|
[1]
|
Thipsawat, S. (2021) Early Detection of Diabetic Nephropathy in Patient with Type 2 Diabetes Mellitus: A Review of the Literature. Diabetes and Vascular Disease Research, 18, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Li, X., Lu, L., Hou, W., Huang, T., Chen, X., Qi, J., et al. (2021) Epigenetics in the Pathogenesis of Diabetic Nephropathy. Acta Biochimica et Biophysica Sinica, 54, 163-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Shim, K., Begum, R., Yang, C. and Wang, H. (2020) Complement Activation in Obesity, Insulin Resistance, and Type 2 Diabetes Mellitus. World Journal of Diabetes, 11, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ma, X., Ma, J., Leng, T., Yuan, Z., Hu, T., Liu, Q., et al. (2023) Advances in Oxidative Stress in Pathogenesis of Diabetic Kidney Disease and Efficacy of TCM Intervention. Renal Failure, 45, Article ID: 2146512. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jin, Q., Liu, T., Qiao, Y., Liu, D., Yang, L., Mao, H., et al. (2023) Oxidative Stress and Inflammation in Diabetic Nephropathy: Role of Polyphenols. Frontiers in Immunology, 14, Article 1185317. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhu, Y.T., Wan, C., Lin, J.H., et al. (2022) Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules, 12, Article 403. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, Y., Wen, P., Luo, J., Ding, H., Cao, H., He, W., et al. (2021) Sirtuin 3 Regulates Mitochondrial Protein Acetylation and Metabolism in Tubular Epithelial Cells during Renal Fibrosis. Cell Death & Disease, 12, Article No. 847. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Peng, X., Ni, H., Kuang, B., Wang, Z., Hou, S., Gu, S., et al. (2024) Sirtuin 3 in Renal Diseases and Aging: From Mechanisms to Potential Therapies. Pharmacological Research, 206, Article ID: 107261. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Weng, S.W., Wu, J.C., Shen, F.C., et al. (2023) Chaperonin Counteracts Diet-Induced Non-Alcoholic Fatty Liver Disease by Aiding Sirtuin 3 in the Control of Fatty Acid Oxidation. Diabetologia, 66, 913-930. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Peng, F., Liao, M., Jin, W., Liu, W., Li, Z., Fan, Z., et al. (2024) 2-APQC, a Small-Molecule Activator of Sirtuin-3 (SIRT3), Alleviates Myocardial Hypertrophy and Fibrosis by Regulating Mitochondrial Homeostasis. Signal Transduction and Targeted Therapy, 9, Article No. 133. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, L., Pinho, R., Gu, Y. and Radak, Z. (2022) The Role of SIRT3 in Exercise and Aging. Cells, 11, Article 2596. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mao, Z., Tian, L., Liu, J., Wu, Q., Wang, N., Wang, G., et al. (2022) Ligustilide Ameliorates Hippocampal Neuronal Injury after Cerebral Ischemia Reperfusion through Activating Pink1/Parkin-Dependent Mitophagy. Phytomedicine, 101, Article ID: 154111. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Li, J., Yang, D., Li, Z., Zhao, M., Wang, D., Sun, Z., et al. (2023) Pink1/Parkin-Mediated Mitophagy in Neurodegenerative Diseases. Ageing Research Reviews, 84, Article ID: 101817. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, X., Hussain, R., Mehmood, K., Tang, Z., Zhang, H. and Li, Y. (2022) Mitochondrial-Endoplasmic Reticulum Communication-Mediated Oxidative Stress and Autophagy. BioMed Research International, 2022, Article ID: 6459585. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Narendra, D.P. and Youle, R.J. (2024) The Role of Pink1-Parkin in Mitochondrial Quality Control. Nature Cell Biology, 26, 1639-1651. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, J., Lai, M., Zhang, X., Li, Z., Yang, D., Zhao, M., et al. (2022) Pink1-Parkin-Mediated Neuronal Mitophagy Deficiency in Prion Disease. Cell Death & Disease, 13, Article No. 162. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gupta, P., Sharma, G., Lahiri, A. and Barthwal, M.K. (2022) Foxo3a Acetylation Regulates PINK1, Mitophagy, Inflammasome Activation in Murine Palmitate-Conditioned and Diabetic Macrophages. Journal of Leukocyte Biology, 111, 611-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hu, J., Kan, T. and Hu, X. (2019) Sirt3 Regulates Mitophagy Level to Promote Diabetic Corneal Epithelial Wound Healing. Experimental Eye Research, 181, 223-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
宋居会, 何文雯, 李瑞超, 罗蕴胭, 张婷, 等. 氟暴露对大鼠肾脏损伤及Sirt3-Foxo3a-Pink1/Parkin通路的影响[J]. 中华地方病学杂志, 2024, 43(7): 528-535.
