|
[1]
|
Chilunda, M.D., Talipov, S.A., Farooq, H.M.U. and Biddinger, E.J. (2025) Electrochemical Cycling of Liquid Organic Hydrogen Carriers as a Sustainable Approach for Hydrogen Storage and Transportation. ACS Sustainable Chemistry & Engineering, 13, 1174-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Terlouw, T., Rosa, L., Bauer, C. and McKenna, R. (2024) Future Hydrogen Economies Imply Environmental Trade-Offs and a Supply-Demand Mismatch. Nature Communications, 15, Article No. 7043. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wood, D.A. (2025) Critical Review of Development Challenges for Expanding Hydrogen-Fuelled Energy Systems. Fuel, 387, Article ID: 134394. [Google Scholar] [CrossRef]
|
|
[4]
|
Ariful Islam, M., Chowdhury, A., Jahan, I. and Farrok, O. (2025) Mitigation of Environmental Impacts and Challenges during Hydrogen Production. Bioresource Technology, 415, Article ID: 131666. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Shi, W., Shen, T., Xing, C., Sun, K., Yan, Q., Niu, W., et al. (2025) Ultrastable Supported Oxygen Evolution Electrocatalyst Formed by Ripening-Induced Embedding. Science, 387, 791-796. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, R., Yang, Y., Guo, J., Zhang, Q., Cao, F., Wang, Y., et al. (2025) Cathode Catalyst Layers Modified with Brønsted Acid Oxides to Improve Proton Exchange Membrane Electrolysers for Impure Water Splitting. Nature Energy, 10, 880-889. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhang, L., Chen, K., Li, L., Wei, X., Cai, X., Yu, Y., et al. (2025) One-Pot Synthesis of Ni-Co Nanoparticles@Ni0.19Co0.26P Nanowires Core/Shell Arrays on Ni Foam for Efficient Hydrogen Evolution Reaction at All pH Values. Chinese Chemical Letters. [Google Scholar] [CrossRef]
|
|
[8]
|
Yan, M., Sun, Y., Hu, Y., Luo, J., Li, Y., Shi, Y., et al. (2025) Breaking the Activity-Stability Trade-Off of RuO2 via a MnCo2O4 Electron Buffer and Heterointerface Engineering for Acidic Oxygen Evolution. Chemical Communications, 61, 17221-17224. [Google Scholar] [CrossRef]
|
|
[9]
|
Ma, L., Wei, Z., Meng, X., Wang, Y., Huang, X., Feng, M., et al. (2025) Coral-Like FeCoNi Alloy/Layered Double Hydroxides/Nickel Foam for Enhancing Mass Transfer in Oxygen Evolution Reactions. Chemical Engineering Journal, 504, Article ID: 158217. [Google Scholar] [CrossRef]
|
|
[10]
|
Chen, Y., Xiao, K., Wang, Z., Zhu, R. and Zou, J. (2024) Research Progress of Electrocatalytic Catalysts for Water Splitting. Petro-Chemical Industry, 53, 62-70.
|
|
[11]
|
Zeng, H., Chen, Z., Jiang, Q., Zhong, Q., Ji, Y., Chen, Y., et al. (2025) Sustainable and Cost-Efficient Hydrogen Production Using Platinum Clusters at Minimal Loading. Nature Communications, 16, Article No. 4314. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Feidenhans’l, A.A., Regmi, Y.N., Wei, C., Xia, D., Kibsgaard, J. and King, L.A. (2024) Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chemical Reviews, 124, 5617-5667. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Pu, Z., Amiinu, I.S., Cheng, R., Wang, P., Zhang, C., Mu, S., et al. (2020) Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 12, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wu, Z., Chen, F. and Wang, H. (2023) A Robust Nickel-Doped Ruthenium Dioxide Catalyst for Acidic Oxygen Evolution. Nature Materials, 21, 100-108.
|
|
[15]
|
Wang, Q., Ling, W., Cheng, Q., Yang, B. and Yang, H. (2025) Cl and Ru Synergistically Stabilized Pt Single Atoms on Partially Oxidized Ru Nanoparticles for Low-Loading Hydrogen Evolution Reaction and PEM Water Electrolysis. Angewandte Chemie International Edition, 64, e202506619.
|
|
[16]
|
Yang, C., Cheng, Q., Wang, G. and Yang, H. (2025) Switching Oxygen Evolution Reaction Pathway via Sulfur-Doping in IrO₂ for Low-Iridium Water Electrolysis. Advanced Materials, 37, Article ID: 2507560.
|
|
[17]
|
Zhang, Z. and Fei, S. (2025) NiMoO₄/NiWO4 Heterostructure on Nickel Foam as a Highly Efficient and Durable Bifunctional Electrocatalyst for Overall Water Splitting. Applied Catalysis B: Environment and Energy, 358, Article ID: 125815.
