过伸型胫骨平台骨折的研究进展
Research Progress on Hyperextension Tibial Plateau Fracture
摘要: 过伸型胫骨平台骨折(HETPF)是一种少见(发生率3%~18%)但严重的胫骨平台骨折亚型,由膝关节过伸位遭受轴向、内翻/外翻及旋转多向复合暴力所致,具有特征性“对角线型损伤”模式,常合并韧带、神经血管、半月板等软组织损伤,致残率高。本文综述其研究进展:损伤机制明确为轴向力、内翻/外翻力与旋转力的协同作用;分类领域方案众多但尚无统一标准,现有分型对合并软组织损伤及术后残余不稳的关注不足;治疗核心为骨折复位固定与合并损伤的个体化处理,目前手术入路及复位固定技术已逐步优化,但仍存在内固定器械针对性不足、部分合并损伤恢复效果欠佳等临床难题,有待进一步深入研究完善。
Abstract: Hyperextension tibial plateau fracture (HETPF) is a rare (incidence rate 3%~18%) but severe subtype of tibial plateau fracture. It is caused by combined multi-directional forces including axial, varus/valgus and rotational forces acting on the knee joint in the hyperextended position, presenting a characteristic “diagonal injury” pattern. It is often complicated by soft tissue injuries, such as ligaments, neurovascular structures and menisci, with a high disability rate. This article reviews its research progress: the injury mechanism is defined as the synergistic effect of axial force, varus/valgus force and rotational force; there are numerous classification schemes in the field but no unified standard, and existing classifications insufficiently focus on combined soft tissue injuries and postoperative residual instability; the core of treatment is fracture reduction and fixation and individualized management of combined injuries. At present, surgical approaches and reduction-fixation techniques have been gradually optimized, but there are still clinical challenges, such as insufficient pertinence of internal fixation devices and poor recovery effect of some combined injuries, which require further in-depth research and improvement.
文章引用:刘力, 孙会博, 马儒彬, 王海滨. 过伸型胫骨平台骨折的研究进展[J]. 临床个性化医学, 2026, 5(1): 600-610. https://doi.org/10.12677/jcpm.2026.51083

1. 引言

随着影像学技术的不断发展,膝关节损伤特征的诊断愈发清晰,膝关节前部损伤近年来受到广泛关注,尤其以膝关节过伸导致的胫骨平台前侧损伤最为突出。当膝关节处于过伸位时,遭受轴向或水平方向暴力,易引发胫骨平台前部塌陷及后部软组织结构损伤,此类骨折被定义为过伸型胫骨平台骨折(HETPF)。在所有胫骨平台骨折(TPF)中,HETPF发生率仅3%~18% [1]-[3],但其常伴随韧带、神经血管等软组织损伤,导致膝关节不稳、功能恢复差,致残率居高不下,严重影响患者身心健康,同时给家庭和社会带来沉重负担。近年来,国内外学者针对HETPF开展了持续深入的研究,本文拟对其损伤机制、分类进展、合并损伤特点及治疗策略进行系统综述,为临床实践提供参考。

2. HETPF的损伤机制与分类

2.1. 损伤机制

膝关节伸直 < 0˚时定义为过伸位,此时若遭受轴向(自上而下)或水平方向(自前向后)直接暴力,易导致胫骨平台前侧压缩骨折、后部软组织牵张损伤,严重时可出现后侧干骺端皮质张力性撕裂,进而使胫骨平台后倾角(PTSA)减小甚至逆转。这类联合损伤具有特征性的“对角线损伤”模式,即应力与损伤结构呈对角线分布[4]。根据该机制,前内侧髁骨折易合并后外侧复合体(PLC)损伤、腓骨头骨折(PFAF)及交叉韧带损伤;前外侧髁骨折常伴随后内侧复合体、内侧副韧带(MCL)损伤;前侧双髁骨折则多引发后部软组织损伤(如后关节囊破裂、前后交叉韧带损伤)及后侧皮质张力性断裂[1]。研究[5]表明,前侧单髁骨折更易出现典型“对角线损伤”。

胫骨平台骨折线多发生于皮质厚度过渡区,内侧髁骨皮质较厚,因此HETPF在外侧髁发生率更高[6]。单髁骨折多由运动损伤等低能量创伤引起,常合并部分后部骨折,内翻或外翻力是主要致伤因素;双髁骨折由高能量创伤导致,过伸力作用占主导,后部骨折更严重[7]。此外,双髁骨折中完整型后部骨折与小型前部骨折存在关联,可能由过伸状态下膝关节承受轴向力所致,进而引发后部完整型剪切骨折、前部压缩骨折,或导致严重后部软组织损伤而无明确后部骨折[8]

Hanne Bartels等[9]研究发现,轴旋转(内旋/外旋)是TPF的常见特征,其中内旋占42.8%、外旋27.3%,可能与重度软组织损伤(尤其PLC损伤)相关。尽管尚无直接证据表明膝关节旋转参与HETPF发生,但过伸双髁型胫骨平台骨折(HEBTP)中PFAF发生率较高,推测与损伤时膝关节同时承受旋转力与过伸力相关——附着于腓骨近端的韧带兼具抗旋转和抗过伸功能,易发生撕脱骨折[10],因此旋转力也是HETPF的重要致伤因素之一。

2.2. 分类进展

Schatzker分型是TPF最常用的分型方法,能较好反映受伤机制,但缺乏对过伸型骨折的针对性描述。Anwar等[11]将胫骨平台分为内侧柱和外侧柱,Luo等[12]提出“三柱(内侧柱、外侧柱、后柱)”理念,强调后柱对膝关节稳定的重要性,但均未详细描述过伸性骨折特征。Sheehan等[13]根据冠状面骨折部位将过伸损伤分为单纯过伸型、过伸内翻型、过伸外翻型;Gonzalez等[14]将双髁型TPF分为单纯型、内翻型和外翻型,但“双髁型”无法体现前后方向的精确骨折部位。Zhao等[15]根据胫骨平台内侧角(MTPA)角度变化将HEBTP分为过伸内翻型(MTPA < 85˚)、单纯过伸型(85˚ ≤ MTPA ≤ 90˚)及过伸外翻型(MTPA > 90˚)。

