|
[1]
|
周一帆, 张勇勤, 孟长海, 等. 绝经后女性肌少症患病率及影响因素分析[J]. 郑州大学学报(医学版), 2025, 60(5): 723-726.
|
|
[2]
|
李秀秀, 麻新灵, 黎依技, 等. 绝经后骨质疏松症危险因素研究进展[J]. 中国妇幼保健, 2025, 40(7): 1354-1358.
|
|
[3]
|
吴李红. 绝经后女性骨质疏松骨折危险因素分析及预测模型构建[D]: [硕士毕业论文]. 成都: 成都医学院, 2024.
|
|
[4]
|
LeBoff, M.S., Greenspan, S.L., Insogna, K.L., Lewiecki, E.M., Saag, K.G., Singer, A.J., et al. (2022) The Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 33, 2049-2102. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cirovic, A., Jadzic, J., Djukic, D., Djonic, D., Zivkovic, V., Nikolic, S., et al. (2022) Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcified Tissue International, 111, 457-465. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Matthias, P., Yannick, P., Patrick, S., et al. (2021) Dual-Energy X-Ray Absorptiometry Does Not Represent Bone Structure in Patients with Osteoporosis: A Comparison of Lumbar Dual-Energy X-Ray Absorptiometry with Vertebral Biopsies. Spine, 46, 861-866.
|
|
[7]
|
Fleps, I. and Morgan, E.F. (2022) A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning. Current Osteoporosis Reports, 20, 309-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hong, N., Whittier, D.E., Glüer, C. and Leslie, W.D. (2024) The Potential Role for Artificial Intelligence in Fracture Risk Prediction. The Lancet Diabetes & Endocrinology, 12, 596-600. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, D., Garrett, J.W., Perez, A.A., Zea, R., Binkley, N.C., Summers, R.M., et al. (2024) Fully Automated CT Imaging Biomarkers for Opportunistic Prediction of Future Hip Fractures. British Journal of Radiology, 97, 770-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Priego, C.A.G., Nava, A.B., Sánchez, M.L., et al. (2025) Predictive Capacity of Fracture Risk Assessment Tools: Overview of Systematic Reviews. Osteoporosis International, 36, 1535-1544. [Google Scholar] [CrossRef]
|
|
[11]
|
Chauhan, A.S., Singh, R., Priyadarshi, N., Twala, B., Suthar, S. and Swami, S. (2024) Unleashing the Power of Advanced Technologies for Revolutionary Medical Imaging: Pioneering the Healthcare Frontier with Artificial Intelligence. Discover Artificial Intelligence, 4, Article No. 58. [Google Scholar] [CrossRef]
|
|
[12]
|
Kim, Y., Kim, Y., Park, J., Kim, B.W., Shin, Y., Kong, S.H., et al. (2024) A CT-Based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture. Radiology, 310, e230614. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kong, S.H. (2025) Incorporating Artificial Intelligence into Fracture Risk Assessment: Using Clinical Imaging to Predict the Unpredictable. Endocrinology and Metabolism, 40, 499-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bisazza, K.T., Nelson, B.B., Sikes, K.J., Nakamura, L. and Easley, J.T. (2023) Computed Tomography Provides Improved Quantification of Trabecular Lumbar Spine Bone Loss Compared to Dual-Energy X-Ray Absorptiometry in Ovariectomized Sheep. JBMR Plus, 7, e10807. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jimenez, C.S., Saldarriaga, S., Chaput, D.C., et al. (2020) Dual-Energy Estimates of Volumetric Bone Mineral Densities in the Lumbar Spine Using Quantitative Computed Tomography Better Correlate with Fracture Properties When Compared to Single-Energy BMD Outcomes. Bone, 130, Article 115100. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Andresen, J.R., Haider, T. and Andresen, R. (2025) Trabecular Bone Density Measurement in Hounsfield Units in the Proximal Femur for Osteoporosis Assessment and Fracture Risk Determination. Orthopadie (Heidelb).
|
|
[17]
|
Li, X.L., Xu, Y.Y., Lin, W.L. and Fan, Y. (2020) The Comparison of Bone Mineral Density of Femoral Head between Non-Hip Fracture Side and Hip Fracture Side. Scientific Reports, 10, Article No. 13015. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pu, X., Liu, B., Wang, D., Xiao, W., Liu, C., Gu, S., et al. (2024) Opportunistic Use of Lumbar Computed Tomography and Magnetic Resonance Imaging for Osteoporosis Screening. Osteoporosis International, 35, 1625-1631. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, X., Pan, S., Liu, W., Wang, Y., Yun, S. and Xu, Y. (2024) Vertebral HU Value and the Pectoral Muscle Index Based on Chest CT Can Be Used to Opportunistically Screen for Osteoporosis. Journal of Orthopaedic Surgery and Research, 19, Article No. 335. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chen, B., Zou, S.P., Wang, Y.H., et al. (2023) Regional CT Value in Prediction of Proximal Femoral Fracture. China Journal of Orthopaedics and Traumatology, 36, 1142-1146.