|
|
[18]
|
Zhang, Y., Liao, L., Yu, F., Zhou, H. and Zhang, Y. (2025) Visualizing Dynamic Competitive Reconstruction of Trimetallic Hybrid Catalysts for Stable Hybrid Water Electrolysis at Large Current Density. Energy and Environmental Science, 18, 7695-7707.
|
|
[19]
|
Baskaran, S., Mageswari, G.P., Anjana, J. and Muthukrishnan, A. (2026) Tungsten Nitride on a Porous Carbon Support as a Highly Durable Electrocatalyst for the Hydrogen Evolution Reaction. Energy Advances. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, X., Wang, T., Yu, Y., You, J., Hu, F. and Zhao, D. (2024) Enhancing the Efficiency and Stability of Electrocatalysts for Water Splitting: Nico-Ldh Nanosheet Arrays at High Current Density. CrystEngComm,26, 5144-5151. [Google Scholar] [CrossRef]
|
|
[21]
|
Yu, X., Zhang, M., Dai, L., Noor, S., Liu, Y., Yang, C., et al. (2025) Surveying of Electrocatalytic Performance on Water Splitting to Metal Stoichiometry in Iron-Cobalt and Nickel Ternary Transition Metal Phosphides. Journal of Power Sources, 630, Article ID: 236148. [Google Scholar] [CrossRef]
|
|
[22]
|
Nagappan, S., Yang, S., Adhikari, A., Patel, R. and Kundu, S. (2023) A Review on Consequences of Flexible Layered Double Hydroxide-Based Electrodes: Fabrication and Water Splitting Application. Sustainable Energy & Fuels, 7, 3741-3775. [Google Scholar] [CrossRef]
|
|
[23]
|
Sarkar, T., Ghosh, S., Annamalai, M., Patra, A., Stoerzinger, K., Lee, Y., et al. (2016) The Effect of Oxygen Vacancies on Water Wettability of Transition Metal Based Srtio3 and Rare-Earth Based Lu2o3. RSC Advances, 6, 109234-109240. [Google Scholar] [CrossRef]
|
|
[24]
|
Podrojková, N., Gubóová, A., Streckova, M. and Oriňaková, R. (2025) A Study of the Mechanism of the Hydrogen Evolution Reaction Catalysed by Molybdenum Phosphide in Different Media. Materials Today Sustainability, 31, Article ID: 101141. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, Y., et al. (2023) Transition Metal Phosphides as High-Performance Electrocatalysts for Hydrogen Evolution Reaction: From Mechanism to Rational Design. Advanced Functional Materials, 33, Article ID: 2213658.
|
|
[26]
|
Wang, T., Li, J., Deng, Y., et al. (2025) Recent Progress of Crystalline-Amorphous Heterointerface: Design, Mechanism and Application. Coordination Chemistry Reviews, 516, Article ID: 216021.
|
|
[27]
|
Xiao, Z., Yang, M., Wang, J., Xu, Z., Zhang, S., Tang, A., et al. (2022) FeNiP/MoOx Integrated Electrode Grown on Monocrystalline NiMoO4 Nanorods with Multi-Interface for Accelerating Alkaline Hydrogen Evolution Reaction. Applied Catalysis B: Environmental, 303, Article ID: 120913. [Google Scholar] [CrossRef]
|
|
[28]
|
Barik, S., Kharabe, G.P., Illathvalappil, R., Singh, C.P., Kanheerampockil, F., Walko, P.S., et al. (2023) Active Site Engineering and Theoretical Aspects of “Superhydrophilic” Nanostructure Array Enabling Efficient Overall Water Electrolysis. Small, 19, Article ID: 2304143. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lyu, C., Cheng, J., Wu, K., Wu, J., Wang, N., Guo, Z., et al. (2022) Interfacial Electronic Structure Modulation of CoP Nanowires with FeP Nanosheets for Enhanced Hydrogen Evolution under Alkaline Water/Seawater Electrolytes. Applied Catalysis B: Environmental, 317, Article ID: 121799. [Google Scholar] [CrossRef]
|
|
[30]
|
Yin, X., Yang, L. and Gao, Q. (2020) Core-Shell Nanostructured Electrocatalysts for Water Splitting. Nanoscale, 12, 15944-15969. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, M., Zhang, M., Chang, X., Ding, X. and Mu, J. (2022) NiFe Double Hydroxide Coated on Sulfur-Modified NiMoO4 Nanorods as Core-Shell Structured Catalysts for the Oxygen Evolution Reaction. Sustainable Energy & Fuels, 6, 5514-5520. [Google Scholar] [CrossRef]
|
|
[32]
|
Cebollada, F., González, J.M. and Adeva, P. (1993) Microstructural Study of the Crystallization Product of the Co100−xPx Amorphous System. Journal of Materials Research, 8, 105-111. [Google Scholar] [CrossRef]
|