|
[1]
|
Xie, Z., Yu, C., Cui, Q., Zhao, X., Zhuang, J., Chen, S., et al. (2025) Global Burden of the Key Components of Cardiovascular-Kidney-Metabolic Syndrome. Journal of the American Society of Nephrology, 36, 1572-1584. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., et al. (2023) Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory from the American Heart Association. Circulation, 148, 1606-1635. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Massy, Z.A. and Drueke, T.B. (2024) Combination of Cardiovascular, Kidney, and Metabolic Diseases in a Syndrome Named Cardiovascular-Kidney-Metabolic, with New Risk Prediction Equations. Kidney International Reports, 9, 2608-2618. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tain, Y. and Hsu, C. (2024) The Renin–angiotensin System and Cardiovascular-Kidney-Metabolic Syndrome: Focus on Early-Life Programming. International Journal of Molecular Sciences, 25, Article 3298. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sebastian, S.A., Padda, I. and Johal, G. (2024) Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A State-Of-The-Art Review. Current Problems in Cardiology, 49, Article ID: 102344. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kadowaki, T., Maegawa, H., Watada, H., Yabe, D., Node, K., Murohara, T., et al. (2022) Interconnection between Cardiovascular, Renal and Metabolic Disorders: A Narrative Review with a Focus on Japan. Diabetes, Obesity and Metabolism, 24, 2283-2296. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rana, M.N. and Neeland, I.J. (2022) Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Current Diabetes Reports, 22, 27-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Neeland, I.J., Ross, R., Després, J., Matsuzawa, Y., Yamashita, S., Shai, I., et al. (2019) Visceral and Ectopic Fat, Atherosclerosis, and Cardiometabolic Disease: A Position Statement. The Lancet Diabetes & Endocrinology, 7, 715-725. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pichler, R., Afkarian, M., Dieter, B.P. and Tuttle, K.R. (2017) Immunity and Inflammation in Diabetic Kidney Disease: Translating Mechanisms to Biomarkers and Treatment Targets. American Journal of Physiology-Renal Physiology, 312, F716-F731. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, L., Zou, Y. and Liu, F. (2020) Transforming Growth Factor-Beta1 in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 8, Article 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Du, J., Zhang, W., Niu, J. and Wang, S. (2024) Association between Blood Urea Nitrogen Levels and the Risk of Diabetes Mellitus in Chinese Adults: Secondary Analysis Based on a Multicenter, Retrospective Cohort Study. Frontiers in Endocrinology, 15, Article 1282015. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
彭少林, 杨水冰, 杨井金, 陆小玉, 张美彪. 心血管-肾脏-代谢综合征的病理生理机制研究进展[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/trialRead.html?dbCode=CJFD&tableName=CJFDTOTAL&fileName=ZMXB202501012&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=om27QmjjvTIoGDNRoUBWEFF/A9BhVmyOSn9TDq/DxepLq5M7hbiFrXjwQRnsFmqPSJe/r/W3/quFGGgtl4so2XhVK4z91HjFJFlicxoog0syY2k+0wjQc8ydW/WOHCqA+Kss5AyWKsT2SrzhU3Qq9QCeFSXi/+VWnULlKXbhB1o=, 2025-12-12.
|
|
[14]
|
Wang, Y., Wang, Y., He, X. and Li, X. (2025) Sodium-Glucose Transporter 2 Inhibitors and Cardiovascular-Kidney-Metabolic Syndrome: A Narrative Review. Frontiers in Endocrinology, 16, Article 1554637. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mohsin, S.N., Gapizov, A., Ekhator, C., Ain, N.U., Ahmad, S., Khan, M., et al. (2023) The Role of Artificial Intelligence in Prediction, Risk Stratification, and Personalized Treatment Planning for Congenital Heart Diseases. Cureus, 15, e44374. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kodama, S., Fujihara, K., Horikawa, C., Kitazawa, M., Iwanaga, M., Kato, K., et al. (2022) Predictive Ability of Current Machine Learning Algorithms for Type 2 Diabetes Mellitus: A Meta‐Analysis. Journal of Diabetes Investigation, 13, 900-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Medina-Inojosa, J.R., Somers, V.K., Garcia, M., Thomas, R.J., Allison, T., Chaudry, R., et al. (2023) Performance of the ACC/AHA Pooled Cohort Cardiovascular Risk Equations in Clinical Practice. Journal of the American College of Cardiology, 82, 1499-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Matsushita, K. (2023) Including Measures of Chronic Kidney Disease to Improve Cardiovascular Risk Prediction by SCORE2 and SCORE2-OP. European Journal of Preventive Cardiology, 30, 8-16.
