|
[1]
|
Peng, J.Y., Qiu, H., Bu, L.L., et al. (2025) γδ T Cells and Head and Neck Squamous Cell Carcinoma. International Review of Cell and Molecular Biology, 397, 23-46.
|
|
[2]
|
Liu, H., Wang, C., Xie, N., Zhuang, Z., Liu, X., Hou, J., et al. (2017) Activation of Adrenergic Receptor β2 Promotes Tumor Progression and Epithelial Mesenchymal Transition in Tongue Squamous Cell Carcinoma. International Journal of Molecular Medicine, 41, 147-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Santos-Sousa, A.L., Kayahara, G.M., Bastos, D.B., Sarafim-Silva, B.A.M., Crivelini, M.M., Valente, V.B., et al. (2024) Expression of β1-and β2-Adrenergic Receptors in Oral Squamous Cell Carcinoma and Their Association with Psychological and Clinical Factors. Archives of Oral Biology, 162, Article ID: 105939. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Byrd, H.F. and Kohutek, Z.A. (2024) Painful Realities: Navigating the Complexities of Head and Neck Cancer Pain. Oral Diseases, 31, 2711-2722. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Niu, X., Wu, T., Zeng, L., Wang, F., Lv, W., Zhang, L., et al. (2025) Chronic Stress in Cancer Development and Progression. Science Bulletin, 70, 3885-3907. [Google Scholar] [CrossRef]
|
|
[6]
|
Yan, J., Chen, Y., Luo, M., Hu, X., Li, H., Liu, Q., et al. (2023) Chronic Stress in Solid Tumor Development: From Mechanisms to Interventions. Journal of Biomedical Science, 30, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tiwari, R.K., Rawat, S.G., Rai, S. and Kumar, A. (2025) Stress Regulatory Hormones and Cancer: The Contribution of Epinephrine and Cancer Therapeutic Value of β Blockers. Endocrine, 88, 359-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Carrasco, M., Bjørnstad, O.V., Vethe, H. and Akslen, L.A. (2025) Adrenergic Signals Influence Proteomic Responses in Breast Cancer Cells. Frontiers in Neuroscience, 19, Article 1608017. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhang, J., Deng, Y., Liu, J., Gan, L. and Jiang, Y. (2024) Role of Transforming Growth Factor-β1 Pathway in Angiogenesis Induced by Chronic Stress in Colorectal Cancer. Cancer Biology & Therapy, 25, Article ID: 2366451. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yu, R., Li, Y., Jiang, R., Dang, C. and Zhai, F. (2025) Impact of Sympathetic Nervous System on Immune Evasion in High-Grade Serous Ovarian Cancer: A Review. Frontiers in Oncology, 15, Article 1644895. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Thulin, M.H., Ramberg, H., Nielsen, H.K., Grytli, H.H., Sivanesan, S., Pandya, A.D., et al. (2025) β-Blockers Prolong Response to Androgen Deprivation Therapy in Prostate Cancer through Modulation of the Neuro-Immuno-Oncology Axis. Journal of Translational Medicine, 23, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Brak, H.H. and Thielman, N.R.J. (2025) Norepinephrine Mediates Adrenergic Receptor Transcription and Oncogenic Gene Expression in Pancreatic Ductal Adenocarcinoma. Advances in Biological Regulation, 97, Article ID: 101097. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, B., Wu, C., Chen, W., Qiu, L., Li, S., Wang, T., et al. (2020) The Stress Hormone Norepinephrine Promotes Tumor Progression through β2-Adrenoreceptors in Oral Cancer. Archives of Oral Biology, 113, Article ID: 104712. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Amit, M., Takahashi, H., Dragomir, M.P., Lindemann, A., Gleber-Netto, F.O., Pickering, C.R., et al. (2020) Loss of P53 Drives Neuron Reprogramming in Head and Neck Cancer. Nature, 578, 449-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zahalka, A.H., Arnal-Estapé, A., Maryanovich, M., Nakahara, F., Cruz, C.D., Finley, L.W.S., et al. (2017) Adrenergic Nerves Activate an Angio-Metabolic Switch in Prostate Cancer. Science, 358, 321-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Le, C.P., Nowell, C.J., Kim-Fuchs, C., Botteri, E., Hiller, J.G., Ismail, H., et al. (2016) Chronic Stress in Mice Remodels Lymph Vasculature to Promote Tumour Cell Dissemination. Nature Communications, 7, Article No. 10634. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, C., Liao, X., Ma, Z., Liu, S., Fang, F. and Mai, H. (2020) Overexpression of β-Adrenergic Receptors and the Suppressive Effect of β2-Adrenergic Receptor Blockade in Oral Squamous Cell Carcinoma. Journal of Oral and Maxillofacial Surgery, 78, 1871.e1-1871.e23. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dong, H., Liao, X.X., Mai, H.M., et al. (2017) Expression of β Adrenergic Receptor in Oral Squamous Cell Carcinoma and Its Significance to the Prognosis. International Journal of Clinical and Experimental Pathology, 10, 10431-10440.