|
|
[20]
|
Rotariu, D., Babes, E.E., Tit, D.M., Moisi, M., Bustea, C., Stoicescu, M., et al. (2022) Oxidative Stress—Complex Pathological Issues Concerning the Hallmark of Cardiovascular and Metabolic Disorders. Biomedicine & Pharmacotherapy, 152, Article ID: 113238. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hernandez, L.F., Eguchi, N., Whaley, D., Alexander, M., Tantisattamo, E. and Ichii, H. (2022) Anti-Oxidative Therapy in Diabetic Nephropathy. Frontiers in Bioscience-Scholar, 14, Article 1402014. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, Q., Nan, Y., Yang, Y., Xiao, Z., Liu, M., Huang, J., et al. (2023) Nanodrugs Alleviate Acute Kidney Injury: Manipulate RONS at Kidney. Bioactive Materials, 22, 141-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A.E., Zemskov, E.A., Maltepe, E., et al. (2020) Complex Interplay between Autophagy and Oxidative Stress in the Development of Pulmonary Disease. Redox Biology, 36, Article ID: 101679. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Huang, L., Yao, T., Chen, J., Zhang, Z., Yang, W., Gao, X., et al. (2022) Effect of Sirt3 on Retinal Pigment Epithelial Cells in High Glucose through Foxo3a/Pink1-Parkin Pathway Mediated Mitophagy. Experimental Eye Research, 218, Article ID: 109015. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yu, J., Liu, Y., Li, H. and Zhang, P. (2023) Pathophysiology of Diabetic Kidney Disease and Autophagy: A Review. Medicine, 102, e33965. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Han, Y.C., Tang, S.Q., Liu, Y.T., et al. (2021) AMPK Agonist Alleviate Renal Tubulointerstitial Fibrosis via Activating Mitophagy in High Fat and Streptozotocin Induced Diabetic Mice. Cell Death & Disease, 12, Article No. 925. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Locatelli, M., Zoja, C., Zanchi, C., Corna, D., Villa, S., Bolognini, S., et al. (2020) Manipulating Sirtuin 3 Pathway Ameliorates Renal Damage in Experimental Diabetes. Scientific Reports, 10, Article No. 8418. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cai, Z., Liu, S., Nie, Y., Dong, B., Li, C., Zhang, J., et al. (2022) Decreased Sirt3 Contributes to Cyclic Production of Reactive Oxygen Species and Islet β-Cell Apoptosis in High Glucose Conditions. Molecular Biology Reports, 49, 10479-10488. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nie, Y., Zhang, Y., Liu, S., Xu, Z., Xia, C., Du, L., et al. (2023) Downregulation of Sirt3 Contributes to β-Cell Dedifferentiation via Foxo1 in Type 2 Diabetic Mellitus. Acta Diabetologica, 61, 485-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xian, Y., Liu, B., Shen, T., Yang, L., Peng, R., Shen, H., et al. (2025) Enhanced SIRT3 Expression Restores Mitochondrial Quality Control Mechanism to Reverse Osteogenic Impairment in Type 2 Diabetes Mellitus. Bone Research, 13, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ma, L., Wu, F., Shao, Q., Chen, G., Xu, L. and Lu, F. (2021) Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Design, Development and Therapy, 15, 3207-3221. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wen, F., Zhang, S., Sun, L., Qian, M. and Xu, H. (2023) Salvianolic Acid B Inhibits Oxidative Stress in Glomerular Mesangial Cells Alleviating Diabetic Nephropathy by Regulating SIRT3/FOXO1 Signaling. Kidney and Blood Pressure Research, 48, 738-751. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Juszczak, F., Arnould, T. and Declèves, A. (2024) The Role of Mitochondrial Sirtuins (SIRT3, SIRT4 and SIRT5) in Renal Cell Metabolism: Implication for Kidney Diseases. International Journal of Molecular Sciences, 25, Article 6936. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Myakala, K., Wang, X.X., Shults, N.V., Krawczyk, E., Jones, B.A., Yang, X., et al. (2023) NAD Metabolism Modulates Inflammation and Mitochondria Function in Diabetic Kidney Disease. Journal of Biological Chemistry, 299, Article ID: 104975. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Srivastava, S.P., Li, J., Kitada, M., Fujita, H., Yamada, Y., Goodwin, J.E., et al. (2018) SIRT3 Deficiency Leads to Induction of Abnormal Glycolysis in Diabetic Kidney with Fibrosis. Cell Death & Disease, 9, Article No. 997. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Huang, M., Chang, J., Liu, Y., et al. (2025) Apelin/APJ Alleviates Diabetic Nephropathy by Improving Glomerular Endothelial Cells Dysfunction via Sirt3‑KLF15. Molecular Medicine Reports, 31, 1-12.
