的神经营养因子促进已存在神经的轴突生长。从而建立肿瘤相关的神经网络,产生神经信号来调节肿瘤发生和转移[71]。迄今为止的数据表明,周围神经广泛存在于各种癌症中,并影响癌症行为,与肿瘤发生、血管生成、侵袭和转移密切相关。神经支配密集的肿瘤患者与神经支配较少的肿瘤患者相比,有更高的转移率和更低的生存率[72]。Allen等人研究发现去甲肾上腺素能使肿瘤细胞以β3-ARs/cAMP/EPAC/jnk通路分泌脑源性神经营养因子(brain-derived neurotrophic factor, BDNF) [73]。同样,在胰腺导管腺癌中,去甲肾上腺素促进β2-ars依赖性神经生长因子(NGF)的分泌[74]。神经营养因子也可以以外泌体的形式释放到TME中,人头颈部鳞状癌细胞可通过向周围感觉神经分泌含有神经营养因子Ephrin B1的外泌体来诱导肿瘤神经支配[75]。化学交感神经切除术是一种靶向交感神经系统的干预手段,旨在阻断交感神经对肿瘤的刺激作用。Megan等人研究发现交感神经节后神经元支配口腔癌微环境,使用胍乙啶进行化学交感神经切除术可显著减少口腔癌局部的去甲肾上腺素水平,进而抑制肿瘤生长和减轻疼痛[32]。肿瘤神经浸润代表了癌症的一个新特征,通过手术或药物方法干扰TME的神经信号为头颈癌治疗提供了一个有希望的新策略。未来研究需系统解析β-AR在神经–肿瘤微环境中的功能网络:包括其对神经递质释放模式的调节、神经纤维定向生长的引导作用,以及肿瘤细胞感知神经信号的分子机制等。将β-AR靶向药物与免疫治疗、精准靶向疗法等进行多模式联合,有望形成协同增效的治疗新范式。通过阐明β-AR介导的神经–肿瘤交叉对话机制,不仅能够深化对头颈癌发病原理的认知,更将为突破现有治疗瓶颈提供全新的理论框架与实践路径。

NOTES

*通讯作者。

参考文献

[1] Peng, J.Y., Qiu, H., Bu, L.L., et al. (2025) γδ T Cells and Head and Neck Squamous Cell Carcinoma. International Review of Cell and Molecular Biology, 397, 23-46.
[2] Liu, H., Wang, C., Xie, N., Zhuang, Z., Liu, X., Hou, J., et al. (2017) Activation of Adrenergic Receptor β2 Promotes Tumor Progression and Epithelial Mesenchymal Transition in Tongue Squamous Cell Carcinoma. International Journal of Molecular Medicine, 41, 147-154. [Google Scholar] [CrossRef] [PubMed]
[3] Santos-Sousa, A.L., Kayahara, G.M., Bastos, D.B., Sarafim-Silva, B.A.M., Crivelini, M.M., Valente, V.B., et al. (2024) Expression of β1-and β2-Adrenergic Receptors in Oral Squamous Cell Carcinoma and Their Association with Psychological and Clinical Factors. Archives of Oral Biology, 162, Article ID: 105939. [Google Scholar] [CrossRef] [PubMed]
[4] Byrd, H.F. and Kohutek, Z.A. (2024) Painful Realities: Navigating the Complexities of Head and Neck Cancer Pain. Oral Diseases, 31, 2711-2722. [Google Scholar] [CrossRef] [PubMed]
[5] Niu, X., Wu, T., Zeng, L., Wang, F., Lv, W., Zhang, L., et al. (2025) Chronic Stress in Cancer Development and Progression. Science Bulletin, 70, 3885-3907. [Google Scholar] [CrossRef
[6] Yan, J., Chen, Y., Luo, M., Hu, X., Li, H., Liu, Q., et al. (2023) Chronic Stress in Solid Tumor Development: From Mechanisms to Interventions. Journal of Biomedical Science, 30, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
[7] Tiwari, R.K., Rawat, S.G., Rai, S. and Kumar, A. (2025) Stress Regulatory Hormones and Cancer: The Contribution of Epinephrine and Cancer Therapeutic Value of β Blockers. Endocrine, 88, 359-386. [Google Scholar] [CrossRef] [PubMed]
[8] Carrasco, M., Bjørnstad, O.V., Vethe, H. and Akslen, L.A. (2025) Adrenergic Signals Influence Proteomic Responses in Breast Cancer Cells. Frontiers in Neuroscience, 19, Article 1608017. [Google Scholar] [CrossRef