|
|
[19]
|
Shang, Z.J., Liu, K. and Liang, D.F. (2009) Expression of β2-Adrenergic Receptor in Oral Squamous Cell Carcinoma. Journal of Oral Pathology & Medicine, 38, 371-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Krishna, A., Singh, V., Singh, N., Singh, S., Mohanty, S.K., Singh, R., et al. (2022) Expression Pattern and Clinical Significance of β2-Adrenergic Receptor in Oral Squamous Cell Carcinoma: An Emerging Prognostic Indicator and Future Therapeutic Target. Clinical and Translational Oncology, 24, 2191-2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lopes-Santos, G., Bernabé, D.G., Miyahara, G.I. and Tjioe, K.C. (2021) β-Adrenergic Pathway Activation Enhances Aggressiveness and Inhibits Stemness in Head and Neck Cancer. Translational Oncology, 14, Article ID: 101117. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vyhnánková, S., Lacina, L., Chovanec, M., Plzák, J., Smetana, K., Netušil, J., et al. (2025) Cold, Hot, and Lethal—The Tumour Microenvironment and the Immunology of Head and Neck Squamous Cell Carcinoma. International Journal of Molecular Sciences, 26, Article 8844. [Google Scholar] [CrossRef]
|
|
[23]
|
Špiljak, B., Poposki, B. and Lešić, S. (2025) Reprogramming the Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma: Therapeutic Targets and Innovations. Oncology Research, 33, 3269-3292. [Google Scholar] [CrossRef]
|
|
[24]
|
Zang, W., Geng, F., Liu, J., Wang, Z., Zhang, S., Li, Y., et al. (2025) Porphyromonas gingivalis Potentiates Stem-Like Properties of Oral Squamous Cell Carcinoma by Modulating Scd1-Dependent Lipid Synthesis via NOD1/KLF5 Axis. International Journal of Oral Science, 17, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Warner, K.A., Sahara, S., Herzog, A.E., Nör, F., Castilho, R.M., Polverini, P.J., et al. (2025) Characterization of Uniquely Tumorigenic Cancer Stem Cells in Salivary Gland Adenoid Cystic Carcinoma. Frontiers in Oral Health, 6, Article 1570042. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Maharajan, N., Benyamien-Roufaeil, D.S., Brown, R.A., Portney, B.A., Banerjee, A. and Zalzman, M. (2025) Cancer Stem Cell Mechanisms and Targeted Therapeutic Strategies in Head and Neck Squamous Cell Carcinoma. Cancer Letters, 634, Article ID: 218015. [Google Scholar] [CrossRef]
|
|
[27]
|
Kumar, D., Gupta, A., Agrahari, S., Singh, S., Gupta, S., Kumar, V., et al. (2025) Association of Epithelial to Mesenchymal Transition Markers on Prognosis and Clinicopathological Characteristics in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Head and Neck Pathology, 19, Article No. 124. [Google Scholar] [CrossRef]
|
|
[28]
|
Mivehchi, H., Eskandari-Yaghbastlo, A., Ghazanfarpour, M., Ziaei, S., Mesgari, H., Faghihinia, F., et al. (2025) Microenvironment-Based Immunotherapy in Oral Cancer: A Comprehensive Review. Medical Oncology, 42, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Španko, M., Strnadová, K., Pavlíček, A.J., Szabo, P., Kodet, O., Valach, J., et al. (2021) IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives. International Journal of Molecular Sciences, 22, Article 11027. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bernabé, D.G., Tamae, A.C., Biasoli, É.R. and Oliveira, S.H.P. (2011) Stress Hormones Increase Cell Proliferation and Regulates Interleukin-6 Secretion in Human Oral Squamous Cell Carcinoma Cells. Brain, Behavior, and Immunity, 25, 574-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shibuya, C.M., Tjioe, K.C., Oliveira, S.H.P. and Bernabé, D.G. (2022) Propranolol Inhibits Cell Viability and Expression of the Pro-Tumorigenic Proteins Akt, NF-ĸB, and VEGF in Oral Squamous Cell Carcinoma. Archives of Oral Biology, 136, Article ID: 105383. