|
[1]
|
Wang, J., Li, F., Liu, Z., Dai, Z., Gao, S. and Zhao, M. (2021) Two-Dimensional Conductive Metal-Organic Frameworks as Highly Efficient Electrocatalysts for Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 13, 61205-61214. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wang, H., Wei, D., Zheng, J., Zhang, B., Ling, M., Hou, Y., et al. (2020) Electrospinning MoS2-Decorated Porous Carbon Nanofibers for High-Performance Lithium-Sulfur Batteries. ACS Applied Energy Materials, 3, 11893-11899. [Google Scholar] [CrossRef]
|
|
[3]
|
李刚. 基于锂硫电池正负极多级三维复合导电网络结构设计及性能研究[D]: [博士学位论文]. 上海: 上海交通大学, 2021.
|
|
[4]
|
Li, Y., Pan, Y., Cong, Y., Zhu, Y., Liu, H., Wan, Y., et al. (2022) Decoration of Defective Graphene with MoS2 Enabling Enhanced Anchoring and Catalytic Conversion of Polysulfides for Lithium-Sulfur Batteries: A First-Principles Study. Physical Chemistry Chemical Physics, 24, 29214-29222. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhou, G., Tian, H., Jin, Y., Tao, X., Liu, B., Zhang, R., et al. (2017) Catalytic Oxidation of Li2S on the Surface of Metal Sulfides for Li-S Batteries. Proceedings of the National Academy of Sciences, 114, 840-845. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
陈飞彪. 锂硫电池正极材料的制备及其电化学性能研究[D]: [博士学位论文]. 北京: 北京理工大学, 2015.
|
|
[7]
|
Tang, H., Li, W., Pan, L., Tu, K., Du, F., Qiu, T., et al. (2019) A Robust, Freestanding Mxene‐Sulfur Conductive Paper for Long‐Lifetime Li-S Batteries. Advanced Functional Materials, 29, Article ID: 1901907. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, H., Zhang, W., Xu, J. and Guo, Z. (2018) Advances in Polar Materials for Lithium-Sulfur Batteries. Advanced Functional Materials, 28, Article ID: 1707520. [Google Scholar] [CrossRef]
|
|
[9]
|
Qian, X., Jin, L., Zhao, D., Yang, X., Wang, S., Shen, X., et al. (2016) Ketjen Black-MnO Composite Coated Separator for High Performance Rechargeable Lithium-Sulfur Battery. Electrochimica Acta, 192, 346-356. [Google Scholar] [CrossRef]
|
|
[10]
|
Ji, X., Lee, K.T. and Nazar, L. (2009) A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium-Sulphur Batteries. Nature Materials, 8, 500-506.
|
|
[11]
|
Xiao, L., Cao, Y., Xiao, J., Schwenzer, B., Engelhard, M.H., Saraf, L.V., et al. (2012) A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life. Advanced Materials, 24, 1176-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, L., Hua, W., Wan, X., Feng, Z., Hu, Z., Li, H., et al. (2022) Design Rules of a Sulfur Redox Electrocatalyst for Lithium-Sulfur Batteries. Advanced Materials, 34, e2110279. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, Y., Liu, X., Zhu, Z., Zhong, Y., Bando, Y., Golberg, D., et al. (2018) The Role of Geometric Sites in 2D Materials for Energy Storage. Joule, 2, 1075-1094. [Google Scholar] [CrossRef]
|
|
[14]
|
Chang, C., Chen, W., Chen, Y., et al. (2021) Recent Progress on Two-Dimensional Materials. Acta Physico-Chimica Sinica, 37, Article ID: 2108017.
|
|
[15]
|
Andritsos, E.I., Lekakou, C. and Cai, Q. (2021) Single-Atom Catalysts as Promising Cathode Materials for Lithium-Sulfur Batteries. The Journal of Physical Chemistry C, 125, 18108-18118. [Google Scholar] [CrossRef]
|
|
[16]
|
Su, Y.S. and Manthiram, A. (2012) Lithium-Sulphur Batteries with a Microporous Carbon Paper as a Bifunctional Interlayer. Nature Communications, 3, Article No. 1166.
|
|
[17]
|
Liang, X., Rangom, Y., Kwok, C.Y., Pang, Q. and Nazar, L.F. (2016) Interwoven MXene Nanosheet/Carbon-Nanotube Composites as Li-S Cathode Hosts. Advanced Materials, 29, Article ID: 1603040. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
李耀营. MXene基复合正极材料的制备及锂硫电池性能研究[D]: [硕士学位论文]. 南宁: 广西大学, 2024.
|
|
[19]
|
Sim, E.S., Yi, G.S., Je, M., Lee, Y. and Chung, Y. (2017) Understanding the Anchoring Behavior of Titanium Carbide-Based Mxenes Depending on the Functional Group in Li S Batteries: A Density Functional Theory Study. Journal of Power Sources, 342, 64-69. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, H., Ma, S., Cai, H., Zhou, H., Huang, Z., Hou, Z., et al. (2019) Ultra-Thin Fe3C Nanosheets Promote the Adsorption and Conversion of Polysulfides in Lithium-Sulfur Batteries. Energy Storage Materials, 18, 338-348. [Google Scholar] [CrossRef]
|
|
[21]
|
Ghazi, Z.A., He, X., Khattak, A.M., Khan, N.A., Liang, B., Iqbal, A., et al. (2017) MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long‐Life Lithium-Sulfur Batteries. Advanced Materials, 29, Article ID: 1606817. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
, Du, Z.Z., et al. (2019) Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. Journal of the American Chemical Society, 141, 3977-3985.