[9] Zhang, J., Deng, Y., Liu, J., Gan, L. and Jiang, Y. (2024) Role of Transforming Growth Factor-β1 Pathway in Angiogenesis Induced by Chronic Stress in Colorectal Cancer. Cancer Biology & Therapy, 25, Article ID: 2366451. [Google Scholar] [CrossRef] [PubMed]
[10] Yu, R., Li, Y., Jiang, R., Dang, C. and Zhai, F. (2025) Impact of Sympathetic Nervous System on Immune Evasion in High-Grade Serous Ovarian Cancer: A Review. Frontiers in Oncology, 15, Article 1644895. [Google Scholar] [CrossRef] [PubMed]
[11] Thulin, M.H., Ramberg, H., Nielsen, H.K., Grytli, H.H., Sivanesan, S., Pandya, A.D., et al. (2025) β-Blockers Prolong Response to Androgen Deprivation Therapy in Prostate Cancer through Modulation of the Neuro-Immuno-Oncology Axis. Journal of Translational Medicine, 23, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
[12] Brak, H.H. and Thielman, N.R.J. (2025) Norepinephrine Mediates Adrenergic Receptor Transcription and Oncogenic Gene Expression in Pancreatic Ductal Adenocarcinoma. Advances in Biological Regulation, 97, Article ID: 101097. [Google Scholar] [CrossRef] [PubMed]
[13] Zhang, B., Wu, C., Chen, W., Qiu, L., Li, S., Wang, T., et al. (2020) The Stress Hormone Norepinephrine Promotes Tumor Progression through β2-Adrenoreceptors in Oral Cancer. Archives of Oral Biology, 113, Article ID: 104712. [Google Scholar] [CrossRef] [PubMed]
[14] Amit, M., Takahashi, H., Dragomir, M.P., Lindemann, A., Gleber-Netto, F.O., Pickering, C.R., et al. (2020) Loss of P53 Drives Neuron Reprogramming in Head and Neck Cancer. Nature, 578, 449-454. [Google Scholar] [CrossRef] [PubMed]
[15] Zahalka, A.H., Arnal-Estapé, A., Maryanovich, M., Nakahara, F., Cruz, C.D., Finley, L.W.S., et al. (2017) Adrenergic Nerves Activate an Angio-Metabolic Switch in Prostate Cancer. Science, 358, 321-326. [Google Scholar] [CrossRef] [PubMed]
[16] Le, C.P., Nowell, C.J., Kim-Fuchs, C., Botteri, E., Hiller, J.G., Ismail, H., et al. (2016) Chronic Stress in Mice Remodels Lymph Vasculature to Promote Tumour Cell Dissemination. Nature Communications, 7, Article No. 10634. [Google Scholar] [CrossRef] [PubMed]
[17] Zhang, C., Liao, X., Ma, Z., Liu, S., Fang, F. and Mai, H. (2020) Overexpression of β-Adrenergic Receptors and the Suppressive Effect of β2-Adrenergic Receptor Blockade in Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Surgery, 78, 1871.e1-1871.e23. [Google Scholar] [CrossRef] [PubMed]
[18] Dong, H., Liao, X.X., Mai, H.M., et al. (2017) Expression of β Adrenergic Receptor in Oral Squamous Cell Carcinoma and Its Significance to the Prognosis. International Journal of Clinical and Experimental Pathology, 10, 10431-10440.