2018年修订的AO分类细化了胫骨平台前后亚区域,能精准描述“前外侧”或“前内侧”骨折位置,对矢状位骨折也有对应描述,但缺乏矢状位骨折详细特征,且复杂区域损伤描述繁琐,应用效果有限[16]。同年Kfuri基于膝关节三维解剖修订了原Schatzker分类,细化了解剖区域,增添“赤道线”和“骨折平面”概念,可匹配过伸骨折前部损伤特征,但未提出HETPF具体分型[17]。Chiba等[18]将前外侧或前内侧压缩骨折分为小型和大型。Zhang等[10]将内侧柱分为前内侧象限(AM)和后内侧象限(PM),外侧柱分为前外侧象限(AL)和后外侧象限(PL),提出HETPF新分型:A组为仅累及前外侧或前内侧象限的压缩骨折;B组为同时累及前部两个象限及平台前部中央区域,并根据后部骨折块分离范围分为部分性和完全性骨折,完全性骨折进一步分为分离亚型和完整亚型。

Yao等[19]通过“四柱九区”分类法,在冠状面上将HETPF分为单纯过伸型、过伸内翻型、过伸外翻型、过伸双髁型;矢状面上分为单纯塌陷型(1型)、劈裂延伸至后皮质无移位型(2型)、劈裂延伸至后皮质伴明显移位型(3型)。王延嗣等[20]依照四象限解剖分区,明确过伸内翻双髁TPF的5种亚型形态特征(基于前侧象限损伤与后柱骨折线位置差异),并总结后柱牵张骨折线的共性影像表现:均呈“后内至后外不规则走行,内侧骨折点低、外侧高”。徐强等[21]通过分析51例过伸外翻型胫骨平台骨折(HEVTPF)患者CT资料,建立以移位程度为核心的分型体系,分为I、II、III度,每一度包含两种形态特征,I度移位最轻(仅波及外前侧关节面周围骨质压缩),II度表现为前负重区塌陷且波及后关节面,III度移位最重(前负重区塌陷伴后关节面骨折翻转)。

现有分型尚未充分重视合并软组织损伤及骨性固定后的潜在残余不稳。尽管部分研究未将残余不稳列为并发症,但它可能是创伤性骨关节炎快速进展的重要原因[22],因此未来分型需进一步整合骨折形态、软组织损伤及解剖参数等多方面因素。

3. HETPF合并损伤的特点

3.1. 韧带与重要复合体损伤

Jiang等[5]研究发现,25例非脱位HETPF患者中,PTSA变化小于10˚者均无合并韧带损伤,而PTSA变化超过10˚时,韧带损伤风险显著增加。Bu等[23]报道HEBTP患者前交叉韧带(ACL)与后交叉韧带(PCL)损伤发生率分别为41.2%和23.5%。不同研究显示,膝关节过伸时韧带损伤顺序存在差异:Kennedy等[24]尸体研究发现,过伸时ACL最先断裂,过伸30˚后后关节囊及PCL断裂,过伸50˚后动脉受损;Schenck等[25]则发现,过伸加载速率较快时导致PCL撕脱,加载速率较慢时导致PCL中段撕裂,且ACL对加载速率的敏感性低于PCL;Norwood等[26]认为,膝关节被迫过伸时,髁间嵴受压首先导致ACL损伤,直至ACL所有束均断裂后才会出现PCL损伤;Liu等[27]研究发现,14例Schatzker IV型骨折合并过伸损伤时均未发生ACL损伤;Bizot等[28]在膝关节模型上研究发现,过伸23˚即可导致PCL和PLC结构损伤,但通常不合并ACL的损伤。此外,Tomás-Hernández等[29]研究表明,胫骨前内侧缘小骨折块与PCL断裂密切相关,而骨折块较大时PCL通常保持完整,目前HETPF导致ACL/PCL损伤的具体影响因素仍需进一步研究明确。

PLC是维持膝关节后外侧稳定性的重要结构,核心组成包括腓侧副韧带(FCL)、腘腓韧带(PFL)和腘肌腱[30]。Wang等[31]研究发现,无后柱骨折的过伸内翻型胫骨平台骨折(HVTPF)中,骨折面积较小强烈提示合并PLC损伤,且PLC损伤常与PCL损伤并存,旋转角越大,PLC损伤风险越高。Luo等[32]提出的新三柱分类中,所有IV型TPF均由内翻变形力导致,外侧韧带结构受牵拉易发生撕裂,而内侧韧带因靠近旋转铰链得以保留,但Zhang等[30]研究发现5例HVTPF患者中3例出现重度MCL撕裂,提示IV型TPF患者也可能受到内侧直接暴力影响。“弓形征”是由外侧副韧带(LCL)、股二头肌腱及PFL组成的弓形复合体牵拉导致的PFAF,与PCL或PLC损伤相关[33]。Herbst等[34]研究发现,HVTPF患者中51.1%合并PFAF,51.9%合并LCL损伤,59.6%合并PCL损伤。