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Atherton, M.A., Park, S., Horan, N.L., Nicholson, S., Dolan, J.C., Schmidt, B.L., et al. (2022) Sympathetic Modulation of Tumor Necrosis Factor α-Induced Nociception in the Presence of Oral Squamous Cell Carcinoma. Pain, 164, 27-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cecilio, H.P., Valente, V.B., Pereira, K.M., Kayahara, G.M., Furuse, C., Biasoli, É.R., et al. (2020) β-Adrenergic Blocker Inhibits Oral Carcinogenesis and Reduces Tumor Invasion. Cancer Chemotherapy and Pharmacology, 86, 681-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xia, Y., Wei, Y., Li, Z., Cai, X., Zhang, L., Dong, X., et al. (2019) Catecholamines Contribute to the Neovascularization of Lung Cancer via Tumor-Associated Macrophages. Brain, Behavior, and Immunity, 81, 111-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, H., Liu, D., Guo, L., Cheng, X., Guo, N. and Shi, M. (2017) Chronic Psychological Stress Promotes Lung Metastatic Colonization of Circulating Breast Cancer Cells by Decorating a Pre-Metastatic Niche through Activating β-Adrenergic Signaling. The Journal of Pathology, 244, 49-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Jiang, W., Li, Y., Li, Z., Sun, J., Li, J., Wei, W., et al. (2019) Chronic Restraint Stress Promotes Hepatocellular Carcinoma Growth by Mobilizing Splenic Myeloid Cells through Activating β-Adrenergic Signaling. Brain, Behavior, and Immunity, 80, 825-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sorski, L., Melamed, R., Matzner, P., Lavon, H., Shaashua, L., Rosenne, E., et al. (2016) Reducing Liver Metastases of Colon Cancer in the Context of Extensive and Minor Surgeries through Β-Adrenoceptors Blockade and COX2 Inhibition. Brain, Behavior, and Immunity, 58, 91-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Thaker, P.H., Han, L.Y., Kamat, A.A., Arevalo, J.M., Takahashi, R., Lu, C., et al. (2006) Chronic Stress Promotes Tumor Growth and Angiogenesis in a Mouse Model of Ovarian Carcinoma. Nature Medicine, 12, 939-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Lamkin, D.M., Sloan, E.K., Patel, A.J., Chiang, B.S., Pimentel, M.A., Ma, J.C.Y., et al. (2012) Chronic Stress Enhances Progression of Acute Lymphoblastic Leukemia via Β-Adrenergic Signaling. Brain, Behavior, and Immunity, 26, 635-641. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhu, C., Chen, C., Xu, Z., Zhao, J., Ou, B., Sun, J., et al. (2018) CCR6 Promotes Tumor Angiogenesis via the AKT/NF-κB/VEGF Pathway in Colorectal Cancer. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 387-397. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hoxhaj, G. and Manning, B.D. (2019) The PI3K-AKT Network at the Interface of Oncogenic Signalling and Cancer Metabolism. Nature Reviews Cancer, 20, 74-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pan, W., Li, P., Guo, Z., Huang, Q. and Gao, Y. (2015) Propranolol Induces Regression of Hemangioma Cells via the Down‐Regulation of the PI3K/Akt/eNOS/VEGF Pathway. Pediatric Blood & Cancer, 62, 1414-1420. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kashyap, L., Patil, V., Noronha, V., Joshi, A., Menon, N., Jobanputra, K., et al. (2021) Efficacy and Safety of Neoadjuvant Chemotherapy (NACT) with Paclitaxel Plus Carboplatin and Oral Metronomic Chemotherapy (OMCT) in Patients with Technically Unresectable Oral Squamous Cell Carcinoma (OSCC). ecancermedicalscience, 15, Article No. 1325. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wolter, N.E., Wolter, J.K., Enepekides, D.J. and Irwin, M.S. (2012) Propranolol as a Novel Adjunctive Treatment for Head and Neck Squamous Cell Carcinoma. Journal of Otolaryngology—Head & Neck Surgery, 41, 334-344.