|
|
[23]
|
Zhang, Q., Wang, Y., Seh, Z.W., Fu, Z., Zhang, R. and Cui, Y. (2015) Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium-Sulfur Batteries. Nano Letters, 15, 3780-3786. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
He, J., Hartmann, G., Lee, M., Hwang, G.S., Chen, Y. and Manthiram, A. (2019) Freestanding 1T MoS2/Graphene Heterostructures as a Highly Efficient Electrocatalyst for Lithium Polysulfides in Li-S Batteries. Energy & Environmental Science, 12, 344-350. [Google Scholar] [CrossRef]
|
|
[25]
|
Ren, Y., Wang, B., Liu, H., Wu, H., Bian, H., Ma, Y., et al. (2022) Cop Nanocages Intercalated Mxene Nanosheets as a Bifunctional Mediator for Suppressing Polysulfide Shuttling and Dendritic Growth in Lithium-Sulfur Batteries. Chemical Engineering Journal, 450, Article ID: 138046. [Google Scholar] [CrossRef]
|
|
[26]
|
Park, J., Yu, B., Park, J.S., Choi, J.W., Kim, C., Sung, Y., et al. (2017) Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li-S Battery. Advanced Energy Materials, 7, Article ID: 1602567. [Google Scholar] [CrossRef]
|
|
[27]
|
Lin, H., Zhang, S., Zhang, T., Cao, S., Ye, H., Yao, Q., et al. (2019) A Cathode-Integrated Sulfur-Deficient Co9S8 Catalytic Interlayer for the Reutilization of “Lost” Polysulfides in Lithium-Sulfur Batteries. ACS Nano, 13, 7073-7082. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, J., Zhang, W., Fan, H., Cheng, F., Su, D. and Wang, G. (2018) Promoting Lithium Polysulfide/Sulfide Redox Kinetics by the Catalyzing of Zinc Sulfide for High Performance Lithium-Sulfur Battery. Nano Energy, 51, 73-82. [Google Scholar] [CrossRef]
|
|
[29]
|
Kresse, G. and Hafner, J. (1993) Ab Initio Molecular Dynamics for Open-Shell Transition Metals. Physical Review B, 48, 13115-13118. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, J., Duan, S., Xu, J., Qiao, B. and Lou, Y. (2016) Catalysis by Supported Single Metal Atoms. Microscopy and Microanalysis, 22, 860-861. [Google Scholar] [CrossRef]
|
|
[31]
|
Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ghosh, A., Pal, S. and Sarkar, P. (2022) Rational Design of Two-Dimensional Porous Boron Phosphide as Efficient Cathode Material for Li and Na Ion Batteries: A First-Principles Study. The Journal of Physical Chemistry C, 126, 5092-5100. [Google Scholar] [CrossRef]
|
|
[33]
|
于佳慧. 锂硫电池正极材料的理论设计与研究[D]: [硕士学位论文]. 上海: 上海大学, 2022.
|
|
[34]
|
徐宇虹, 尹鸽平, 左朋建. 锂离子电池正极材料的第一性原理[J]. 化学进展, 2008, 20(11): 7.
|
|
[35]
|
Liang, H., Tian, F., Zeng, Z., Li, Y. and Wang, C. (2022) Two-Dimensional Metal-Free Compounds of BC4N and BC6N2 with Boron Atoms as Highly Efficient Catalytic Centers toward Sulfur Redox in Lithium-Sulfur Batteries. Applied Surface Science, 606, Article ID: 154773. [Google Scholar] [CrossRef]
|
|
[36]
|
吴宇, 王自立, 邓超. 基于第一性原理对于锂硫电池正极材料NiS掺杂改性的研究[J]. 哈尔滨师范大学自然科学学报, 2022, 38(6): 75-78.
|
|
[37]
|
Zhao, B., Ren, Z., Tan, G., Li, Z. and Xie, J. (2022) Defects on Li2S@Graphene Cathode Improves the Performance of Lithium-Sulfur Battery, a Theoretical Study. Acta Materialia, 226, Article ID: 117632. [Google Scholar] [CrossRef]
|
|
[38]
|
罗改霞, 文黎巍. 铜掺杂锂硫电池正极材料Li2S性能研究[J]. 湖南城市学院学报(自然科学版), 2015, 24(3): 112-113.
|
|
[39]
|
Cao, Z., Wu, H. and An, Y. (2025) Anchoring Ability and Catalytic Activity of B2C2 Monolayer as the Lithium-Sulfur Batteries Cathode Materials: A First Principle Calculation. Chemical Physics, 588, Article ID: 112484. [Google Scholar] [CrossRef]
|
|
[40]
|
Gao, D., Li, Y., Guo, Z., Liu, Z., Guo, K., Fang, Y., et al. (2021) Sc2CO-MXene/h-BN Heterostructure with Synergetic Effect as an Anchoring and Catalytic Material for Lithium-Sulfur Battery. Journal of Alloys and Compounds, 887, Article ID: 161273. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhang, X., Zhou, X., Wang, Y. and Li, Y. (2023) A Theoretical Study of the NbS2 Monolayer as a Promising Anchoring Material for Lithium-Sulfur Batteries. Physical Chemistry Chemical Physics, 25, 10097-10102. [Google Scholar] [CrossRef] [PubMed]
|