|
[1]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kropp, M., Golubnitschaja, O., Mazurakova, A., Koklesova, L., Sargheini, N., Vo, T.K.S., et al. (2023) Diabetic Retinopathy as the Leading Cause of Blindness and Early Predictor of Cascading Complications—Risks and Mitigation. EPMA Journal, 14, 21-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhu, H., Li, B., Huang, T., Wang, B., Li, S., Yu, K., et al. (2025) Update in the Molecular Mechanism and Biomarkers of Diabetic Retinopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1871, Article ID: 167758. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Tang, L., Xu, G.T. and Zhang, J.F. (2023) Inflammation in Diabetic Retinopathy: Possible Roles in Pathogenesis and Potential Implications for Therapy. Neural Regeneration Research, 18, 976-982.
|
|
[5]
|
Lu, Y., Li, Z., Zhang, S., Zhang, T., Liu, Y. and Zhang, L. (2023) Cellular Mitophagy: Mechanism, Roles in Diseases and Small Molecule Pharmacological Regulation. Theranostics, 13, 736-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tan, T. and Wong, T.Y. (2023) Diabetic Retinopathy: Looking Forward to 2030. Frontiers in Endocrinology, 13, Article 1077669. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Teo, Z.L., Tham, Y., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., et al. (2021) Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045. Ophthalmology, 128, 1580-1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic Retinopathy. The Lancet, 376, 124-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, J. and Liu, Z. (2022) Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Frontiers in Endocrinology, 13, Article 816400. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kumar, J., Malaviya, P. and Kowluru, R.A. (2024) Long Noncoding RNAs and Metabolic Memory Associated with Continued Progression of Diabetic Retinopathy. Journal of Diabetes, 16, e70009. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kang, Q. and Yang, C. (2020) Oxidative Stress and Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Redox Biology, 37, Article ID: 101799. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kovoor, E., Chauhan, S.K. and Hajrasouliha, A. (2022) Role of Inflammatory Cells in Pathophysiology and Management of Diabetic Retinopathy. Survey of Ophthalmology, 67, 1563-1573. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yue, T., Shi, Y., Luo, S., Weng, J., Wu, Y. and Zheng, X. (2022) The Role of Inflammation in Immune System of Diabetic Retinopathy: Molecular Mechanisms, Pathogenetic Role and Therapeutic Implications. Frontiers in Immunology, 13, Article 1055087. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shughoury, A., Bhatwadekar, A., Jusufbegovic, D., Hajrasouliha, A. and Ciulla, T.A. (2023) The Evolving Therapeutic Landscape of Diabetic Retinopathy. Expert Opinion on Biological Therapy, 23, 969-985. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Huang, H., Shi, L., Li, S., et al. (2021) Effects of Intravitreal Injection of Anti-Vascular Endothelial Growth Factor Drugs on Ocular Blood Vessels and Blood Flow in Patients with Diabetic Retinopathy. Acta Academiae Medicinae Sinicae, 43, 796-800.
|
|
[16]
|
Zhou, J. and Chen, B. (2023) Retinal Cell Damage in Diabetic Retinopathy. Cells, 12, Article 1342. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nian, S., Lo, A.C.Y., Mi, Y., Ren, K. and Yang, D. (2021) Neurovascular Unit in Diabetic Retinopathy: Pathophysiological Roles and Potential Therapeutical Targets. Eye and Vision, 8, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Antonetti, D.A., Silva, P.S. and Stitt, A.W. (2021) Current Understanding of the Molecular and Cellular Pathology of Diabetic Retinopathy. Nature Reviews Endocrinology, 17, 195-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, Q., Li, R., Du, J. and Jiao, C. (2021) Autophagy Dysregulation Mediates the Damage of High Glucose to Retinal Pigment Epithelium Cells. International Journal of Ophthalmology, 14, 805-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jiménez-Loygorri, J.I., Benítez-Fernández, R., Viedma-Poyatos, Á., Zapata-Muñoz, J., Villarejo-Zori, B., Gómez-Sintes, R., et al. (2023) Mitophagy in the Retina: Viewing Mitochondrial Homeostasis through a New Lens. Progress in Retinal and Eye Research, 96, Article ID: 101205. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, X., Huang, Z., Xu, M., Chen, Y., Cao, M., Yi, G., et al. (2023) Autophagy in the Retinal Neurovascular Unit: New Perspectives into Diabetic Retinopathy. Journal of Diabetes, 15, 382-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hu, Z., Wang, X., Hu, Q. and Chen, X. (2023) Exploring the Protective Effects of Herbal Monomers against Diabetic Retinopathy Based on the Regulation of Autophagy and Apoptosis: A Review. Medicine, 102, e35541. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hu, X., Lv, J., Zhao, Y., Li, X., Qi, W. and Wang, X. (2025) Important Regulatory Role of Mitophagy in Diabetic Microvascular Complications. Journal of Translational Medicine, 23, Article No. 269. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chang, K., Liu, P., Chang, C., Lin, Y., Chen, Y. and Shu, C. (2022) The Interplay of Autophagy and Oxidative Stress in the Pathogenesis and Therapy of Retinal Degenerative Diseases. Cell & Bioscience, 12, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gong, Q., Wang, H., Yu, P., Qian, T. and Xu, X. (2021) Protective or Harmful: The Dual Roles of Autophagy in Diabetic Retinopathy. Frontiers in Medicine, 8, Article 644121. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., et al. (2023) The Mitophagy Pathway and Its Implications in Human Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 304. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Picca, A., Faitg, J., Auwerx, J., Ferrucci, L. and D’Amico, D. (2023) Mitophagy in Human Health, Ageing and Disease. Nature Metabolism, 5, 2047-2061. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kowluru, R.A. and Alka, K. (2023) Mitochondrial Quality Control and Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. International Journal of Molecular Sciences, 24, Article 8076. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, Y. and Zou, H. (2022) Research Progress on Mitochondrial Dysfunction in Diabetic Retinopathy. Antioxidants, 11, Article 2250. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
D’Amico, A.G., Maugeri, G., Magrì, B., Bucolo, C. and D’Agata, V. (2024) Targeting the PINK1/Parkin Pathway: A New Perspective in the Prevention and Therapy of Diabetic Retinopathy. Experimental Eye Research, 247, Article ID: 110024. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Alka, K., Kumar, J. and Kowluru, R.A. (2023) Impaired Mitochondrial Dynamics and Removal of the Damaged Mitochondria in Diabetic Retinopathy. Frontiers in Endocrinology, 14, Article 1160155. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Arrigo, A., Aragona, E. and Bandello, F. (2022) VEGF-Targeting Drugs for the Treatment of Retinal Neovascularization in Diabetic Retinopathy. Annals of Medicine, 54, 1089-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Seo, H., Park, S. and Song, M. (2025) Diabetic Retinopathy (DR): Mechanisms, Current Therapies, and Emerging Strategies. Cells, 14, Article 376. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ji, Y., Leng, Y., Lei, S., Qiu, Z., Ming, H., Zhang, Y., et al. (2022) The Mitochondria-Targeted Antioxidant MitoQ Ameliorates Myocardial Ischemia-Reperfusion Injury by Enhancing PINK1/Parkin-Mediated Mitophagy in Type 2 Diabetic Rats. Cell Stress and Chaperones, 27, 353-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Muraleva, N.A., Kozhevnikova, O.S., Zhdankina, A.A., Stefanova, N.A., Karamysheva, T.V., Fursova, A.Z., et al. (2014) The Mitochondria-Targeted Antioxidant Skq1 Restoresαb-Crystallin Expression and Protects against AMD-Like Retinopathy in OXYS Rats. Cell Cycle, 13, 3499-3505. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, K., Wang, T., Sun, G., Xiao, J., Jiang, L., Tou, F., et al. (2023) Metformin Protects against Retinal Ischemia/Reperfusion Injury through AMPK-Mediated Mitochondrial Fusion. Free Radical Biology and Medicine, 205, 47-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, L., Gao, Z., Zhao, H., et al. (2024) Resveratrol Delays Diabetic Cardiomyopathy Fibrosis by Regulating Mitochondrial Autophagy. Alternative Therapies in Health and Medicine, 31, 143-149.
|
|
[38]
|
Kluge, A.F., Lagu, B.R., Maiti, P., Jaleel, M., Webb, M., Malhotra, J., et al. (2018) Novel Highly Selective Inhibitors of Ubiquitin Specific Protease 30 (USP30) Accelerate Mitophagy. Bioorganic & Medicinal Chemistry Letters, 28, 2655-2659. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fang, X., Shao, Z., Ding, H., Xu, H., Tu, Z., Wang, H., et al. (2025) Urolithin a Enhances Diabetic Wound Healing: Insights from Parkin-Mediated Mitophagy in Endothelial Progenitor Cells. International Immunopharmacology, 155, Article ID: 114572. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Cheng, L., Chen, Y., Guo, D., Zhong, Y., Li, W., Lin, Y., et al. (2023) mTOR-Dependent TFEB Activation and TFEB Overexpression Enhance Autophagy-Lysosome Pathway and Ameliorate Alzheimer’s Disease-Like Pathology in Diabetic Encephalopathy. Cell Communication and Signaling, 21, Article No. 91. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Cheng, Y., Fan, H., Liu, K., Liu, J., Zou, H. and You, Z. (2023) TFEB Attenuates Hyperglycemia‐Induced Retinal Capillary Endothelial Cells Injury via Autophagy Regulation. Cell Biology International, 47, 1092-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liu, C., Xiang, J., Chen, Y., He, C., Tong, J., Liao, Y., et al. (2025) MiR-125a-5p in MSC-Derived Small Extracellular Vesicles Alleviates Müller Cells Injury in Diabetic Retinopathy by Modulating Mitophagy via PTP1B Pathway. Cell Death Discovery, 11, Article No. 226. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tang, Z., Ye, F., Ni, N., Fan, X., Lu, L. and Gu, P. (2025) Frontier Applications of Retinal Nanomedicine: Progress, Challenges and Perspectives. Journal of Nanobiotechnology, 23, Article No. 143. [Google Scholar] [CrossRef] [PubMed]
|