3.2. 神经血管束损伤

膝关节损伤中腘动脉损伤的原因包括骨折块压迫、直接钝性损伤及牵张损伤,牵张损伤可能导致广泛血管内皮损伤,引发血管功能障碍。过伸内翻型损伤易导致前内侧平台压缩骨折,同时后部结构受到过度牵拉,增加腘动脉及腓总神经损伤风险[35]。Zhao等[15]研究发现,HEBTP患者腘血管损伤发生率达12%,腓总神经损伤发生率达16%;杜守超等[36]在19例HEBTP患者中发现,4例合并腘动脉损伤(21.1%),5例合并腓总神经损伤(26.3%);Bu等[23]报道HEBTP组腘动脉损伤发生率为29.4%,显著高于非HEBTP组(4.76%)。

3.3. 半月板及关节囊损伤特点

HETPF合并半月板损伤以半月板前角损伤为主,主要由股骨髁直接撞击或平台骨折块移位导致牵拉、撕裂损伤;关节囊损伤常表现为前壁撕裂伤、牵拉伤,而后侧张力性骨折骨皮质可直接损伤后侧关节囊。既往研究显示,HETPF合并半月板损伤的发生率约为36%~44% [5] [36]。Sharif等[37]研究发现,中央外侧股骨髁和中央胫骨平台的骨髓水肿与外侧半月板撕裂显著相关,后内侧股骨髁水肿与内侧半月板撕裂显著相关。

4. 胫骨平台过伸性骨折的治疗

4.1. 胫骨平台过伸骨折的复位与固定治疗

4.1.1. 手术入路

对于仅涉及前内侧或前外侧平台的骨折患者,通常采用前内侧或前外侧入路;双髁骨折患者最常用前内侧或后内侧联合前外侧入路[38]。前内侧压缩骨折常合并PFAF,需额外采用外侧入路固定腓骨头;前外侧压缩骨折合并内侧平台骨折时,一般采用前外侧联合内侧入路[39]。也有学者提出根据胫骨后皮质移位程度选择手术入路:无移位或移位极小(≤2 mm)时采用改良前中线入路;移位较大(>2 mm)时采用前外侧联合后内侧双切口入路。改良前中线入路切口偏向髌外侧,可降低隐神经分支损伤风险,减少膝关节感觉障碍。

Zeng等[36]研究表明,对于冠状面、矢状面及水平面后皮质位移 < 2 mm的HEBTP患者,采用改良前正中入路可获得良好显露效果,术后功能恢复佳,平均Rasmussen评分为27.2分(范围23~29分);Zhao等[15]也证实改良前中线入路对后侧移位较轻的HEBTP是安全有效的治疗选择。Zhang等[40]研究显示,Schatzker V/VI型HETPF采用后内侧联合前外侧入路相比前内侧联合前外侧入路,术中内侧髁更易暴露,术后疼痛较轻,在改善膝关节功能方面更具优势;王利兵等[41]也发现后内侧联合前外侧入路具有手术时间短、术中出血少、术后远期膝关节功能恢复更优的特点,若患者需更早负重,可权衡选择前内侧联合前外侧入路。

4.1.2. 复位策略

HETPF的复位目标是使骨折块恢复正常解剖位置,恢复正常PTSA,内侧平台骨折患者还需恢复MPTA。研究[42]表明,正常人内侧PTSA (MPTSA)和外侧PTSA (LPTSA)分别为4˚~8˚和5˚~10˚,PTSA过小会增加ACL受力,严重时可致ACL损伤,影响膝关节稳定性;MPTA异常可导致内外翻畸形,增加骨关节炎发生风险。

若HETPF合并后侧张力骨折,建议先处理后皮质张力性断裂的铰链点,再通过抬高前侧平台纠正干骺端前侧压缩,恢复正常矢状面力线[43]。后侧张力性骨折通常无粉碎,皮质对合可靠,复位难度低,且后侧干骺端骨折钢板螺钉临时固定可形成铰链点,便于前侧抬高,减少胫骨近端矢状面力线恢复过程中的平移畸形。复位胫骨平台关节面时,可在皮质骨上开窗,用骨膜剥离子抬起塌陷的关节面,随后采用自体髂骨移植或人工骨填充骨缺损腔;对于劈裂塌陷性骨折,先分离劈裂骨块,再进一步抬起关节面[36]。也可在前侧放置椎板撑开器辅助恢复后倾角(不适用于严重骨缺损患者),或在近端骨块内平行于关节面、从前往后植入多枚克氏针,拔撬复位直至后倾角恢复,再将其打入后皮质,最终通过钢板复位恢复矢状面后倾角[44]

需注意,撬拨复位仅适用于内侧平台复位,外侧平台多为局部塌陷、关节面粉碎、骨质疏松,克氏针把持力不足,需改用骨刀或顶棒整体抬起复位[44]。王耀宗等[45]采用悬垂体位法,将膝关节屈曲近100˚后利用自然复位趋势联合骨刀撬拨复位,适用于青壮年患者,但临床适用范围有限(未纳入骨质疏松患者)。Chouhan等[46]通过后内侧放置支点钢板,用拉力螺钉复位,虽所有患者无复位丢失及再塌陷,但存在钢板塑形角度难把控、螺钉把持力有限的问题。亢世杰等[47]采用双反牵引联合钢针撬拨复位及钢板内固定治疗HEBTP,相比切开复位内固定,能缩短受伤至手术时间、减少切口长度及失血量、减轻术后早期疼痛,且在骨折愈合、膝关节功能等方面疗效相当。

关节镜辅助可评估半月板及韧带损伤并进行同步治疗,优化关节面复位效果,但仅适用于部分关节骨折(Schatzker I、II、III型),相关研究表明该技术的影像学及功能优良率达90%,并发症发生率仅为9% [48]。导航技术可辅助复杂骨折(Schatzker IV、V、VI型)的复位,指导力线矫正及内植物定位,仅增加5~10分钟手术时间,且不增加并发症风险[49]。关节面塌陷复位后形成的骨缺损大于1 cm2时,通常建议植骨以增强固定,避免再次塌陷,常用植骨材料包括自体髂骨、人工骨、同种异体骨[50]