[19] Shang, Z.J., Liu, K. and Liang, D.F. (2009) Expression of β2-Adrenergic Receptor in Oral Squamous Cell Carcinoma. Journal of Oral Pathology & Medicine, 38, 371-376. [Google Scholar] [CrossRef] [PubMed]
[20] Krishna, A., Singh, V., Singh, N., Singh, S., Mohanty, S.K., Singh, R., et al. (2022) Expression Pattern and Clinical Significance of β2-Adrenergic Receptor in Oral Squamous Cell Carcinoma: An Emerging Prognostic Indicator and Future Therapeutic Target. Clinical and Translational Oncology, 24, 2191-2199. [Google Scholar] [CrossRef] [PubMed]
[21] Lopes-Santos, G., Bernabé, D.G., Miyahara, G.I. and Tjioe, K.C. (2021) β-Adrenergic Pathway Activation Enhances Aggressiveness and Inhibits Stemness in Head and Neck Cancer. Translational Oncology, 14, Article ID: 101117. [Google Scholar] [CrossRef] [PubMed]
[22] Vyhnánková, S., Lacina, L., Chovanec, M., Plzák, J., Smetana, K., Netušil, J., et al. (2025) Cold, Hot, and Lethal—The Tumour Microenvironment and the Immunology of Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 26, Article 8844. [Google Scholar] [CrossRef
[23] Špiljak, B., Poposki, B. and Lešić, S. (2025) Reprogramming the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma: Therapeutic Targets and Innovations. Oncology Research, 33, 3269-3292. [Google Scholar] [CrossRef
[24] Zang, W., Geng, F., Liu, J., Wang, Z., Zhang, S., Li, Y., et al. (2025) Porphyromonas gingivalis Potentiates Stem-Like Properties of Oral Squamous Cell Carcinoma by Modulating Scd1-Dependent Lipid Synthesis via NOD1/KLF5 Axis. International Journal of Oral Science, 17, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
[25] Warner, K.A., Sahara, S., Herzog, A.E., Nör, F., Castilho, R.M., Polverini, P.J., et al. (2025) Characterization of Uniquely Tumorigenic Cancer Stem Cells in Salivary Gland Adenoid Cystic Carcinoma. Frontiers in Oral Health, 6, Article 1570042. [Google Scholar] [CrossRef] [PubMed]
[26] Maharajan, N., Benyamien-Roufaeil, D.S., Brown, R.A., Portney, B.A., Banerjee, A. and Zalzman, M. (2025) Cancer Stem Cell Mechanisms and Targeted Therapeutic Strategies in Head and Neck Squamous Cell Carcinoma. Cancer Letters, 634, Article ID: 218015. [Google Scholar] [CrossRef
[27] Kumar, D., Gupta, A., Agrahari, S., Singh, S., Gupta, S., Kumar, V., et al. (2025) Association of Epithelial to Mesenchymal Transition Markers on Prognosis and Clinicopathological Characteristics in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Head and Neck Pathology, 19, Article No. 124. [Google Scholar] [CrossRef
[28] Mivehchi, H., Eskandari-Yaghbastlo, A., Ghazanfarpour, M., Ziaei, S., Mesgari, H., Faghihinia, F., et al. (2025) Microenvironment-Based Immunotherapy in Oral Cancer: A Comprehensive Review. Medical Oncology, 42, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
[29] Španko, M., Strnadová, K., Pavlíček, A.J., Szabo, P., Kodet, O., Valach, J., et al. (2021) IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. International Journal of Molecular Sciences, 22, Article 11027. [Google Scholar] [CrossRef] [PubMed]