|
|
[19]
|
Chen, X., Tu, Q., Wang, D., Liu, J., Qin, Y., Zhang, Y., et al. (2023) Effectiveness of China-Par and Framingham Risk Score in Assessment of 10-Year Cardiovascular Disease Risk in Chinese Hypertensive Patients. Public Health, 220, 127-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Khan, S.S., Matsushita, K., Sang, Y., Ballew, S.H., Grams, M.E., Surapaneni, A., et al. (2024) Development and Validation of the American Heart Association’s PREVENT Equations. Circulation, 149, 430-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Simeri, A., Pezzi, G., Arena, R., Papalia, G., Szili-Torok, T., Greco, R., et al. (2024) Artificial Intelligence in Chronic Kidney Diseases: Methodology and Potential Applications. International Urology and Nephrology, 57, 159-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vasquez-Morales, G.R., Martinez-Monterrubio, S.M., Moreno-Ger, P. and Recio-Garcia, J.A. (2019) Explainable Prediction of Chronic Renal Disease in the Colombian Population Using Neural Networks and Case-Based Reasoning. IEEE Access, 7, 152900-152910. [Google Scholar] [CrossRef]
|
|
[23]
|
侯淞, 张林杉, 洪秀琴, 等. 心血管-肾脏-代谢(CKM)综合征诊断技术与风险预测[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/trialRead.html?dbCode=CJFD&tableName=CJFDTOTAL&fileName=SHSW202510009&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=hc+Ui53wHx/qZRQadVWVSlQGEZMW9wLIoqvANgFWczRawSNAE07V6Ow2AFf+os78zLf0NsTUV2NnFvB68PKNlt8TekV55KB5B7KcsqdvyGu+tE/oT0hojerSEnA3CAkO3rHgYMPD1mhkJn6adgThywtbO6VE6Ef3aZtCuyhvQy0=, 2025-12-12.
|
|
[24]
|
Gazit, T., Mann, H., Gaber, S., Adamenko, P., Pariente, G., Volsky, L., et al. (2024) A Novel, Machine-Learning Model for Prediction of Short-Term ASCVD Risk over 90 and 365 Days. Frontiers in Digital Health, 6, Article 1485508. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Meng, X., Fang, Y., Zhang, S., Huang, P., Wen, J., Peng, J., et al. (2025) Interpretable Machine Learning Identification of Dietary and Metabolic Factors for Metabolic Syndrome in Southern China: A Cross-Sectional Study. Nutrients, 17, Article 3368. [Google Scholar] [CrossRef]
|
|
[26]
|
Muse, E.D. and Topol, E.J. (2024) Transforming the Cardiometabolic Disease Landscape: Multimodal AI-Powered Approaches in Prevention and Management. Cell Metabolism, 36, 670-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tallam, H., Elton, D.C., Lee, S., Wakim, P., Pickhardt, P.J. and Summers, R.M. (2022) Fully Automated Abdominal CT Biomarkers for Type 2 Diabetes Using Deep Learning. Radiology, 304, 85-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Madani, A., Arnaout, R., Mofrad, M. and Arnaout, R. (2018) Fast and Accurate View Classification of Echocardiograms Using Deep Learning. npj Digital Medicine, 1, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Noseworthy, P.A., Attia, Z.I., Behnken, E.M., Giblon, R.E., Bews, K.A., Liu, S., et al. (2022) Artificial Intelligence-Guided Screening for Atrial Fibrillation Using Electrocardiogram during Sinus Rhythm: A Prospective Non-Randomised Interventional Trial. The Lancet, 400, 1206-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Attia, Z.I., Kapa, S., Lopez-Jimenez, F., McKie, P.M., Ladewig, D.J., Satam, G., et al. (2019) Screening for Cardiac Contractile Dysfunction Using an Artificial Intelligence-Enabled Electrocardiogram. Nature Medicine, 25, 70-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Betancur, J., et al. (2015) Deep Learning for Prediction of Obstructive Disease from Fast Myocardial Perfusion SPECT: A Multicenter Study. JACC: Cardiovascular Imaging, 11, 1654-1663. https://pmc.ncbi.nlm.nih.gov/articles/PMC6135711/
|
|
[32]
|
Lin, S., Li, Z., Fu, B., Chen, S., Li, X., Wang, Y., et al. (2020) Feasibility of Using Deep Learning to Detect Coronary Artery Disease Based on Facial Photo. European Heart Journal, 41, 4400-4411. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Choi, A.D., Marques, H., Kumar, V., Griffin, W.F., Rahban, H., Karlsberg, R.P., et al. (2021) CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular morphology (CLARIFY): A Multi-Center, International Study. Journal of Cardiovascular Computed Tomography, 15, 470-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S.B., et al. (2025) Accurate Predictions on Small Data with a Tabular Foundation Model. Nature, 637, 319-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhu, S., Zhang, H., Liu, Y., Bu, W., Wu, Q., Wang, J., et al. (2025) Development of an Optimized Risk Evaluation System for Cardiovascular-Kidney-Metabolic Syndrome-Associated Coronary Heart Disease Based on Tabular Prior-Data Fitted Network. Digital Health, 11, 1-18. [Google Scholar] [CrossRef]
|
|
[36]
|
