|
[1]
|
Li, C., Wu, S., Sun, Y., Peng, X., Gong, M., Du, H., et al. (2024) Lhx2 Promotes Axon Regeneration of Adult Retinal Ganglion Cells and Rescues Neurodegeneration in Mouse Models of Glaucoma. Cell Reports Medicine, 5, Article ID: 101554. [Google Scholar] [CrossRef]
|
|
[2]
|
Chen, L., Yu, Z., Zhu, S., Song, S., He, G., Chi, Z., et al. (2025) Astrocyte-Derived Extracellular Vesicles Alleviate Optic Nerve Injury through Remodeling of Retinal Microenvironmental Homeostasis. Investigative Ophthalmology & Visual Science, 66, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Otmani, A., Jóhannesson, G., Brautaset, R., Tribble, J.R. and Williams, P.A. (2024) Prophylactic Nicotinamide Treatment Protects from Rotenone-Induced Neurodegeneration by Increasing Mitochondrial Content and Volume. Acta Neuropathologica Communications, 12, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Biousse, V. and Newman, N.J. (2015) Ischemic Optic Neuropathies. New England Journal of Medicine, 372, 2428-2436. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chaqour, B., Rossman, J.B., Meng, M., Dine, K.E., Ross, A.G. and Shindler, K.S. (2025) SIRT1-Based Therapy Targets a Gene Program Involved in Mitochondrial Turnover in a Model of Retinal Neurodegeneration. Scientific Reports, 15, Article No. 13585. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
刘晓, 郝飞, 段红梅, 等. 视神经损伤与再生的研究进展[J]. 中国科学: 生命科学, 2023, 53(4): 417-430.
|
|
[7]
|
Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., et al. (2008) Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 322, 963-966. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nguyen-Ba-Charvet, K.T. and Rebsam, A. (2020) Neurogenesis and Specification of Retinal Ganglion Cells. International Journal of Molecular Sciences, 21, Article 451. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sanes, J.R. and Masland, R.H. (2015) The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annual Review of Neuroscience, 38, 221-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, L., Tao, Y., Pan, Q., Cai, T., Ye, Y., Liu, J., et al. (2025) A scRNA-Seq Reference Contrasting Living and Early Post-Mortem Human Retina across Diverse Donor States. Human Genomics, 19, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sabbah, S., Gemmer, J.A., Bhatia-Lin, A., Manoff, G., Castro, G., Siegel, J.K., et al. (2017) A Retinal Code for Motion along the Gravitational and Body Axes. Nature, 546, 492-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pickard, G.E. and Sollars, P.J. (2011) Intrinsically Photosensitive Retinal Ganglion Cells. In: Nilius, B., et al., Eds., Reviews of Physiology, Biochemistry and Pharmacology, Springer, 59-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mills, S.L., Tian, L., Hoshi, H., Whitaker, C.M. and Massey, S.C. (2014) Three Distinct Blue-Green Color Pathways in a Mammalian Retina. The Journal of Neuroscience, 34, 1760-1768. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tran, N.M., Shekhar, K., Whitney, I.E., Jacobi, A., Benhar, I., Hong, G., et al. (2019) Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron, 104, 1039-1055.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Santos, J.R.F., Li, C., Andries, L., Masin, L., Nuttin, B., Reinhard, K., et al. (2025) Developmental Trajectories Predict Dendritic Remodeling after Injury. iScience, 28, 113373. [Google Scholar] [CrossRef]
|
|
[16]
|
Masri, R.A., Percival, K.A., Koizumi, A., Martin, P.R. and Grünert, U. (2017) Survey of Retinal Ganglion Cell Morphology in Marmoset. Journal of Comparative Neurology, 527, 236-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M. and Euler, T. (2016) The Functional Diversity of Retinal Ganglion Cells in the Mouse. Nature, 529, 345-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bae, J.A., Mu, S., Kim, J.S., Turner, N.L., Tartavull, I., Kemnitz, N., et al. (2018) Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology. Cell, 173, 1293-1306.e19. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., et al. (2018) Single Cell Transcriptome Profiling of Retinal Ganglion Cells Identifies Cellular Subtypes. Nature Communications, 9, Article No. 2759. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Briggman, K.L., Helmstaedter, M. and Denk, W. (2011) Wiring Specificity in the Direction-Selectivity Circuit of the Retina. Nature, 471, 183-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dhande, O.S. and Huberman, A.D. (2014) Retinal Ganglion Cell Maps in the Brain: Implications for Visual Processing. Current Opinion in Neurobiology, 24, 133-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cleland, B.G., Levick, W.R. and Wässle, H. (1975) Physiological Identification of a Morphological Class of Cat Retinal Ganglion Cells. The Journal of Physiology, 248, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Peichl, L. (1989) α and δ Ganglion Cells in the Rat Retina. Journal of Comparative Neurology, 286, 120-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gallego-Ortega, A., Norte-Muñoz, M., Di Pierdomenico, J., Avilés-Trigueros, M., de la Villa, P., Valiente-Soriano, F.J., et al. (2022) α Retinal Ganglion Cells in Pigmented Mice Retina: Number and Distribution. Frontiers in Neuroanatomy, 16, Article 1054849. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Duan, X., Qiao, M., Bei, F., Kim, I., He, Z. and Sanes, J.R. (2015) Subtype-Specific Regeneration of Retinal Ganglion Cells Following Axotomy: Effects of Osteopontin and mTOR Signaling. Neuron, 85, 1244-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Krieger, B., Qiao, M., Rousso, D.L., Sanes, J.R. and Meister, M. (2017) Four α Ganglion Cell Types in Mouse Retina: Function, Structure, and Molecular Signatures. PLOS ONE, 12, e0180091. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sanes, J.R. and Masland, R.H. (2015) The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annual Review of Neuroscience, 38, 221-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lyu, J. and Mu, X. (2021) Genetic Control of Retinal Ganglion Cell Genesis. Cellular and Molecular Life Sciences, 78, 4417-4433. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kerschensteiner, D. and Guido, W. (2017) Organization of the Dorsal Lateral Geniculate Nucleus in the Mouse. Visual Neuroscience, 34, E008. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hattar, S., Liao, H., Takao, M., Berson, D.M. and Yau, K. (2002) Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science, 295, 1065-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F. and Rollag, M.D. (2000) A Novel Human Opsin in the Inner Retina. The Journal of Neuroscience, 20, 600-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B. and Jegla, T. (2005) Illumination of the Melanopsin Signaling Pathway. Science, 307, 600-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pires, S.S., Hughes, S., Turton, M., Melyan, Z., Peirson, S.N., Zheng, L., et al. (2009) Differential Expression of Two Distinct Functional Isoforms of Melanopsin (opn4) in the Mammalian Retina. The Journal of Neuroscience, 29, 12332-12342. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schmidt, T.M., Chen, S. and Hattar, S. (2011) Intrinsically Photosensitive Retinal Ganglion Cells: Many Subtypes, Diverse Functions. Trends in Neurosciences, 34, 572-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Liao, H., Ren, X., Peterson, B.B., Marshak, D.W., Yau, K., Gamlin, P.D., et al. (2016) Melanopsin‐Expressing Ganglion Cells on Macaque and Human Retinas Form Two Morphologically Distinct Populations. Journal of Comparative Neurology, 524, 2845-2872. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Johnson, E.N., Westbrook, T., Shayesteh, R., Chen, E.L., Schumacher, J.W., Fitzpatrick, D., et al. (2017) Distribution and Diversity of Intrinsically Photosensitive Retinal Ganglion Cells in Tree Shrew. Journal of Comparative Neurology, 527, 328-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Schmidt, T.M. and Kofuji, P. (2009) Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells. The Journal of Neuroscience, 29, 476-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fernandez, D.C., Fogerson, P.M., Lazzerini Ospri, L., Thomsen, M.B., Layne, R.M., Severin, D., et al. (2018) Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell, 175, 71-84.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sondereker, K.B., Stabio, M.E. and Renna, J.M. (2020) Crosstalk: The Diversity of Melanopsin Ganglion Cell Types Has Begun to Challenge the Canonical Divide between Image‐Forming and Non‐Image‐Forming Vision. Journal of Comparative Neurology, 528, 2044-2067. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sonoda, T., Okabe, Y. and Schmidt, T.M. (2019) Overlapping Morphological and Functional Properties between M4 and M5 Intrinsically Photosensitive Retinal Ganglion Cells. Journal of Comparative Neurology, 528, 1028-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Schmidt, T.M., Alam, N.M., Chen, S., Kofuji, P., Li, W., Prusky, G.T., et al. (2014) A Role for Melanopsin in α Retinal Ganglion Cells and Contrast Detection. Neuron, 82, 781-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sonoda, T., Lee, S.K., Birnbaumer, L. and Schmidt, T.M. (2018) Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron, 99, 754-767.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, A., Liu, Y., Wang, G., Shao, Y., Yu, C., Yang, Z., et al. (2022) The Role of ipRGCs in Ocular Growth and Myopia Development. Science Advances, 8, eabm9027. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Barlow, H.B., Hill, R.M. and Levick, W.R. (1964) Retinal Ganglion Cells Responding Selectively to Direction and Speed of Image Motion in the Rabbit. The Journal of Physiology, 173, 377-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, J. (2015) The Anatomy and Physiology of Direction-Selective Retinal Ganglion Cells. https://www.ncbi.nlm.nih.gov/books/NBK321299/