4.1.3. 固定策略

目前针对HETPF的固定尚未形成普遍共识,临床上缺乏专门针对平台前缘的内固定系统。对于复位后的平台前部固定,一般采用胫骨近端前内侧/前外侧锁定钢板,但髌腱遮挡及锁定钢板放置空间有限,导致髌腱后方复位的前部塌陷区存在“空白区”,仅采用标准锁定板可能无法提供足够支撑。Sun等[38]设计了预塑型边缘钢板,将其置于髌腱后方、锁定钢板上方,螺钉平行于关节面固定,可为“空白区”提供额外支撑,提高整体固定稳定性;Campbell等[51]采用骨内支撑钢板技术,将小型或微型接骨板预塑形(折弯90˚~95˚),插入平台关节面下方的骨组织内,通过钢板远端螺钉完成固定,该技术能为塌陷骨块提供成角固定支撑,对复位后的关节面进行微调,具有力线维持效果佳、骨折愈合率高、并发症发生率低等优势。

当前内侧皮质骨折延伸至前外侧,导致胫骨平台整体粉碎塌陷时,现有固定方式常无法满足需求,易出现内侧平台关节面抬高不足、后倾角恢复不佳等问题。相关研究将内固定材料设计呈弧形、半环形甚至环形,沿关节边缘紧贴关节软骨固定,将粉碎性骨折块固定于关节面主骨折块或其他稳定骨折块,形成完整髁部,再通过自身干骺端支撑或其他干骺端钢板桥接,将髁部与骨干固定,同时将钢板固定于前内侧缘,螺钉置于关节面下方并结合锁定板的成角稳定性,形成“筏式固定”技术及关节软骨交叉固定技术,可为前内侧缘粉碎性骨折块提供强大力学支撑[52];梁钟帅等[53]设计了新型解剖万向锁定钢板,可直接置于胫骨前内侧,垂直骨折线固定,顶端弧形结构类似“环形钢板”,固定更稳固,但目前尚未在临床中应用。

姜伟等[54]针对26例过伸外翻型胫骨平台骨折患者,采用外侧锁定板固定联合双拉力螺钉前后位固定,可有效防止关节面再次塌陷,直接固定后外侧骨块,术后效果良好。尚晋等[55]研究发现,老年过伸型胫骨平台骨折采用双钢板或三钢板内固定均可获得满意疗效,双钢板内固定具有创伤小、术中出血少、术后早期疼痛轻等优势,适合多数老年患者(尤其软组织条件差、骨质疏松明显者);三钢板内固定仅适用于骨折粉碎严重(后内侧骨块移位显著)、需更强短期稳定性的病例,但其远期优势不突出。对于老年骨关节炎患者,全膝关节置换术可作为挽救方案,为避免皮肤并发症及感染风险,手术需在软组织愈合后实施,部分学者主张待骨损伤愈合后再进行[56]

基于上述骨折类型、后移位程度、软组织损伤情况及骨折稳定性等多方面差异,临床需制定个体化治疗方案,具体决策逻辑见图1

Figure 1. Treatment algorithm for HETPF

1. HETPF治疗方案决策树

4.2. 胫骨平台过伸骨折合并损伤的处理

临床上除常规进行膝关节MRI检查评估软组织损伤情况外,建议术中膝关节复位固定后检查膝关节稳定性,根据术中情况判定是否对软组织结构进行修复。需注意,术中PTSA矫正过度会增加ACL受力,导致ACL损伤或ACL重建再损伤风险增加,PTS > 12˚时,ACL重建再损伤风险增加5~12倍[57];MPTSA减小或LPTSA/MPTSA升高会导致PCL损伤风险增加,MPTSA < 3.9˚时发生PCL损伤风险极高[58],因此术中PTSA应纠正至正常值,避免过度抬高前侧平台或支撑不足。

ACL损伤一般无需急症治疗,多待出现不稳定症状后再行二期重建;单纯PCL撕裂经非手术治疗后通常连续性良好,但胫骨后向平移过多会增加不稳定程度,影响功能预后[59]。对于ACL合并MCL损伤,ACL重建联合MCL非手术治疗或手术治疗在功能恢复、生活质量等方面效果相当[60] [61],建议存在持续外翻或旋转不稳患者可行MCL修复或重建,多数MCL损伤可采用非手术治疗。LCL损伤应常规手术治疗,条件允许时可在术中同期处理(包括单纯缝合、锚钉重建止点、腓骨头螺钉固定等),若无法同期处理则需二期重建[56]

对于合并PCL及PLC损伤的HVTPF,Mullin等[62]提出单阶段手术技术,通过胫骨前内侧平台切开复位内固定术(ORIF) + PCL重建 + PLC重建同步操作,可恢复膝关节稳定性,获得良好临床效果;此类损伤若采用分期手术,易引发膝关节运动学异常、移植物失效及继发性骨关节炎,单阶段手术中移植物固定需严格遵循先“PCL后PLC”的顺序,控制角度至关重要,操作失误可能导致张力异常;王辉等[63]也发现单阶段手术可有效恢复膝关节后外侧稳定性,降低远期内翻/旋转不稳风险,需注意同期处理骨折与韧带损伤后需尽早进行膝关节锻炼,避免关节僵硬。

半月板损伤并非均需治疗,桶柄状撕裂可在骨折内固定术中同期复位缝合,其他类型半月板损伤也可在急性期处理,复杂损伤且无法缝合者可选择保守观察或部分切除[64]。治疗过程中不应过度延长手术时间,关节镜操作中避免过多使用生理盐水冲洗,过度操作会增加感染、骨筋膜室综合征等并发症风险;对于急性期未处理、内固定术后出现症状的半月板损伤,可二期行修复或切除术[56]