[30] Bernabé, D.G., Tamae, A.C., Biasoli, É.R. and Oliveira, S.H.P. (2011) Stress Hormones Increase Cell Proliferation and Regulates Interleukin-6 Secretion in Human Oral Squamous Cell Carcinoma Cells. Brain, Behavior, and Immunity, 25, 574-583. [Google Scholar] [CrossRef] [PubMed]
[31] Shibuya, C.M., Tjioe, K.C., Oliveira, S.H.P. and Bernabé, D.G. (2022) Propranolol Inhibits Cell Viability and Expression of the Pro-Tumorigenic Proteins Akt, NF-ĸB, and VEGF in Oral Squamous Cell Carcinoma. Archives of Oral Biology, 136, Article ID: 105383. [Google Scholar] [CrossRef] [PubMed]
[32] Atherton, M.A., Park, S., Horan, N.L., Nicholson, S., Dolan, J.C., Schmidt, B.L., et al. (2022) Sympathetic Modulation of Tumor Necrosis Factor α-Induced Nociception in the Presence of Oral Squamous Cell Carcinoma. Pain, 164, 27-42. [Google Scholar] [CrossRef] [PubMed]
[33] Cecilio, H.P., Valente, V.B., Pereira, K.M., Kayahara, G.M., Furuse, C., Biasoli, É.R., et al. (2020) β-Adrenergic Blocker Inhibits Oral Carcinogenesis and Reduces Tumor Invasion. Cancer Chemotherapy and Pharmacology, 86, 681-686. [Google Scholar] [CrossRef] [PubMed]
[34] Xia, Y., Wei, Y., Li, Z., Cai, X., Zhang, L., Dong, X., et al. (2019) Catecholamines Contribute to the Neovascularization of Lung Cancer via Tumor-Associated Macrophages. Brain, Behavior, and Immunity, 81, 111-121. [Google Scholar] [CrossRef] [PubMed]
[35] Chen, H., Liu, D., Guo, L., Cheng, X., Guo, N. and Shi, M. (2017) Chronic Psychological Stress Promotes Lung Metastatic Colonization of Circulating Breast Cancer Cells by Decorating a Pre-Metastatic Niche through Activating β-Adrenergic Signaling. The Journal of Pathology, 244, 49-60. [Google Scholar] [CrossRef] [PubMed]
[36] Jiang, W., Li, Y., Li, Z., Sun, J., Li, J., Wei, W., et al. (2019) Chronic Restraint Stress Promotes Hepatocellular Carcinoma Growth by Mobilizing Splenic Myeloid Cells through Activating β-Adrenergic Signaling. Brain, Behavior, and Immunity, 80, 825-838. [Google Scholar] [CrossRef] [PubMed]
[37] Sorski, L., Melamed, R., Matzner, P., Lavon, H., Shaashua, L., Rosenne, E., et al. (2016) Reducing Liver Metastases of Colon Cancer in the Context of Extensive and Minor Surgeries through Β-Adrenoceptors Blockade and COX2 Inhibition. Brain, Behavior, and Immunity, 58, 91-98. [Google Scholar] [CrossRef] [PubMed]
[38] Thaker, P.H., Han, L.Y., Kamat, A.A., Arevalo, J.M., Takahashi, R., Lu, C., et al. (2006) Chronic Stress Promotes Tumor Growth and Angiogenesis in a Mouse Model of Ovarian Carcinoma. Nature Medicine, 12, 939-944. [Google Scholar] [CrossRef] [PubMed]
[39] Lamkin, D.M., Sloan, E.K., Patel, A.J., Chiang, B.S., Pimentel, M.A., Ma, J.C.Y., et al. (2012) Chronic Stress Enhances Progression of Acute Lymphoblastic Leukemia via Β-Adrenergic Signaling. Brain, Behavior, and Immunity, 26, 635-641. [Google Scholar] [CrossRef] [PubMed]
[40] Zhu, C., Chen, C., Xu, Z., Zhao, J., Ou, B., Sun, J., et al. (2018) CCR6 Promotes Tumor Angiogenesis via the AKT/NF-κB/VEGF Pathway in Colorectal Cancer. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 387-397. [Google Scholar] [CrossRef] [PubMed]
