靶向视网膜神经节细胞亚型的视神经保护与再生的研究进展
Research Advances in Optic Nerve Protection and Regeneration Targeting Retinal Ganglion Cells Subtypes
摘要: 视神经损伤通常导致不可逆性视力丧失。视网膜神经节细胞(RGCs)作为连接眼球与大脑的唯一输出神经元,是视觉通路中至关重要的一类神经细胞。近年来,随着技术的不断进步,人们逐渐发现RGCs在形态、基因表达、功能和中枢投射上都具有显著的异质性。不同的RGCs亚型对损伤的易感性和内在再生能力亦各有差异。本综述系统总结了RGCs亚型的异质性特征,阐述了各亚型在损伤应答中的差异,并探讨了针对特定亚型的视神经保护与轴突再生策略。
Abstract: Optic nerve injury always leads to irreversible vision loss. Retinal ganglion cells (RGCs) are the sole output neurons connecting the eye to the brain and the most critical type of neurons in the visual pathway. In recent years, advancements in technology have revealed significant heterogeneity in the morphology, gene expression, function, and connectivity of RGCs. Different RGC subtypes exhibit varying susceptibilities to injury and intrinsic regenerative capabilities. This review systematically summarizes the heterogeneity of RGC subtypes, elaborates on the differences in their responses to injury, and explores neuroprotection and axon regeneration strategies targeting specific subtypes.
文章引用:梁媛婷, 陈佳卿, 李令洁, 刘小勇. 靶向视网膜神经节细胞亚型的视神经保护与再生的研究进展[J]. 临床医学进展, 2026, 16(2): 122-130. https://doi.org/10.12677/acm.2026.162369

1. 引言

视神经损伤会引发神经轴突的变性以及视网膜神经节细胞(retinal ganglion cells, RGCs)的渐进性凋亡。这一过程是多种致盲性眼病的共同病理基础,包括青光眼[1]、创伤性视神经病变[2]、Leber遗传性视神经病变[3]、缺血性视神经病变[4]及视神经炎[5]等。一直以来,研究主要致力于通过调控抑制性微环境、激活细胞内再生信号通路以及补充神经营养因子等策略,以实现群体性RGCs的有效保护[6] [7]。但这些措施的临床转化仍面临严峻挑战,功能性视觉恢复的效果仍极为有限。

RGCs是位于视网膜内层的一类神经元,其轴突聚合形成视神经,向大脑投射,负责将视网膜处理后的视觉信息传递至高级中枢[8]。近年来的研究表明,RGCs作为视觉通路的最终输出神经元,并非功能一致的单一细胞类型,而是由数十种在形态、功能、分子标志和中枢投射靶点上各具特征的亚型组成的复杂群体[9] [10]。这些亚型分别负责编码方向、亮度、颜色等不同的视觉模态[11]-[13]。此外,在视神经挤压(ONC)后,不同RGCs亚型的存活和再生能力存在显著差异[14] [15]。因此,精准识别并靶向最关键、最脆弱或最具再生潜力的RGCs亚型,为视神经保护和再生研究提供了新的可能性和研究方向。

2. RGCs亚型的分类

在RGCs亚型分类的研究中,长期缺乏统一且标准化的分类框架。传统上,研究者主要依据三类标准对RGCs进行划分:一是基于形态学特征,如胞体大小与位置、树突野尺寸及其在内丛状层中的分层深度[16];二是基于生理功能特性,包括方向选择性、方位选择性、运动敏感性以及内在光敏感性等[17] [18];三是依赖分子标志物,如RBPMS、Tubb3、Opn4、Runx1、Zic1等特定转录因子或蛋白表达[19]。然而,这些分别基于“形态”、“功能”、“分子”的标准之间并非一一对应,揭示了RGCs群体内在的复杂性。Bae等[18]与Briggman等[20]的研究发现形态相似的RGCs可以参与编码不同的视觉信息;Dhande等[21]发现即使表达相同的分子标记,RGCs在功能反应上也表现出明显的异质性。尽管当前分类体系尚未统一,随着神经科学研究技术与理论的持续进步,部分RGCs亚型在视觉通路中的功能角色已逐步阐明。