DeGroat, W., Abdelhalim, H., Peker, E., Sheth, N., Narayanan, R., Zeeshan, S., et al. (2024) Multimodal AI/ML for Discovering Novel Biomarkers and Predicting Disease Using Multi-Omics Profiles of Patients with Cardiovascular Diseases. Scientific Reports, 14, Article No. 26503. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aragam, K.G., Jiang, T., Goel, A., Kanoni, S., Wolford, B.N., Atri, D.S., et al. (2022) Discovery and Systematic Characterization of Risk Variants and Genes for Coronary Artery Disease in over a Million Participants. Nature Genetics, 54, 1803-1815. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liang, H., Zhang, H., Wang, J., Shao, X., Wu, S., Lyu, S., et al. (2024) The Application of Artificial Intelligence in Atrial Fibrillation Patients: From Detection to Treatment. Reviews in Cardiovascular Medicine, 25, Article 257. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fernando, K., Connolly, D., Darcy, E., Evans, M., Hinchliffe, W., Holmes, P., et al. (2025) Advancing Cardiovascular, Kidney, and Metabolic Medicine: A Narrative Review of Insights and Innovations for the Future. Diabetes Therapy, 16, 1155-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kim, H.W., Heo, S., Kim, J.Y., Kim, A., Nam, C. and Kim, B.S. (2021) Dialysis Adequacy Predictions Using a Machine Learning Method. Scientific Reports, 11, Article No. 15417. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hueso, M., Navarro, E., Sandoval, D. and Cruzado, J.M. (2018) Progress in the Development and Challenges for the Use of Artificial Kidneys and Wearable Dialysis Devices. Kidney Diseases, 5, 3-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Alowidi, N., Ali, R., Sadaqah, M. and Naemi, F.M.A. (2024) Advancing Kidney Transplantation: A Machine Learning Approach to Enhance Donor-Recipient Matching. Diagnostics, 14, Article 2119. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chan, L., Nadkarni, G.N., Fleming, F., McCullough, J.R., Connolly, P., Mosoyan, G., et al. (2021) Derivation and Validation of a Machine Learning Risk Score Using Biomarker and Electronic Patient Data to Predict Progression of Diabetic Kidney Disease. Diabetologia, 64, 1504-1515. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Bhaltadak, V., Ghewade, B. and Yelne, S. (2024) A Comprehensive Review on Advancements in Wearable Technologies: Revolutionizing Cardiovascular Medicine. Cureus, 16, e61312. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S.M. and Brinkley, L.J. (2000) Beneficial Effects of High Dietary Fiber Intake in Patients with Type 2 Diabetes Mellitus. New England Journal of Medicine, 342, 1392-1398. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sze, W.T., Waki, K., Lane, D., Hasegawa, K., Nakada, R., Iwata, S., et al. (2025) Efficacy of Fibermore, an AI-Based Mhealth Intervention to Increase Dietary Fiber Intake among Type 2 Diabetes Patients: Protocol for a Pilot Randomized Controlled Trial. JMIR Research Protocols, 14, e78019. [Google Scholar] [CrossRef]
|
|
[47]
|
Kobe, E.A., McVeigh, T., Hameed, I. and Fudim, M. (2023) Heart Failure Remote Monitoring: A Review and Implementation How-To. Journal of Clinical Medicine, 12, Article 6200. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Oo, M.M., Gao, C., Cole, C., Hummel, Y., Guignard‐Duff, M., Jefferson, E., et al. (2024) Artificial Intelligence‐Assisted Automated Heart Failure Detection and Classification from Electronic Health Records. ESC Heart Failure, 11, 2769-2777. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lin, A., Manral, N., McElhinney, P., Killekar, A., Matsumoto, H., Kwiecinski, J., et al. (2022) Deep Learning-Enabled Coronary CT Angiography for Plaque and Stenosis Quantification and Cardiac Risk Prediction: An International Multicentre Study. The Lancet Digital Health, 4, e256-e265. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Jiang, J., Deng, H., Liao, H., Fang, X., Zhan, X., Wei, W., et al. (2023) An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation. Journal of Clinical Medicine, 12, Article 1933. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Tangri, N. (2011) A Predictive Model for Progression of Chronic Kidney Disease to Kidney Failure. JAMA, 305, 1553-1559. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bento, F., Tagliabue, M. and Lorenzo, F. (2020) Organizational Silos: A Scoping Review Informed by a Behavioral Perspective on Systems and Networks. Societies, 10, Article 56. [Google Scholar] [CrossRef]
|
|
[53]
|
Sauerbrei, A., Kerasidou, A., Lucivero, F. and Hallowell, N. (2023) The Impact of Artificial Intelligence on the Person-Centred, Doctor-Patient Relationship: Some Problems and Solutions. BMC Medical Informatics and Decision Making, 23, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|