|
|
[46]
|
Oyster, C.W. and Barlow, H.B. (1967) Direction-selective Units in Rabbit Retina: Distribution of Preferred Directions. Science, 155, 841-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Trenholm, S., Johnson, K., Li, X., Smith, R.G. and Awatramani, G.B. (2011) Parallel Mechanisms Encode Direction in the Retina. Neuron, 71, 683-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Sun, W., Deng, Q., Levick, W.R. and He, S. (2006) On Direction‐Selective Ganglion Cells in the Mouse Retina. The Journal of Physiology, 576, 197-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kim, I., Zhang, Y., Yamagata, M., Meister, M. and Sanes, J.R. (2008) Molecular Identification of a Retinal Cell Type That Responds to Upward Motion. Nature, 452, 478-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kay, J.N., De la Huerta, I., Kim, I., Zhang, Y., Yamagata, M., Chu, M.W., et al. (2011) Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections. The Journal of Neuroscience, 31, 7753-7762. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gauvain, G. and Murphy, G.J. (2015) Projection-specific Characteristics of Retinal Input to the Brain. The Journal of Neuroscience, 35, 6575-6583. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Levick, W.R. (1967) Receptive Fields and Trigger Features of Ganglion Cells in the Visual Streak of the Rabbit’s Retina. The Journal of Physiology, 188, 285-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Jacoby, J. and Schwartz, G.W. (2016) Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion. The Journal of Neuroscience, 37, 610-625. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhang, Y., Kim, I., Sanes, J.R. and Meister, M. (2012) The Most Numerous Ganglion Cell Type of the Mouse Retina Is a Selective Feature Detector. Proceedings of the National Academy of Sciences of the United States of America, 109, E2391-E2398. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
VanderWall, K.B., Lu, B., Alfaro, J.S., Allsop, A.R., Carr, A.S., Wang, S., et al. (2020) Differential Susceptibility of Retinal Ganglion Cell Subtypes in Acute and Chronic Models of Injury and Disease. Scientific Reports, 10, Article No. 17359. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ou, Y., Jo, R.E., Ullian, E.M., Wong, R.O.L. and Della Santina, L. (2016) Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. Journal of Neuroscience, 36, 9240-9252. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhang, N., He, X., Xing, Y. and Yang, N. (2022) Differential Susceptibility of Retinal Ganglion Cell Subtypes against Neurodegenerative Diseases. Graefe’s Archive for Clinical and Experimental Ophthalmology, 260, 1807-1821. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhao, M., Toma, K., Kinde, B., Li, L., Patel, A.K., Wu, K., et al. (2023) Osteopontin Drives Retinal Ganglion Cell Resiliency in Glaucomatous Optic Neuropathy. Cell Reports, 42, Article ID: 113038. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Muench, N.A., Patel, S., Maes, M.E., Donahue, R.J., Ikeda, A. and Nickells, R.W. (2021) The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells, 10, Article 1593. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Kingston, R., Amin, D., Misra, S., Gross, J.M. and Kuwajima, T. (2021) Serotonin Transporter-Mediated Molecular Axis Regulates Regional Retinal Ganglion Cell Vulnerability and Axon Regeneration after Nerve Injury. PLOS Genetics, 17, e1009885. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, X., Yang, C., Zhang, C., Wu, J., Zhang, X., Gao, J., et al. (2025) Functional Optic Tract Rewiring via Subtype-and Target-Specific Axonal Regeneration and Presynaptic Activity Enhancement. Nature Communications, 16, Article No. 2174. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Jacobi, A., Tran, N.M., Yan, W., Benhar, I., Tian, F., Schaffer, R., et al. (2022) Overlapping Transcriptional Programs Promote Survival and Axonal Regeneration of Injured Retinal Ganglion Cells. Neuron, 110, 2625-2645.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Bray, E.R., Yungher, B.J., Levay, K., Ribeiro, M., Dvoryanchikov, G., Ayupe, A.C., et al. (2019) Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron, 103, 642-657.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Peng, Y., Shekhar, K., Yan, W., Herrmann, D., Sappington, A., Bryman, G.S., et al. (2019) Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell, 176, 1222-1237.e22. [Google Scholar] [CrossRef] [PubMed]
|