2.1. Alpha RGC (aRGC)

aRGC是RGCs中高度保守且最为典型的亚型之一,在多种哺乳动物中均有分布[22] [23]。具有胞体大、轴突粗、树突野宽阔且呈单分层分布的独特的形态学特征[24],并且高表达神经丝蛋白(SMI-32) [25]。根据aRGC的光反应极性与动力学特性,可进一步分为四种功能亚型:撤光持续型aRGC、撤光瞬时型aRGC、给光持续型aRGC和给光瞬时型aRGC。这些亚型在视网膜中呈镶嵌式分布,持续型亚型主要位于外周区域,而瞬时型亚型则集中分布于中央区域[24] [26]。这种形态学特征和分布模式与其独特的生理功能密切相关。aRGC具有快速的电生理反应和较大的感受野,能够高效地将视觉信息传递至位于大脑的上丘(SC)浅层和背外侧膝状体(dLGN)的视觉中枢。当遇到新刺激时,aRGC是最早向大脑发出信号的细胞之一,能够迅速介导视觉引导的逃避行为[9]。在分子层面,所有aRGC亚型均高表达Spp1和kcng4基因,其中Spp1编码分泌型磷蛋白骨桥蛋白,kcng4编码电压门控钾通道亚单位[27],并均可被SMI-32抗体标记。然而,不同亚型在分子标记上也存在差异。例如,ON型和OFF型分别表达Opn4和Tbr1 [14] [27]。此外,给光持续型aRGC低水平表达黑视蛋白,因此也对光具有弱反应性[28]

2.2. 内在光敏感视网膜神经节细胞(Intrinsically Photosensitive Retinal Ganglion Cells, ipRGCs)

ipRGCs是继视锥细胞和视杆细胞之后发现的第三类视网膜感光细胞[29]。ipRGCs的胞体和轴突特异性表达黑视蛋白,该蛋白由Opn4基因编码,使其兼具光感受和信号输出的双重功能[30]-[32]。ipRGCs的胞体位于神经节细胞层(GCL),树突分布于内丛状层(INL)的特定亚层,并在这些亚层中与不同类型的双极细胞和无长突细胞形成特异性突触连接[33]。根据形态学特征、生理特性及投射靶区的不同,小鼠的ipRGCs被划分为M1至M6六个亚型。目前,在灵长类动物视网膜中已发现两种类型的ipRGCs,分别类似于小鼠的M1和M2亚型[34] [35]。其中,M1亚型细胞的黑视蛋白表达水平最高,对光的固有反应最为敏感,是介导非成像视觉功能的核心细胞群,主要投射至视交叉上核(SCN)和橄榄顶盖前核(OPN),分别调控昼夜节律和瞳孔对光反射[29] [36]。此外,研究发现,M1亚型还通过非依赖SCN的路径投射至外侧缰核边缘区(pHb),介导光对情绪变化的影响[37]。M2亚型亦参与昼夜节律调控和瞳孔对光反射[38]。而M4和M5亚型则与成像视觉功能有关,主要投射至dLGN,在色觉编码[39]和对比敏感度调控[40] [41]中发挥作用。此外,Liu等的研究发现,ipRGCs还在眼球屈光发育及形觉剥夺性近视的形成中具有重要作用[42]

2.3. 方向选择性神经节细胞(Direction-Selective Ganglion Cells, DSGCs)

DSGCs是一类对方向性运动敏感的神经细胞[43]。根据对光刺激的反应特性,DSGCs可分为三大亚型:ON-OFF-DSGCs (ooDSGCs)、ON-DSGCs和OFF-DSGCs。形态学上,ooDSGCs的树突呈双层分布,分别位于IPL的ON和OFF亚层,并与谷氨酸能双极细胞以及星爆无长突细胞形成突触连接;ON-DSGCs的树突仅分布在IPL的ON亚层,而OFF-DSGCs的树突呈单层分布、非对称性,主要向腹侧延伸,位于IPL的OFF亚层最外侧[44]。根据运动偏好方向的不同,ooDSGCs进一步分为四个小亚型,分别对背侧、腹侧、鼻侧和颞侧方向的运动敏感。偏好方向的刺激会引发最显著的动作电位尖峰,而在零方向(相反方向)几乎无响应[45] [46]。ON-DSGCs主要负责编码背向、腹向和鼻向的运动[47];OFF-DSGCs则检测视觉场景中的向上运动,并特异性高表达连接粘附分子B (JAM-B),因此也被称为J-RGC [48] [49]。DSGCs的轴突主要投射至SC和dLGN,为大脑提供视觉空间运动信息,参与运动物体的视觉行为反射调控[50]