|
|
[21]
|
Ark, R. and Bukhari, M. (2021) POS0511 Using Hip Structural Analysis Measurements to Predict Fracture in Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 80, 488-489. [Google Scholar] [CrossRef]
|
|
[22]
|
Ma, Y., Ge, Y., Guo, Z., Su, Y., Wang, C., Wang, Q., et al. (2025) Hip Structural Analysis Parameters Are Not Associated with the Risk of Postmenopausal Female Second Hip Fracture: A Retrospective Study. BMC Musculoskeletal Disorders, 26, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nishiyama, K.K., Ito, M., Harada, A. and Boyd, S.K. (2014) Classification of Women with and without Hip Fracture Based on Quantitative Computed Tomography and Finite Element Analysis. Osteoporosis International, 25, 619-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Villamor, E., Monserrat, C., Del Río, L., Romero-Martín, J.A. and Rupérez, M.J. (2020) Prediction of Osteoporotic Hip Fracture in Postmenopausal Women through Patient-Specific FE Analyses and Machine Learning. Computer Methods and Programs in Biomedicine, 193, Article 105484. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhou, B., Wang, J., Yu, Y.E., Zhang, Z., Nawathe, S., Nishiyama, K.K., et al. (2016) High-Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) Can Assess Microstructural and Biomechanical Properties of Both Human Distal Radius and Tibia: Ex Vivo Computational and Experimental Validations. Bone, 86, 58-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, X.S., Zhang, X.H., Sekhon, K.K., Adams, M.F., McMahon, D.J., Bilezikian, J.P., et al. (2010) High-Resolution Peripheral Quantitative Computed Tomography Can Assess Microstructural and Mechanical Properties of Human Distal Tibial Bone. Journal of Bone and Mineral Research, 25, 746-756. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jaiswal, R., Pivodic, A., Zoulakis, M., Axelsson, K.F., Litsne, H., Johansson, L., et al. (2025) Prediction of Hip Fracture by High-Resolution Peripheral Quantitative Computed Tomography in Older Swedish Women. Journal of Bone and Mineral Research, 40, 779-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Freyer, M., Ale, A., Schulz, R.B., Zientkowska, M., Ntziachristos, V. and Englmeier, K. (2010) Fast Automatic Segmentation of Anatomical Structures in X-Ray Computed Tomography Images to Improve Fluorescence Molecular Tomography Reconstruction. Journal of Biomedical Optics, 15, Article 036006. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sarhan, A.M., Gobara, M., Yasser, S., Elsayed, Z., Sherif, G., Moataz, N., et al. (2024) Knee Osteoporosis Diagnosis Based on Deep Learning. International Journal of Computational Intelligence Systems, 17, Article No. 241. [Google Scholar] [CrossRef]
|
|
[30]
|
Aamir, M., Bhatti, A.U., Rahman, Z., et al. (2025) Deep Learning in Medical Signal and Image Processing. IGI Global.
|
|
[31]
|
晏乘曦, 王玲, 姚丁华, 等. CT定量测量髋部骨折患者髋部肌肉、脂肪面积及CT值的可重复性、可信度分析[J]. 山东医药, 2018, 58(16): 58-60.
|
|
[32]
|
Li, Y., Jiang, R., Yu, H., Hu, Y., Li, Y. and Lu, J. (2025) The Size and Density of Muscle and Subcutaneous Adipose Tissue Are Independently Associated with the Risk of Mortality in Older Women with Different Hip Fracture Types. Journal of Orthopaedic Surgery and Research, 20, Article No. 834. [Google Scholar] [CrossRef]
|
|
[33]
|
梁译文, 刘敏, 刘愉勤, 等. 髋部肌肉面积、内脏脂肪面积与老年骨质疏松症患者DXA骨强度参数的关系及对髋部骨折的预测价值[J]. 中国现代医学杂志, 2024, 34(24): 1-7.
|
|
[34]
|
Malkov, S., Cawthon, P.M., Peters, K.W., Cauley, J.A., Murphy, R.A., Visser, M., et al. (2015) Hip Fractures Risk in Older Men and Women Associated with DXA-Derived Measures of Thigh Subcutaneous Fat Thickness, Cross-Sectional Muscle Area, and Muscle Density. Journal of Bone and Mineral Research, 30, 1414-1421. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Reid, J., McCrosson, M., Tobin, J., Rivas, G., Rothwell, S., Hartsock, L., et al. (2024) Opportunistic CT Screening Demonstrates Increased Risk for Peri-Articular Fractures in Osteoporotic Patients. Orthopaedics & Traumatology: Surgery & Research, 110, Article 103935. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
李加根. 基于多种机器学习算法探究铁死亡在绝经后骨质疏松中的作用机制[D]: [硕士毕业论文]. 南宁: 广西中医药大学, 2025.
|
|
[37]
|
Lee, J. and Chan, R. (2013) SU‐E‐J‐171: Variation of the Hounsfield Unit on CT Scanning Parameters and Reconstruction and Its Effect on Dose Calculations. Medical Physics, 40, 190. [Google Scholar] [CrossRef]
|
|
[38]
|
Zacherl, M.J., Simenhandra, A., Lindner, M., Bartenstein, P., Todica, A., Boening, G., et al. (2023) The Assessment of Left Ventricular Volume and Function in Gated Small Animal 18F-FDG PET/CT Imaging: A Comparative Study of Three Commercially Available Software Tools. EJNMMI Research, 13, Article No. 75. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tong, X., Wang, S., Zhang, J., Fan, Y., Liu, Y. and Wei, W. (2024) Automatic Osteoporosis Screening System Using Radiomics and Deep Learning from Low-Dose Chest CT Images. Bioengineering, 11, Article 50. [Google Scholar] [CrossRef] [PubMed]
|