若远端脉搏无法触及,即使复位后脉搏恢复,也需常规行CT血管造影检查;若合并血管损伤,需紧急行血管重建术,并通过筋膜切开术预防再灌注综合征[65]。腓总神经损伤通常由牵拉或骨块压迫所致,可导致小腿前外侧、足背感觉异常,严重时伴踝背伸、足外翻无力,可行保守治疗或术中探查松解等,但恢复效果差异较大,部分损伤患者3个月内完全恢复,完全损伤患者1年内仅部分恢复,甚至有研究报道腓总神经完全性麻痹患者1年后感觉、运动功能仍未恢复[66] [67]

严重TPF合并的水肿及炎症可迅速导致组织缺氧,静脉及淋巴回流受阻,引发骨筋膜室综合征。Lin等[67]研究发现,12例HEBTP患者中2例发生骨筋膜室综合征,均行一期筋膜切开减压、二期手术治疗;开放性骨折是骨筋膜室综合征的高危因素,对于开放性骨折,清创冲洗后应尽量闭合伤口,若无法直接闭合,可采用创面覆盖或负压吸引敷料处理[56]

5. 总结与展望

鉴于当前HETPF分型缺乏统一标准,且对合并软组织损伤及术后残余不稳的关注度不足,后续需着力开发基于CT三维测量的数字分型系统——该系统应能量化前后柱压缩或分离程度,同时整合韧带止点撕脱骨块信息,通过融合骨折形态、解剖参数与软组织损伤特征,为临床决策提供精准参考。针对内固定器械缺乏针对性、胫骨平台前缘“空白区”支撑薄弱,以及粉碎性骨折固定效果欠佳的问题,需设计契合胫骨平台前缘解剖曲度的低切迹锁定钢板,使其既能提供“筏样”支撑,又能实现“边缘”固定,从而优化前部塌陷区及粉碎骨块的固定稳定性。对于部分合并神经血管或韧带损伤的患者恢复效果不理想的情况,应进一步深化ACL/PCL损伤影响因素的相关研究,建立神经血管损伤的早期预警指标,并完善单阶段修复联合固定的手术流程及术后康复方案,最终降低远期并发症发生风险。