2.4. 局部边缘侦查器(Local Edge Detector, LED)

LED最早在家兔视网膜中被发现,是一类特征检测型的RGCs [51]。后续研究发现,小鼠视网膜中存在一种进化上高度保守的RGCs类型,其在形态和生理特性上与LED高度相似,被命名为W3-RGC [52]。在形态学上,LED的树突广泛分布于IPL的ON-OFF交界处,树突野面积小,胞体小但数量密集,主要分布在视网膜腹侧区域。这种结构特性与LED的功能紧密相关。功能上,LED选择性响应亮度边缘,具有中心–周边拮抗的感受野特性,仅对感受野内的小范围运动刺激产生反应,而对大范围的全局刺激无响应。尽管这些细胞对运动高度敏感,但并不具备方向选择性。此外,在主动运动期间,LED不参与常规图像编码,而是专门用于探测潜在威胁(如空中捕食者) [52] [53]。因此,该类细胞在动物生存中可能扮演着至关重要的角色。

3. RGCs亚型与视神经的保护和再生

3.1. 不同RGCs亚型的易损性差异

越来越多的研究表明,不同亚型的RGCs在损伤后的易损性存在显著差异。这种异质性主要与损伤类型及亚型的分子和形态特征相关[14] [54]

在急性视神经挤压模型中,给光/撤光持续型aRGC和ipRGCs表现出较强的耐受性;而撤光瞬时型aRGC对损伤高度敏感,其树突复杂性显著降低、树突野面积减少,甚至发生萎缩[54] [55]。在慢性高眼压模型中,aRGC整体表现出更强的耐受性;而ipRGCs亚型之间存在差异,其中M1型高度耐受,而M4型更易受损[54]。同一亚型RGCs在不同损伤条件下的存活率差异,可能受损伤微环境的影响,如炎症因子水平、氧化应激程度等。另外,DSGCs在两种损伤模型中均表现出高度易损性,损伤后细胞丢失率显著高于其他亚型;J-RGC和W3-RGC在兴奋性毒性损伤或视神经损伤模型中的存活率通常低于20%,属于典型的高易损亚型[56]

亚型特异性分子信号通路的激活能调控RGCs易损性。Zhao等[57]的研究发现,aRGC在青光眼视神经病变中的存活能力相对较强,这一现象与Spp1信号通路的特异性激活密切相关。Spp1在损伤后表达上调,通过与受体ItgaV结合促进aRGC存活;同时,升高的Spp1可进一步mTOR信号通路,增强细胞代谢活性及损伤修复能力。ipRGCs的高损伤耐受性同样与Spp1/mTOR通路相关。ipRGCs本身高表达Spp1,且损伤后维持较高的mTOR活性,使其具有较强的抗凋亡能力。

RGCs亚型的易损性差异还与细胞内在的细胞器功能异质性密切相关,包括线粒体动力学与内质网应激反应。青光眼模型中,眼压升高诱导高易损亚型RGCs发生Drp1介导的线粒体过度分裂,损伤后线粒体自噬激活延迟,导致活性氧积累和凋亡通路激活。而aRGC、ipRGCs等耐受亚型的线粒体融合能力更强,通过自噬快速清除受损线粒体,维持能量代谢稳态,从而延缓凋亡[58]。另外,高易损亚型的内质网应激阈值更低,损伤后未折叠蛋白反应更偏向促凋亡方向,而耐受亚型通过IRE1-Xbp1通路迅速恢复蛋白折叠稳态,减轻内质网应激损伤[58]

除此之外,RGCs的区域分布也参与易损性调控。Kingston等[59]的研究发现,急性视神经损伤后,视网膜腹颞侧区域的RGCs更早发生退行性病变,这种区域特异性易损性由血清素转运蛋白–整合素β3轴介导。该信号轴在损伤后快速激活,将神经退行和再生抑制信号特异性传递至腹颞侧视网膜的RGCs,同时显著下调具有神经保护作用的跨膜蛋白GPNMB的表达,最终导致该区域RGCs早期损伤。