[41] Hoxhaj, G. and Manning, B.D. (2019) The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nature Reviews Cancer, 20, 74-88. [Google Scholar] [CrossRef] [PubMed]
[42] Pan, W., Li, P., Guo, Z., Huang, Q. and Gao, Y. (2015) Propranolol Induces Regression of Hemangioma Cells via the Down‐Regulation of the PI3K/Akt/eNOS/VEGF Pathway. Pediatric Blood & Cancer, 62, 1414-1420. [Google Scholar] [CrossRef] [PubMed]
[43] Kashyap, L., Patil, V., Noronha, V., Joshi, A., Menon, N., Jobanputra, K., et al. (2021) Efficacy and Safety of Neoadjuvant Chemotherapy (NACT) with Paclitaxel Plus Carboplatin and Oral Metronomic Chemotherapy (OMCT) in Patients with Technically Unresectable Oral Squamous Cell Carcinoma (OSCC). ecancermedicalscience, 15, Article No. 1325. [Google Scholar] [CrossRef] [PubMed]
[44] Wolter, N.E., Wolter, J.K., Enepekides, D.J. and Irwin, M.S. (2012) Propranolol as a Novel Adjunctive Treatment for Head and Neck Squamous Cell Carcinoma. Journal of OtolaryngologyHead & Neck Surgery, 41, 334-344.
[45] Mele, L., Del Vecchio, V., Marampon, F., Regad, T., Wagner, S., Mosca, L., et al. (2020) β2-AR Blockade Potentiates MEK1/2 Inhibitor Effect on HNSCC by Regulating the Nrf2-Mediated Defense Mechanism. Cell Death & Disease, 11, Article No. 850. [Google Scholar] [CrossRef] [PubMed]
[46] Khan, Y.S., Farhana, A., Kuddus, M., Shahid, S.M.A., Alsrhani, A., Osman, A.A., et al. (2025) MicroRNA-125b-5p Drives MMP-2 Expression via Activation of RAGE-38MAPK-p65/p50NF-κB Axis: A Novel Mechanism in Human Lung Cancer Cells. International Journal of Molecular Sciences, 26, Article 9983. [Google Scholar] [CrossRef
[47] Jiang, M., Zhang, K., Zhang, Z., Zeng, X., Huang, Z., Qin, P., et al. (2025) PI3K/AKT/mTOR Axis in Cancer: From Pathogenesis to Treatment. MedComm, 6, e70295. [Google Scholar] [CrossRef] [PubMed]
[48] Shilovsky, G.A. (2024) P62: Intersection of Antioxidant Defense and Autophagy Pathways. Molecular Biology, 58, 822-835. [Google Scholar] [CrossRef
[49] Hussain, Y., Singh, J., Meena, A., Sinha, R.A. and Luqman, S. (2023) Escin‐Sorafenib Synergy Up‐Regulates LC3‐II and P62 to Induce Apoptosis in Hepatocellular Carcinoma Cells. Environmental Toxicology, 39, 840-856. [Google Scholar] [CrossRef] [PubMed]
[50] Li, L., Zeng, Z., Ma, T., Hu, B., Guo, M. and Wang, Q. (2025) The Role of ROS‐Mediated Mitochondrial Dysfunction in the Development of Malignant Melanoma. Experimental Dermatology, 34, e70168. [Google Scholar] [CrossRef
[51] Verza, F.A., Da Silva, G.C. and Nishimura, F.G. (2025) The Impact of Oxidative Stress and the NRF2-KEAP1-ARE Signaling Pathway on Anticancer Drug Resistance. Oncology Research, 33, 1819-1834. [Google Scholar] [CrossRef] [PubMed]
[52] Friedlaender, A., Subbiah, V., Russo, A., Banna, G.L., Malapelle, U., Rolfo, C., et al. (2021) EGFR and HER2 Exon 20 Insertions in Solid Tumours: From Biology to Treatment. Nature Reviews Clinical Oncology, 19, 51-69. [Google Scholar] [CrossRef] [PubMed]