|
|
[45]
|
Mele, L., Del Vecchio, V., Marampon, F., Regad, T., Wagner, S., Mosca, L., et al. (2020) β2-AR Blockade Potentiates MEK1/2 Inhibitor Effect on HNSCC by Regulating the Nrf2-Mediated Defense Mechanism. Cell Death & Disease, 11, Article No. 850. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Khan, Y.S., Farhana, A., Kuddus, M., Shahid, S.M.A., Alsrhani, A., Osman, A.A., et al. (2025) MicroRNA-125b-5p Drives MMP-2 Expression via Activation of RAGE-38MAPK-p65/p50NF-κB Axis: A Novel Mechanism in Human Lung Cancer Cells. International Journal of Molecular Sciences, 26, Article 9983. [Google Scholar] [CrossRef]
|
|
[47]
|
Jiang, M., Zhang, K., Zhang, Z., Zeng, X., Huang, Z., Qin, P., et al. (2025) PI3K/AKT/mTOR Axis in Cancer: From Pathogenesis to Treatment. MedComm, 6, e70295. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shilovsky, G.A. (2024) P62: Intersection of Antioxidant Defense and Autophagy Pathways. Molecular Biology, 58, 822-835. [Google Scholar] [CrossRef]
|
|
[49]
|
Hussain, Y., Singh, J., Meena, A., Sinha, R.A. and Luqman, S. (2023) Escin‐Sorafenib Synergy Up‐Regulates LC3‐II and P62 to Induce Apoptosis in Hepatocellular Carcinoma Cells. Environmental Toxicology, 39, 840-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, L., Zeng, Z., Ma, T., Hu, B., Guo, M. and Wang, Q. (2025) The Role of ROS‐Mediated Mitochondrial Dysfunction in the Development of Malignant Melanoma. Experimental Dermatology, 34, e70168. [Google Scholar] [CrossRef]
|
|
[51]
|
Verza, F.A., Da Silva, G.C. and Nishimura, F.G. (2025) The Impact of Oxidative Stress and the NRF2-KEAP1-ARE Signaling Pathway on Anticancer Drug Resistance. Oncology Research, 33, 1819-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Friedlaender, A., Subbiah, V., Russo, A., Banna, G.L., Malapelle, U., Rolfo, C., et al. (2021) EGFR and HER2 Exon 20 Insertions in Solid Tumours: From Biology to Treatment. Nature Reviews Clinical Oncology, 19, 51-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kumagai, S., Koyama, S. and Nishikawa, H. (2021) Antitumour Immunity Regulated by Aberrant ERBB Family Signalling. Nature Reviews Cancer, 21, 181-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhang, B., Tan, H., Kuang, J., Zhou, B., Liang, S., Pang, X., et al. (2025) Neoadjuvant Immunotherapy in Squamous Cell Carcinoma of the Head and Neck: Current Evidence and Future Perspectives. Molecular Cancer, 24, Article No. 284. [Google Scholar] [CrossRef]
|
|
[55]
|
Temam, S., Kawaguchi, H., El-Naggar, A.K., Jelinek, J., Tang, H., Liu, D.D., et al. (2007) Epidermal Growth Factor Receptor Copy Number Alterations Correlate with Poor Clinical Outcome in Patients with Head and Neck Squamous Cancer. Journal of Clinical Oncology, 25, 2164-2170. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bani-Ahmad, E., Dass, J. and Dass, C.R. (2025) From Carcinogenesis to Drug Resistance: The Multifaceted Role of Oxidative Stress in Head and Neck Cancer. Cancers, 17, Article 3295. [Google Scholar] [CrossRef]
|
|
[57]
|
Yang, J., Mo, J., Dai, J., Ye, C., Cen, W., Zheng, X., et al. (2021) Cetuximab Promotes RSL3-Induced Ferroptosis by Suppressing the Nrf2/HO-1 Signalling Pathway in KRAS Mutant Colorectal Cancer. Cell Death & Disease, 12, Article No. 1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Chin, C., Li, J., Lee, K., Huang, Y., Wang, K., Lai, H., et al. (2015) Selective β2‐AR Blockage Suppresses Colorectal Cancer Growth through Regulation of EGFR-Akt/ERK1/2 Signaling, G1‐phase Arrest, and Apoptosis. Journal of Cellular Physiology, 231, 459-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Jasek-Gajda, E., Jurkowska, H., Jasińska, M. and Lis, G.J. (2020) Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, TRX and GSH Antioxidant Systems in Leukemia Cells. Antioxidants, 9, Article 633. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Seo, J., Yoon, G., Park, S., Shim, J., Chae, J. and Jeon, Y. (2022) Deoxypodophyllotoxin Induces Ros-Mediated Apoptosis by Modulating the PI3K/AKT and P38 MAPK-Dependent Signaling in Oral Squamous Cell Carcinoma. Journal of Microbiology and Biotechnology, 32, 1103-1109. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Nasry, W., Rodriguez-Lecompte, J. and Martin, C. (2018) Role of COX-2/PGE2 Mediated Inflammation in Oral Squamous Cell Carcinoma. Cancers, 10, Article 348. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Huang, Z., Huang, L., Zhang, C., Chen, G. and Mai, H. (2025) Blocking β2-AR and Inhibiting COX-2: A Promising Approach to Suppress OSCC Development. International Dental Journal, 75, 807-816. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zhang, Z., Sun, X., Gao, Z., Lv, X., Jia, H., Huang, B., et al. (2025) Prussian Blue Nanoparticle-Induced Alteration of the Polarization State of Tumor-Associated Macrophages as a Substantial Antitumor Mechanism against Oral Squamous Cell Carcinoma (OSCC). International Journal of Nanomedicine, 20, 10667-10681. [Google Scholar] [CrossRef]
|
|
[64]
|
Zhang, Y.B., Xu, L.M., Momin, N., et al. (2025) [Mechanism of Porphyromonas gingivalis Inducing the Formation of a Local Immunosuppressive Microenvironment in Oral Squamous Cell Carcinoma]. Journal of Sichuan University (Medical Sciences), 56, 746-753.