综上,当前研究普遍认为,给光型RGCs对损伤具有更强的耐受性,而撤光型RGCs更易受损。分子层面上,耐受型RGCs通常高表达Spp1并维持活跃的mTOR信号。这些研究结果反映了RGCs对损伤反应的复杂性,其易损性及机制还需持续深入研究和进一步阐明。

3.2. 不同RGCs亚型的再生能力差异

与易损性相似,不同RGCs亚型的再生能力也表现出显著的异质性。在各类RGCs中,ipRGCs表现出最强的内源性再生能力。在小鼠视束损伤(OTI)模型中,Zhang等[60]的研究表明,通过敲除PTEN和Socs3基因并过表达睫状神经营养因子(CNTF),可促进视束再生并实现对OPN的再支配。再生的轴突大多来源于ipRGCs,并能与OPN神经元建立新的功能性突触连接。此外,ipRGCs的轴突再生距离显著超过其他亚型,并能部分恢复瞳孔对光反射功能。其机制可能与以下几个方面有关:1) mTOR信号通路增强促进轴突再生,且PTEN缺失与CNTF过表达具有协同作用;2) 在OTI模型中,DLK信号激活缓慢且水平较低,从而减轻损伤后的RGCs应激性凋亡;3) 干预后,轴突再生相关基因表达增多,如Sox11、Sprr1a、Gal、Atf3,进一步增强再生能力。相比之下,aRGC的再生能力弱于ipRGCs,但在特定干预下可实现再生。研究显示,敲除PTEN可显著增强aRGC的轴突再生能力[61]。Duan等[25]发现,激活mTOR信号通路并联合过表达OPN与IGF-1,能有效促进aRGC轴突再生,效果与抑制PTEN表达相当。同时,mTOR通路活化对aRGC再生至关重要,抑制该通路会显著削弱其再生能力。

然而,部分RGCs亚型属于再生惰性亚型,即便施加强再生干预,也难以有效再生。例如,DSGCs在PTEN抑制与Bax缺陷条件下均未见明显轴突再生[25] [62];W3-RGC在PTEN抑制后也未观察到再生[25]

总而言之,靶向RGCs亚型的视神经保护和再生的原则是减少高易损亚型的细胞丢失,增强高再生潜能亚型的内在能力,维持视觉神经回路的完整性,进一步恢复视觉功能。

3.3. 小鼠与灵长类动物:RGCs亚型特征的保守性与转化挑战

目前,关于视神经保护与再生的研究仍主要集中在动物实验阶段。然而,将在啮齿类动物中观察到的显著视神经保护与再生效果转化为安全有效的临床应用方案,仍面临巨大挑战。

首先,尽管小鼠和灵长类动物的aRGC和ipRGCs在进化上具有保守性,但它们在RGCs细胞类型和分布上仍存在显著物种差异。目前的研究表明,小鼠中已鉴定出超过40种RGCs类型,且每种类型所占比例均低于10%,未见单一类型占据主导地位。然而,Peng等[63]通过scRNA-Seq发现,在灵长类动物猴子中,仅检测到少于20种RGCs类型,其中Midget RGCs (MGCs)和Parasol RGCs (PGCs)占据视网膜RGCs总数的85%~95%。灵长类动物的RGCs类型数量虽少于小鼠,但其视觉能力却更强,这可能是因为灵长类动物较少依赖视网膜的广泛特征检测器,而更多依赖于大脑皮层的复杂信息处理。此外,灵长类动物特有的中央凹结构使得RGCs亚型在GCL层中的空间分布具有高度特异性。例如,表达MEIS2的OFF-MGCs与表达EOMES的ON-MGCs在GCL层内表现为内半层和外半层的分离分布,而这种精细结构在小鼠中尚未见报道[63]。这些基础性的结构差异和信息处理机制的不同,表明在小鼠中发现的RGCs相关机制可能在灵长类动物中存在根本性的差异。

在分子水平上,尽管小鼠和灵长类动物的RGCs类型缺乏完全的一一对应关系,但其核心转录因子在物种间具有高度保守性。例如,小鼠中决定RGCs亚型特征的转录因子Tbr1、Eomes、Satb2、Tbx20和Foxp2等,在灵长类动物的RGCs亚型中也被选择性表达。然而,这些转录因子所调控的靶基因在不同物种间存在显著差异[63]。此外,与人类视网膜疾病相关的基因,如青光眼相关基因CYP1B1、CYP26A1,以及糖尿病性黄斑水肿相关基因PDGFB、EDN1,在猴子视网膜中表现出明显的区域和细胞类型的选择性表达。然而,这些基因的表达模式在小鼠中并不完全相似[63]。所以,基于小鼠模型筛选的疾病机制或药物靶点,在应用于人类时可能因为物种差异而失败。