[53] Kumagai, S., Koyama, S. and Nishikawa, H. (2021) Antitumour Immunity Regulated by Aberrant ERBB Family Signalling. Nature Reviews Cancer, 21, 181-197. [Google Scholar] [CrossRef] [PubMed]
[54] Zhang, B., Tan, H., Kuang, J., Zhou, B., Liang, S., Pang, X., et al. (2025) Neoadjuvant Immunotherapy in Squamous Cell Carcinoma of the Head and Neck: Current Evidence and Future Perspectives. Molecular Cancer, 24, Article No. 284. [Google Scholar] [CrossRef
[55] Temam, S., Kawaguchi, H., El-Naggar, A.K., Jelinek, J., Tang, H., Liu, D.D., et al. (2007) Epidermal Growth Factor Receptor Copy Number Alterations Correlate with Poor Clinical Outcome in Patients with Head and Neck Squamous Cancer. Journal of Clinical Oncology, 25, 2164-2170. [Google Scholar] [CrossRef] [PubMed]
[56] Bani-Ahmad, E., Dass, J. and Dass, C.R. (2025) From Carcinogenesis to Drug Resistance: The Multifaceted Role of Oxidative Stress in Head and Neck Cancer. Cancers, 17, Article 3295. [Google Scholar] [CrossRef
[57] Yang, J., Mo, J., Dai, J., Ye, C., Cen, W., Zheng, X., et al. (2021) Cetuximab Promotes RSL3-Induced Ferroptosis by Suppressing the Nrf2/HO-1 Signalling Pathway in KRAS Mutant Colorectal Cancer. Cell Death & Disease, 12, Article No. 1079. [Google Scholar] [CrossRef] [PubMed]
[58] Chin, C., Li, J., Lee, K., Huang, Y., Wang, K., Lai, H., et al. (2015) Selective β2‐AR Blockage Suppresses Colorectal Cancer Growth through Regulation of EGFR-Akt/ERK1/2 Signaling, G1‐phase Arrest, and Apoptosis. Journal of Cellular Physiology, 231, 459-472. [Google Scholar] [CrossRef] [PubMed]
[59] Jasek-Gajda, E., Jurkowska, H., Jasińska, M. and Lis, G.J. (2020) Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, TRX and GSH Antioxidant Systems in Leukemia Cells. Antioxidants, 9, Article 633. [Google Scholar] [CrossRef] [PubMed]
[60] Seo, J., Yoon, G., Park, S., Shim, J., Chae, J. and Jeon, Y. (2022) Deoxypodophyllotoxin Induces Ros-Mediated Apoptosis by Modulating the PI3K/AKT and P38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma. Journal of Microbiology and Biotechnology, 32, 1103-1109. [Google Scholar] [CrossRef] [PubMed]
[61] Nasry, W., Rodriguez-Lecompte, J. and Martin, C. (2018) Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers, 10, Article 348. [Google Scholar] [CrossRef] [PubMed]
[62] Huang, Z., Huang, L., Zhang, C., Chen, G. and Mai, H. (2025) Blocking β2-AR and Inhibiting COX-2: A Promising Approach to Suppress OSCC Development. International Dental Journal, 75, 807-816. [Google Scholar] [CrossRef] [PubMed]
[63] Zhang, Z., Sun, X., Gao, Z., Lv, X., Jia, H., Huang, B., et al. (2025) Prussian Blue Nanoparticle-Induced Alteration of the Polarization State of Tumor-Associated Macrophages as a Substantial Antitumor Mechanism against Oral Squamous Cell Carcinoma (OSCC). International Journal of Nanomedicine, 20, 10667-10681. [Google Scholar] [CrossRef
[64] Zhang, Y.B., Xu, L.M., Momin, N., et al. (2025) [Mechanism of Porphyromonas gingivalis Inducing the Formation of a Local Immunosuppressive Microenvironment in Oral Squamous Cell Carcinoma]. Journal of Sichuan University (Medical Sciences), 56, 746-753.