NOTES

*通讯作者。

参考文献

[1] Hua, K., Jiang, X., Zha, Y., Chen, C., Zhang, B. and Mao, Y. (2019) Retrospective Analysis of 514 Cases of Tibial Plateau Fractures Based on Morphology and Injury Mechanism. Journal of Orthopaedic Surgery and Research, 14, Article No. 267. [Google Scholar] [CrossRef] [PubMed]
[2] Assink, N., Vaartjes, T.P., Bosma, E., van Helden, S.H., ten Brinke, J.G., Hoekstra, H., et al. (2024) Tibial Plateau Fracture Morphology Based on Injury Force Mechanism Is Predictive for Patient-Reported Outcome and Conversion to Total Knee Arthroplasty. European Journal of Trauma and Emergency Surgery, 50, 1135-1143. [Google Scholar] [CrossRef] [PubMed]
[3] Yao, X., Hu, M., Liu, H., Tang, J., Yuan, J. and Zhou, K. (2022) Classification and Morphology of Hyperextension Tibial Plateau Fracture. International Orthopaedics, 46, 2373-2383. [Google Scholar] [CrossRef] [PubMed]
[4] 张世民, 胡孙君, 杜守超, 等. 过伸型胫骨平台骨折研究进展[J]. 中国修复重建外科杂志, 2018, 32(4): 495-500.
[5] Liangjun, J., Qiang, Z., Zhijun, P., Hanxiao, Z. and Erman, C. (2020) Clinical Features and Treatment of “Non-Dislocated Hyperextension Tibial Plateau Fracture”. Journal of Orthopaedic Surgery and Research, 15, Article No. 289. [Google Scholar] [CrossRef] [PubMed]
[6] Yao, X., Zhou, K., Lv, B., Wang, L., Xie, J., Fu, X., et al. (2020) 3D Mapping and Classification of Tibial Plateau Fractures. Bone & Joint Research, 9, 258-267. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, S., Hu, S., Du, S., et al. (2018) Research Progress on Hyperextension Tibial Plateau Fractures. Chinese Journal of Reparative and Reconstructive Surgery, 32, 495-500.
[8] Sanders, T.G., Medynski, M.A., Feller, J.F. and Lawhorn, K.W. (2000) Bone Contusion Patterns of the Knee at MR Imaging: Footprint of the Mechanism of Injury. RadioGraphics, 20, S135-S151. [Google Scholar] [CrossRef] [PubMed]
[9] Bartels, H., Tseng, H., Noppe, N. and Hoekstra, H. (2024) Tibiofemoral Axial Rotation in Tibial Plateau Fractures: A Retrospective Radiographic Assessment of 203 Tibial Plateau Fractures. The Knee, 50, 9-17. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, X., Tian, X., Wang, S., Hu, Y., Pan, S. and Peng, A. (2021) Different Patterns of Tibial Plateau Fractures Associated with Hyperextension Injuries of the Knee with or without Varus/Valgus Component. Medicine (Baltimore), 100, e28337. [Google Scholar] [CrossRef] [PubMed]
[11] Anwar, A., Zhang, Y., Zhao, Z., Gao, Y., Sha, L., Lv, D., et al. (2019) Two Column Classification of Tibial Plateau Fractures; Description, Clinical Application and Reliability. Injury, 50, 1247-1255. [Google Scholar] [CrossRef] [PubMed]
[12] Luo, C., Sun, H., Zhang, B. and Zeng, B. (2010) Three-Column Fixation for Complex Tibial Plateau Fractures. Journal of Orthopaedic Trauma, 24, 683-692. [Google Scholar] [CrossRef] [PubMed]
[13] Sheehan, S.E., Khurana, B., Gaviola, G. and Davis, K.W. (2014) A Biomechanical Approach to Interpreting Magnetic Resonance Imaging of Knee Injuries. Magnetic Resonance Imaging Clinics of North America, 22, 621-648. [Google Scholar] [CrossRef] [PubMed]
[14] Gonzalez, L.J., Lott, A., Konda, S. and Egol, K.A. (2017) The Hyperextension Tibial Plateau Fracture Pattern: A Predictor of Poor Outcome. Journal of Orthopaedic Trauma, 31, e369-e374. [Google Scholar] [CrossRef] [PubMed]
[15] Zhao, R., Lin, Z., Long, H., Zeng, M., Cheng, L. and Zhu, Y. (2019) Diagnosis and Treatment of Hyperextension Bicondylar Tibial Plateau Fractures. Journal of Orthopaedic Surgery and Research, 14, Article No. 191. [Google Scholar] [CrossRef] [PubMed]
[16] Meinberg, E., Agel, J., Roberts, C., Karam, M. and Kellam, J. (2018) Fracture and Dislocation Classification Compendium—2018. Journal of Orthopaedic Trauma, 32, S1-S10. [Google Scholar] [CrossRef] [PubMed]
[17] Kfuri, M. and Schatzker, J. (2018) Revisiting the Schatzker Classification of Tibial Plateau Fractures. Injury, 49, 2252-2263. [Google Scholar] [CrossRef] [PubMed]
[18] Chiba, T., Sugita, T., Onuma, M., Kawamata, T. and Umehara, J. (2001) Injuries to the Posterolateral Aspect of the Knee Accompanied by Compression Fracture of the Anterior Part of the Medial Tibial Plateau. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 17, 642-647. [Google Scholar] [CrossRef] [PubMed]
[19] Yao, X., Xu, Y., Yuan, J., Lv, B., Fu, X., Wang, L., et al. (2018) Classification of Tibia Plateau Fracture According to the “Four-Column and Nine-Segment”. Injury, 49, 2275-2283. [Google Scholar] [CrossRef] [PubMed]
[20] 王延嗣, 冯阳, 郑明. 过伸内翻型胫骨平台双髁骨折CT亚型分类[J]. 中国骨与关节损伤杂志, 2025, 40(4): 365-369.
[21] 徐强, 肖鹏, 刘颖, 等. 过伸性胫骨外侧平台骨折的CT平扫分型研究[J]. 中国骨与关节损伤杂志, 2019, 34(6): 639-641.
[22] Pires, R.E., Giordano, V., Bidolegui, F., Pesántez, R. and Kfuri, M. (2024) Current Treatment Strategies for Hyperextension Fractures of the Tibial Plateau: A Systematic Review and Proposal of a Treatment Algorithm. Injury, 55, Article ID: 111716. [Google Scholar] [CrossRef] [PubMed]
[23] Bu, G., Sun, W., Lu, Y., Cui, M., Zhang, X., Lu, J., et al. (2021) Complications Associated with Hyperextension Bicondylar Tibial Plateau Fractures: A Retrospective Study. BMC Surgery, 21, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
[24] Kennedy, J.C. (1963) Complete Dislocation of the Knee Joint. The Journal of Bone & Joint Surgery, 45, 889-904. [Google Scholar] [CrossRef