综上所述,尽管小鼠和灵长类动物的RGCs存在一定的保守性,但由于显著的物种差异,导致实验研究到临床转化的复杂性,亦提醒我们基于灵长类模型开展RGCs相关疾病机制研究和药物研发的必要性。

4. 总结与展望

综上所述,RGCs是视觉信息从视网膜传递到中枢视觉处理区域的唯一投射神经元,具有显著的结构和功能多样性。近年来的研究表明,不同RGCs亚型在损伤后表现出显著的反应差异,包括对损伤的易感性和轴突再生能力的不同。视神经损伤后,大部分RGCs会渐进性凋亡,只有少数特定亚型能够存活并实现轴突再生。并且,即便是同一亚型,其对损伤的反应和再生潜力也可能因损伤类型和微环境的差异而有所不同。这些发现重塑了我们对视神经损伤及修复机制的理解。因此,系统研究不同RGCs亚型在多种病理状态下的损伤表现与内在机制,将有助于推动基于RGCs亚型特异性的视神经保护与再生策略,为患者的视觉功能恢复带来了新的希望。

NOTES

*通讯作者。

参考文献

[1] Li, C., Wu, S., Sun, Y., Peng, X., Gong, M., Du, H., et al. (2024) Lhx2 Promotes Axon Regeneration of Adult Retinal Ganglion Cells and Rescues Neurodegeneration in Mouse Models of Glaucoma. Cell Reports Medicine, 5, Article ID: 101554. [Google Scholar] [CrossRef
[2] Chen, L., Yu, Z., Zhu, S., Song, S., He, G., Chi, Z., et al. (2025) Astrocyte-Derived Extracellular Vesicles Alleviate Optic Nerve Injury through Remodeling of Retinal Microenvironmental Homeostasis. Investigative Ophthalmology & Visual Science, 66, 16. [Google Scholar] [CrossRef] [PubMed]
[3] Otmani, A., Jóhannesson, G., Brautaset, R., Tribble, J.R. and Williams, P.A. (2024) Prophylactic Nicotinamide Treatment Protects from Rotenone-Induced Neurodegeneration by Increasing Mitochondrial Content and Volume. Acta Neuropathologica Communications, 12, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
[4] Biousse, V. and Newman, N.J. (2015) Ischemic Optic Neuropathies. New England Journal of Medicine, 372, 2428-2436. [Google Scholar] [CrossRef] [PubMed]
[5] Chaqour, B., Rossman, J.B., Meng, M., Dine, K.E., Ross, A.G. and Shindler, K.S. (2025) SIRT1-Based Therapy Targets a Gene Program Involved in Mitochondrial Turnover in a Model of Retinal Neurodegeneration. Scientific Reports, 15, Article No. 13585. [Google Scholar] [CrossRef] [PubMed]
[6] 刘晓, 郝飞, 段红梅, 等. 视神经损伤与再生的研究进展[J]. 中国科学: 生命科学, 2023, 53(4): 417-430.
[7] Park, K.K., Liu, K., Hu, Y., Smith, P.D., Wang, C., Cai, B., et al. (2008) Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 322, 963-966. [Google Scholar] [CrossRef] [PubMed]
[8] Nguyen-Ba-Charvet, K.T. and Rebsam, A. (2020) Neurogenesis and Specification of Retinal Ganglion Cells. International Journal of Molecular Sciences, 21, Article 451. [Google Scholar] [CrossRef] [PubMed]
[9] Sanes, J.R. and Masland, R.H. (2015) The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annual Review of Neuroscience, 38, 221-246. [Google Scholar] [CrossRef] [PubMed]
[10] Yang, L., Tao, Y., Pan, Q., Cai, T., Ye, Y., Liu, J., et al. (2025) A scRNA-Seq Reference Contrasting Living and Early Post-Mortem Human Retina across Diverse Donor States. Human Genomics, 19, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
[11] Sabbah, S., Gemmer, J.A., Bhatia-Lin, A., Manoff, G., Castro, G., Siegel, J.K., et al. (2017) A Retinal Code for Motion along the Gravitational and Body Axes. Nature, 546, 492-497. [Google Scholar] [CrossRef] [PubMed]
[12] Pickard, G.E. and Sollars, P.J. (2011) Intrinsically Photosensitive Retinal Ganglion Cells. In: Nilius, B., et al., Eds., Reviews of Physiology, Biochemistry and Pharmacology, Springer, 59-90. [Google Scholar] [CrossRef] [PubMed]
[13] Mills, S.L., Tian, L., Hoshi, H., Whitaker, C.M. and Massey, S.C. (2014) Three Distinct Blue-Green Color Pathways in a Mammalian Retina. The Journal of Neuroscience, 34, 1760-1768. [Google Scholar] [CrossRef] [PubMed]