|
|
[37]
|
Allemailem, K.S., Almatroudi, A., Alharbi, H.O.A., AlSuhaymi, N., Alsugoor, M.H., Aldakheel, F.M., et al. (2024) Apigenin: A Bioflavonoid with a Promising Role in Disease Prevention and Treatment. Biomedicines, 12, Article 1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Slika, H., Mansour, H., Wehbe, N., Nasser, S.A., Iratni, R., Nasrallah, G., et al. (2022) Therapeutic Potential of Flavonoids in Cancer: ROS-Mediated Mechanisms. Biomedicine & Pharmacotherapy, 146, Article ID: 112442. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ramesh, P., Jagadeesan, R., Sekaran, S., Dhanasekaran, A. and Vimalraj, S. (2021) Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Frontiers in Endocrinology, 12, Article 779638. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sun, Z., Li, L. and Zhang, L. (2025) Apigenin Enhancing Oxidative Resistance and Proteostasis to Extend Lifespan via PTEN-Mediated AKT Signalling Pathway. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1871, Article ID: 167670. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Oyenihi, O.R., Oyenihi, A.B., Alabi, T.D., Tade, O.G., Adeyanju, A.A. and Oguntibeju, O.O. (2022) Reactive Oxygen Species: Key Players in the Anticancer Effects of Apigenin? Journal of Food Biochemistry, 46, e14060. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jiang, X. and Huang, H. (2025) The Therapeutic Potential of Apigenin against Atherosclerosis. Heliyon, 11, e41272. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wu, Q., Li, W., Zhao, J., Sun, W., Yang, Q., Chen, C., et al. (2021) Apigenin Ameliorates Doxorubicin-Induced Renal Injury via Inhibition of Oxidative Stress and Inflammation. Biomedicine & Pharmacotherapy, 137, Article ID: 111308. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, H., Nie, P., Li, J., Wu, Y., Yao, B., Yang, Y., et al. (2024) Cyclophosphamide Induces Ovarian Granulosa Cell Ferroptosis via a Mechanism Associated with HO-1 and ROS-Mediated Mitochondrial Dysfunction. Journal of Ovarian Research, 17, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Tang, Q.Q., Wang, Z.D., An, X.H., et al. (2024) Apigenin Ameliorates H2O2-Induced Oxidative Damage in Melanocytes through Nuclear Factor-E2-Related Factor 2 (Nrf2) and Phosphatidylinositol 3-Kinase (PI3K)/Protein Kinase B (Akt)/Mammalian Target of Rapamycin (mTOR) Pathways and Reducing the Generation of Reactive Oxygen Species (ROS) in Zebrafish. Pharmaceuticals, 17, Article 1302. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ahmedy, O.A., Abdelghany, T.M., El-Shamarka, M.E.A., Khattab, M.A. and El-Tanbouly, D.M. (2022) Apigenin Attenuates LPS-Induced Neurotoxicity and Cognitive Impairment in Mice via Promoting Mitochondrial Fusion/Mitophagy: Role of Sirt3/Pink1/Parkin Pathway. Psychopharmacology, 239, 3903-3917. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Meng, Z., Gao, M., Wang, C., Guan, S., Zhang, D. and Lu, J. (2023) Apigenin Alleviated High-Fat-Diet-Induced Hepatic Pyroptosis by Mitophagy-ROS-CTSB-NLRP3 Pathway in Mice and AML12 Cells. Journal of Agricultural and Food Chemistry, 71, 7032-7045. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Hu, Q., Qu, C., Xiao, X., Zhang, W., Jiang, Y., Wu, Z., et al. (2021) Flavonoids on Diabetic Nephropathy: Advances and Therapeutic Opportunities. Chinese Medicine, 16, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Jain, T., Singh, M.P. and Gohil, K.J. (2025) Natural Flavonoids: Fortifying Renal Defence Mechanism. Current Drug Safety, 20, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Majid Muhammed, T., Turki Jalil, A., Mohammed Taher, W., Aminov, Z., Alsaikhan, F., Ramírez-Coronel, A.A., et al. (2024) The Effects of Apigenin in the Treatment of Diabetic Nephropathy: A Systematic Review of Non-Clinical Studies. Mini-Reviews in Medicinal Chemistry, 24, 341-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Hou, Y., Zhang, Y., Lin, S., et al. (2021) Protective Mechanism of Apigenin in Diabetic Nephropathy Is Related to Its Regulation of miR-423-5P-USF2 Axis. American Journal of Translational Research, 13, 2006-2020.
|
|
[52]
|
Malik, S., Suchal, K., Khan, S.I., et al. (2017) Apigenin Ameliorates Streptozotocin-Induced Diabetic Nephropathy in Rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-Fibronectin Pathways. American Journal of Physiology-Renal Physiology, 313, F414-F422. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, J., Zhao, X., Zhu, H., Wang, J., Ma, J. and Gu, M. (2019) Apigenin Protects against Renal Tubular Epithelial Cell Injury and Oxidative Stress by High Glucose via Regulation of NF-E2-Related Factor 2 (Nrf2) Pathway. Medical Science Monitor, 25, 5280-5288. [Google Scholar] [CrossRef] [PubMed]
|