[25] Schenck, R.C., Kovach, I.S., Agarwal, A., Brummett, R., Ward, R.A., Lanctot, D., et al. (1999) Cruciate Injury Patterns in Knee Hyperextension: A Cadaveric Model. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 15, 489-495. [Google Scholar] [CrossRef] [PubMed]
[26] Norwood, L.A. and Cross, M.J. (1977) The Intercondylar Shelf and the Anterior Cruciate Ligament. The American Journal of Sports Medicine, 5, 171-176. [Google Scholar] [CrossRef] [PubMed]
[27] Liu, Z., Wang, S., Tian, X. and Peng, A. (2022) The Relationship between the Injury Mechanism and the Incidence of ACL Avulsions in Schatzker Type IV Tibial Plateau Fractures: A 3D Quantitative Analysis Based on Mimics Software. The Journal of Knee Surgery, 36, 644-651. [Google Scholar] [CrossRef] [PubMed]
[28] Bizot, P., Meunier, A., Christel, P., et al. (1995) Experimental Capsuloligamentar Lesions of the Knee during Passive Hyperextension. Biomechanical Aspects. A Lesional Evaluation and Consequences. Revue de Chirurgie Orthopedique et Reparatrice de lAppareil Moteur, 81, 211-220.
[29] Tomás-Hernández, J., Monyart, J.M., Serra, J.T., Vinaixa, M.R., Farfan, E.G., García, V.M., et al. (2016) Large Fracture of the Anteromedial Tibial Plateau with Isolated Posterolateral Knee Corner Injury: Case Series of an Often Missed Unusual Injury Pattern. Injury, 47, S35-S40. [Google Scholar] [CrossRef] [PubMed]
[30] Zhang, Y., Wang, R., Hu, J., Qin, X., Chen, A. and Li, X. (2022) Magnetic Resonance Imaging (MRI) and Computed Topography (CT) Analysis of Schatzker Type IV Tibial Plateau Fracture Revealed Possible Mechanisms of Injury Beyond Varus Deforming Force. Injury, 53, 683-690. [Google Scholar] [CrossRef] [PubMed]
[31] Wang, B., Ye, T., Zhang, B., Wang, Y., Zhu, Y. and Luo, C. (2024) Relationship of Fracture Morphological Characteristics with Posterolateral Corner Injuries in Hyperextension Varus Tibial Plateau Fractures. Journal of Bone and Joint Surgery, 106, 2001-2008. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, B., Sun, H., Zhan, Y., He, Q., Zhu, Y., Wang, Y., et al. (2019) Reliability and Repeatability of Tibial Plateau Fracture Assessment with an Injury Mechanism-Based Concept. Bone & Joint Research, 8, 357-366. [Google Scholar] [CrossRef] [PubMed]
[33] Yao, X., Hu, M., Fu, Y., Liu, H., Pan, X., Zhao, J., et al. (2022) Proximal Avulsion of Five Ligaments and Revised Diagonal Principle in Tibial Plateau Fractures. Injury, 53, 3494-3501. [Google Scholar] [CrossRef] [PubMed]
[34] Herbst, E., Raschke, M.J., Peez, C., Briese, T. and Oeckenpöhler, S. (2022) Ligamentäre Begleitverletzungen bei Tibiakopffrakturen. Die Unfallchirurgie, 125, 535-541. [Google Scholar] [CrossRef] [PubMed]
[35] Conesa, X., Minguell, J., Cortina, J., et al. (2013) Fracture of the Anteromedial Tibial Plateau Associated with Posterolateral Complex Injury: Case Study and Literature Review. The Journal of Knee Surgery, 26, S34-39.
[36] Zeng, M., Zhu, Y., Lin, Z., Long, H., Lu, B., Sun, B., et al. (2021) Modified Anterior Midline Approach to Treat Hyperextension Bicondylar Tibial Plateau Fractures: Surgical Technique and Clinical Experience with 18 Cases. The Knee, 32, 1-8. [Google Scholar] [CrossRef] [PubMed]
[37] Garra, S., Li, Z.I., Moore, M.R., Rao, N., Eskenazi, J., Alaia, E.F., et al. (2024) Characterization of Bone Marrow Edema Patterns among Patients with Segond Fracture in the Setting of Acute Anterior Cruciate Ligament Injury: A Comparative MRI Study. The Knee, 51, 1-10. [Google Scholar] [CrossRef] [PubMed]
[38] Sun, Z., Li, T., Liu, Y., Mao, Y., Li, W., Guo, Q., et al. (2023) Rim Plate in the Treatment of Hyperextension Tibial Plateau Fracture: Surgical Technique and a Series of Cases. BMC Musculoskeletal Disorders, 24, Article No. 655. [Google Scholar] [CrossRef] [PubMed]
[39] Wu, K., Huang, J., Lin, J. and Wang, Q. (2016) Diagnosis and Treatment of Anterior Tibial Plateau Fracture-Dislocation: A Case Series and Literature Review. The Journal of Knee Surgery, 30, 114-120. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, B. (2025) Efficacies of Different Surgical Approaches in the Treatment of Hyperextension Tibial Plateau Fractures. American Journal of Translational Research, 17, 1718-1727. [Google Scholar] [CrossRef] [PubMed]
[41] 王利兵, 尚晋, 杨慧峰, 等. 两种手术入路治疗过伸型胫骨平台骨折的疗效比较[J]. 实用骨科杂志, 2023, 29(11): 985-988+1000.
[42] Meier, M., Janssen, D., Koeck, F.X., Thienpont, E., Beckmann, J. and Best, R. (2020) Variations in Medial and Lateral Slope and Medial Proximal Tibial Angle. Knee Surgery, Sports Traumatology, Arthroscopy, 29, 939-946. [Google Scholar] [CrossRef] [PubMed]
[43] Jung, J., Haratian, A., Bernstein, M., Little, M., Marecek, G. and Scolaro, J.A. (2021) Techniques for Management of Hyperextension Bicondylar Tibial Plateau Fractures. Injury, 52, 1069-1073. [Google Scholar] [CrossRef] [PubMed]
[44] 张海峰, 汤继磊. 克氏针撬拨复位治疗复杂过伸型胫骨平台骨折体会[J]. 黑龙江医学, 2024, 48(14): 1700-1703.
[45] 王耀宗, 张英. 悬垂体位撬拨法治疗过伸型胫骨平台骨折[J]. 中华骨科杂志, 2019(2): 83-89.
[46] Chouhan, D.K., Chand Saini, U., Kumar Rajnish, R. and Prakash, M. (2020) Complex Bicondylar Tibial Plateau Fractures with Reversed Tibial Slope—Our Experience with a Fracture-Specific Correction Strategy. Trauma Case Reports, 25, Article ID: 100256. [Google Scholar] [CrossRef] [PubMed]