[14] Tran, N.M., Shekhar, K., Whitney, I.E., Jacobi, A., Benhar, I., Hong, G., et al. (2019) Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron, 104, 1039-1055.e12. [Google Scholar] [CrossRef] [PubMed]
[15] Santos, J.R.F., Li, C., Andries, L., Masin, L., Nuttin, B., Reinhard, K., et al. (2025) Developmental Trajectories Predict Dendritic Remodeling after Injury. iScience, 28, 113373. [Google Scholar] [CrossRef
[16] Masri, R.A., Percival, K.A., Koizumi, A., Martin, P.R. and Grünert, U. (2017) Survey of Retinal Ganglion Cell Morphology in Marmoset. Journal of Comparative Neurology, 527, 236-258. [Google Scholar] [CrossRef] [PubMed]
[17] Baden, T., Berens, P., Franke, K., Román Rosón, M., Bethge, M. and Euler, T. (2016) The Functional Diversity of Retinal Ganglion Cells in the Mouse. Nature, 529, 345-350. [Google Scholar] [CrossRef] [PubMed]
[18] Bae, J.A., Mu, S., Kim, J.S., Turner, N.L., Tartavull, I., Kemnitz, N., et al. (2018) Digital Museum of Retinal Ganglion Cells with Dense Anatomy and Physiology. Cell, 173, 1293-1306.e19. [Google Scholar] [CrossRef] [PubMed]
[19] Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., et al. (2018) Single Cell Transcriptome Profiling of Retinal Ganglion Cells Identifies Cellular Subtypes. Nature Communications, 9, Article No. 2759. [Google Scholar] [CrossRef] [PubMed]
[20] Briggman, K.L., Helmstaedter, M. and Denk, W. (2011) Wiring Specificity in the Direction-Selectivity Circuit of the Retina. Nature, 471, 183-188. [Google Scholar] [CrossRef] [PubMed]
[21] Dhande, O.S. and Huberman, A.D. (2014) Retinal Ganglion Cell Maps in the Brain: Implications for Visual Processing. Current Opinion in Neurobiology, 24, 133-142. [Google Scholar] [CrossRef] [PubMed]
[22] Cleland, B.G., Levick, W.R. and Wässle, H. (1975) Physiological Identification of a Morphological Class of Cat Retinal Ganglion Cells. The Journal of Physiology, 248, 151-171. [Google Scholar] [CrossRef] [PubMed]
[23] Peichl, L. (1989) α and δ Ganglion Cells in the Rat Retina. Journal of Comparative Neurology, 286, 120-139. [Google Scholar] [CrossRef] [PubMed]
[24] Gallego-Ortega, A., Norte-Muñoz, M., Di Pierdomenico, J., Avilés-Trigueros, M., de la Villa, P., Valiente-Soriano, F.J., et al. (2022) α Retinal Ganglion Cells in Pigmented Mice Retina: Number and Distribution. Frontiers in Neuroanatomy, 16, Article 1054849. [Google Scholar] [CrossRef] [PubMed]
[25] Duan, X., Qiao, M., Bei, F., Kim, I., He, Z. and Sanes, J.R. (2015) Subtype-Specific Regeneration of Retinal Ganglion Cells Following Axotomy: Effects of Osteopontin and mTOR Signaling. Neuron, 85, 1244-1256. [Google Scholar] [CrossRef] [PubMed]
[26] Krieger, B., Qiao, M., Rousso, D.L., Sanes, J.R. and Meister, M. (2017) Four α Ganglion Cell Types in Mouse Retina: Function, Structure, and Molecular Signatures. PLOS ONE, 12, e0180091. [Google Scholar] [CrossRef] [PubMed]
[27] Sanes, J.R. and Masland, R.H. (2015) The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annual Review of Neuroscience, 38, 221-246. [Google Scholar] [CrossRef] [PubMed]