[65] Pomella, S., D’Archivio, L., Cassandri, M., Aiello, F.A., Melaiu, O., Marampon, F., et al. (2025) The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes. Cancers, 17, Article 2519. [Google Scholar] [CrossRef] [PubMed]
[66] Lee, C., Chang, J.S., Syu, S., Wong, T., Chan, J.Y., Tang, Y., et al. (2014) Il‐1β Promotes Malignant Transformation and Tumor Aggressiveness in Oral Cancer. Journal of Cellular Physiology, 230, 875-884. [Google Scholar] [CrossRef] [PubMed]
[67] Kang, C., Tan, J., Chang, C., Chen, S., Yu, C. and Hsieh, C. (2025) Daidzein Enhances Cisplatin Sensitivity and Inhibits Migration of Oral Squamous Cell Carcinoma through Modulating Mitogen-Activated Protein Kinase Signaling Pathway. Journal of Dental Sciences, 20, 1460-1469. [Google Scholar] [CrossRef] [PubMed]
[68] Shirogane, Y., Usami, Y., Okumura, M., Hirose, K., Naniwa, K., Ikebe, K., et al. (2024) Anti‐VEGFR2 Neutralising Antibody Slows the Progression of Multistep Oral Carcinogenesis. The Journal of Pathology, 264, 423-433. [Google Scholar] [CrossRef] [PubMed]
[69] Sakakitani, S., Podyma-Inoue, K.A., Takayama, R., Takahashi, K., Ishigami-Yuasa, M., Kagechika, H., et al. (2020) Activation of β2-Adrenergic Receptor Signals Suppresses Mesenchymal Phenotypes of Oral Squamous Cell Carcinoma Cells. Cancer Science, 112, 155-167. [Google Scholar] [CrossRef] [PubMed]
[70] Jiang, L., Ji, N., Zhou, Y., Li, J., Liu, X., Wang, Z., et al. (2009) CAL 27 Is an Oral Adenosquamous Carcinoma Cell Line. Oral Oncology, 45, e204-e207. [Google Scholar] [CrossRef] [PubMed]
[71] Zhang, F., Wang, Y., Liu, F., Li, Y., Liu, X., Ren, X., et al. (2025) Impact of β Blockers on Cancer Neuroimmunology: A Systematic Review and Meta-Analysis of Survival Outcomes and Immune Modulation. Frontiers in Immunology, 16, Article 1635331. [Google Scholar] [CrossRef] [PubMed]
[72] Wang, Y., Ye, Z., Yuan, Y., Wang, C., Chen, G. and Zhang, Y. (2025) Sensory Neuro-Tumor Crosstalk: Therapeutic Opportunities and Emerging Frontiers in Cancer Neuroscience. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1880, Article ID: 189464. [Google Scholar] [CrossRef
[73] Allen, J.K., Armaiz-Pena, G.N., Nagaraja, A.S., Sadaoui, N.C., Ortiz, T., Dood, R., et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Research, 78, 3233-3242. [Google Scholar] [CrossRef] [PubMed]
[74] Renz, B.W., Takahashi, R., Tanaka, T., Macchini, M., Hayakawa, Y., Dantes, Z., et al. (2018) β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell, 33, 75-90.e7. [Google Scholar] [CrossRef] [PubMed]
[75] Madeo, M., Colbert, P.L., Vermeer, D.W., Lucido, C.T., Cain, J.T., Vichaya, E.G., et al. (2018) Cancer Exosomes Induce Tumor Innervation. Nature Communications, 9, Article No. 4284. [Google Scholar] [CrossRef] [PubMed]