[47] 亢世杰, 鲍飞龙, 黄东生, 等. 牵引及撬拨复位内固定治疗过伸型胫骨平台骨折[J]. 中华骨科杂志, 2023, 43(22): 1501-1508.
[48] Pailhé, R., Bauer, T., Flecher, X., Bonnevialle, N., Roussignol, X., Saragaglia, D., et al. (2019) Better Functional Outcomes for ORIF in Tibial Eminence Fracture Treatment: A National Comparative Multicentric Study of ORIF vs Arif. Knee Surgery, Sports Traumatology, Arthroscopy, 28, 653-657. [Google Scholar] [CrossRef] [PubMed]
[49] Vibert, B., Pailhé, R., Morin, V., Rubens-Duval, B. and Saragaglia, D. (2018) Navigation for Lower Limb Alignment during Internal Fixation of Complex Tibial-Plateau Fractures. Orthopaedics & Traumatology: Surgery & Research, 104, 491-496. [Google Scholar] [CrossRef] [PubMed]
[50] Mehdi, B., Fteiti, W., Balti, W., Hadhri, K., Kooli, M. and Ben Salah, M. (2022) Initial Description of the TEKTONA® Technique for Tibial Plateau Depression Fractures. Orthopaedics & Traumatology: Surgery & Research, 108, Article No. 103256. [Google Scholar] [CrossRef] [PubMed]
[51] Campbell, S.T., Earhart, J., Marchand, L.S., Bilodeau, R.E., Barth, K., Ricci, W.M., et al. (2024) Intraosseous Shelf Plate Fixation for Depressed Articular Fragments in Tibial Plateau Fractures: A Technical Trick and Case Series. Journal of Orthopaedic Trauma, 38, e272-e276. [Google Scholar] [CrossRef] [PubMed]
[52] Huang, Y., Jiao, J., Cheng, W., Xiao, F., Zuo, W. and Wang, J. (2021) Joint Line Plate Fixation for Tibial Plateau Fractures Caused by Hyperextension Varus. Experimental and Therapeutic Medicine, 21, Article No. 621. [Google Scholar] [CrossRef] [PubMed]
[53] 梁钟帅, 王仁崇, 张璐, 等. 过伸内翻型胫骨平台骨折新型钢板的设计及有限元分析[J]. 中国组织工程研究, 2024(33): 5283-5288.
[54] 姜伟, 刘旭, 孔祥如, 等. 锁定板和前后拉力螺钉固定胫骨前外侧平台塌陷骨折[J]. 中国矫形外科杂志, 2023(10): 921-924.
[55] 尚晋, 王利兵, 杨慧峰, 等. 老年过伸型胫骨平台骨折双钢板与三钢板固定[J]. 中国矫形外科杂志, 2024(22): 2041-2047.
[56] Martz, P. and Le Baron, M. (2025) High-Energy Tibial Plateau Fracture. Orthopaedics & Traumatology: Surgery & Research, 111, Article ID: 104072. [Google Scholar] [CrossRef] [PubMed]
[57] Zeng, C., Borim, F.M. and Lording, T. (2025) Increased Posterior Tibial Slope Is a Risk Factor for Anterior Cruciate Ligament Injury and Graft Failure after Reconstruction: A Systematic Review. Journal of ISAKOS, 12, Article ID: 100854. [Google Scholar] [CrossRef] [PubMed]
[58] Li, L., Li, J., Zhou, P., He, Y., Li, Y., Deng, X., et al. (2023) Decreased Medial Posterior Tibial Slope Is Associated with an Increased Risk of Posterior Cruciate Ligament Rupture. Knee Surgery, Sports Traumatology, Arthroscopy, 31, 2966-2973. [Google Scholar] [CrossRef] [PubMed]
[59] Brown, J.S., Mogianos, K., Roemer, F.W., Isacsson, A., Kumm, J., Frobell, R., et al. (2023) Clinical, Patient-Reported, Radiographic and Magnetic Resonance Imaging Findings 11 Years after Acute Posterior Cruciate Ligament Injury Treated Non-Surgically. BMC Musculoskeletal Disorders, 24, Article No. 365. [Google Scholar] [CrossRef] [PubMed]
[60] Shultz, C.L., Poehlein, E., Morriss, N.J., Green, C.L., Hu, J., Lander, S., et al. (2023) Nonoperative Management, Repair, or Reconstruction of the Medial Collateral Ligament in Combined Anterior Cruciate and Medial Collateral Ligament Injuries—Which Is Best? A Systematic Review and Meta-Analysis. The American Journal of Sports Medicine, 52, 522-534. [Google Scholar] [CrossRef] [PubMed]
[61] van der List, J.P., Muscott, R.K., Parikh, N., Waterman, B.R. and Trasolini, N.A. (2024) Early Anterior Cruciate Ligament Treatment Might Be Crucial for Acute Combined Anterior Cruciate Ligament and Medial Collateral Ligament Injuries: A Systematic Review of the Various Treatment Strategies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 40, 2322-2336. [Google Scholar] [CrossRef] [PubMed]
[62] Mullin, E.P., Tollefson, L.V., Shoemaker, E.P., Jacobson, N.J., Slette, E.L. and LaPrade, R.F. (2025) Reconstruction of the Posterior Cruciate Ligament and Posterolateral Corner with a Concomitant Medial Tibial Plateau Impaction Fracture: A Single-Stage Technique. Arthroscopy Techniques, 14, Article ID: 103298. [Google Scholar] [CrossRef] [PubMed]
[63] 王辉, 邹宏, 沈建平, 等. 膝关节对角线损伤中后外侧复合体损伤一期手术疗效观察[J]. 中国骨与关节损伤杂志, 2019(10): 1029-1032.
[64] Eseonu, K.C., Neale, J., Lyons, A. and Kluzek, S. (2021) Are Outcomes of Acute Meniscus Root Tear Repair Better than Debridement or Nonoperative Management? A Systematic Review. The American Journal of Sports Medicine, 50, 3130-3139. [Google Scholar] [CrossRef] [PubMed]
[65] Warner, S.J., Garner, M.R., Schottel, P.C., Fabricant, P.D., Thacher, R.R., Loftus, M.L., et al. (2018) The Effect of Soft Tissue Injuries on Clinical Outcomes after Tibial Plateau Fracture Fixation. Journal of Orthopaedic Trauma, 32, 141-147. [Google Scholar] [CrossRef] [PubMed]
[66] Pang, Z., Zhu, S., Shen, Y., Qiu, Y., Liu, Y., Xu, W., et al. (2024) Functional Outcomes of Different Surgical Treatments for Common Peroneal Nerve Injuries: A Retrospective Comparative Study. BMC Surgery, 24, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
[67] Lin, K.C. and Tarng, Y. (2020) A Strategy to Prevent Complications of Hyperextension Type Tibial Plateau Fracture. European Journal of Orthopaedic Surgery & Traumatology, 31, 71-78. [Google Scholar] [CrossRef] [PubMed]