|
|
[65]
|
Pomella, S., D’Archivio, L., Cassandri, M., Aiello, F.A., Melaiu, O., Marampon, F., et al. (2025) The HIV Protease Inhibitor Ritonavir Reverts the Mesenchymal Phenotype Induced by Inflammatory Cytokines in Normal and Tumor Oral Keratinocytes to an Epithelial One, Increasing the Radiosensitivity of Tumor Oral Keratinocytes. Cancers, 17, Article 2519. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Lee, C., Chang, J.S., Syu, S., Wong, T., Chan, J.Y., Tang, Y., et al. (2014) Il‐1β Promotes Malignant Transformation and Tumor Aggressiveness in Oral Cancer. Journal of Cellular Physiology, 230, 875-884. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Kang, C., Tan, J., Chang, C., Chen, S., Yu, C. and Hsieh, C. (2025) Daidzein Enhances Cisplatin Sensitivity and Inhibits Migration of Oral Squamous Cell Carcinoma through Modulating Mitogen-Activated Protein Kinase Signaling Pathway. Journal of Dental Sciences, 20, 1460-1469. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Shirogane, Y., Usami, Y., Okumura, M., Hirose, K., Naniwa, K., Ikebe, K., et al. (2024) Anti‐VEGFR2 Neutralising Antibody Slows the Progression of Multistep Oral Carcinogenesis. The Journal of Pathology, 264, 423-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Sakakitani, S., Podyma-Inoue, K.A., Takayama, R., Takahashi, K., Ishigami-Yuasa, M., Kagechika, H., et al. (2020) Activation of β2-Adrenergic Receptor Signals Suppresses Mesenchymal Phenotypes of Oral Squamous Cell Carcinoma Cells. Cancer Science, 112, 155-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Jiang, L., Ji, N., Zhou, Y., Li, J., Liu, X., Wang, Z., et al. (2009) CAL 27 Is an Oral Adenosquamous Carcinoma Cell Line. Oral Oncology, 45, e204-e207. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhang, F., Wang, Y., Liu, F., Li, Y., Liu, X., Ren, X., et al. (2025) Impact of β Blockers on Cancer Neuroimmunology: A Systematic Review and Meta-Analysis of Survival Outcomes and Immune Modulation. Frontiers in Immunology, 16, Article 1635331. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wang, Y., Ye, Z., Yuan, Y., Wang, C., Chen, G. and Zhang, Y. (2025) Sensory Neuro-Tumor Crosstalk: Therapeutic Opportunities and Emerging Frontiers in Cancer Neuroscience. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1880, Article ID: 189464. [Google Scholar] [CrossRef]
|
|
[73]
|
Allen, J.K., Armaiz-Pena, G.N., Nagaraja, A.S., Sadaoui, N.C., Ortiz, T., Dood, R., et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Research, 78, 3233-3242. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Renz, B.W., Takahashi, R., Tanaka, T., Macchini, M., Hayakawa, Y., Dantes, Z., et al. (2018) β2 Adrenergic-Neurotrophin Feedforward Loop Promotes Pancreatic Cancer. Cancer Cell, 33, 75-90.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Madeo, M., Colbert, P.L., Vermeer, D.W., Lucido, C.T., Cain, J.T., Vichaya, E.G., et al. (2018) Cancer Exosomes Induce Tumor Innervation. Nature Communications, 9, Article No. 4284. [Google Scholar] [CrossRef] [PubMed]
|