[28] Lyu, J. and Mu, X. (2021) Genetic Control of Retinal Ganglion Cell Genesis. Cellular and Molecular Life Sciences, 78, 4417-4433. [Google Scholar] [CrossRef] [PubMed]
[29] Kerschensteiner, D. and Guido, W. (2017) Organization of the Dorsal Lateral Geniculate Nucleus in the Mouse. Visual Neuroscience, 34, E008. [Google Scholar] [CrossRef] [PubMed]
[30] Hattar, S., Liao, H., Takao, M., Berson, D.M. and Yau, K. (2002) Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science, 295, 1065-1070. [Google Scholar] [CrossRef] [PubMed]
[31] Provencio, I., Rodriguez, I.R., Jiang, G., Hayes, W.P., Moreira, E.F. and Rollag, M.D. (2000) A Novel Human Opsin in the Inner Retina. The Journal of Neuroscience, 20, 600-605. [Google Scholar] [CrossRef] [PubMed]
[32] Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B. and Jegla, T. (2005) Illumination of the Melanopsin Signaling Pathway. Science, 307, 600-604. [Google Scholar] [CrossRef] [PubMed]
[33] Pires, S.S., Hughes, S., Turton, M., Melyan, Z., Peirson, S.N., Zheng, L., et al. (2009) Differential Expression of Two Distinct Functional Isoforms of Melanopsin (opn4) in the Mammalian Retina. The Journal of Neuroscience, 29, 12332-12342. [Google Scholar] [CrossRef] [PubMed]
[34] Schmidt, T.M., Chen, S. and Hattar, S. (2011) Intrinsically Photosensitive Retinal Ganglion Cells: Many Subtypes, Diverse Functions. Trends in Neurosciences, 34, 572-580. [Google Scholar] [CrossRef] [PubMed]
[35] Liao, H., Ren, X., Peterson, B.B., Marshak, D.W., Yau, K., Gamlin, P.D., et al. (2016) Melanopsin‐Expressing Ganglion Cells on Macaque and Human Retinas Form Two Morphologically Distinct Populations. Journal of Comparative Neurology, 524, 2845-2872. [Google Scholar] [CrossRef] [PubMed]
[36] Johnson, E.N., Westbrook, T., Shayesteh, R., Chen, E.L., Schumacher, J.W., Fitzpatrick, D., et al. (2017) Distribution and Diversity of Intrinsically Photosensitive Retinal Ganglion Cells in Tree Shrew. Journal of Comparative Neurology, 527, 328-344. [Google Scholar] [CrossRef] [PubMed]
[37] Schmidt, T.M. and Kofuji, P. (2009) Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells. The Journal of Neuroscience, 29, 476-482. [Google Scholar] [CrossRef] [PubMed]
[38] Fernandez, D.C., Fogerson, P.M., Lazzerini Ospri, L., Thomsen, M.B., Layne, R.M., Severin, D., et al. (2018) Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell, 175, 71-84.e18. [Google Scholar] [CrossRef] [PubMed]
[39] Sondereker, K.B., Stabio, M.E. and Renna, J.M. (2020) Crosstalk: The Diversity of Melanopsin Ganglion Cell Types Has Begun to Challenge the Canonical Divide between Image‐Forming and Non‐Image‐Forming Vision. Journal of Comparative Neurology, 528, 2044-2067. [Google Scholar] [CrossRef] [PubMed]
[40] Sonoda, T., Okabe, Y. and Schmidt, T.M. (2019) Overlapping Morphological and Functional Properties between M4 and M5 Intrinsically Photosensitive Retinal Ganglion Cells. Journal of Comparative Neurology, 528, 1028-1040. [Google Scholar] [CrossRef] [PubMed]
[41] Schmidt, T.M., Alam, N.M., Chen, S., Kofuji, P., Li, W., Prusky, G.T., et al. (2014) A Role for Melanopsin in α Retinal Ganglion Cells and Contrast Detection. Neuron, 82, 781-788. [Google Scholar] [CrossRef] [PubMed]
[42] Sonoda, T., Lee, S.K., Birnbaumer, L. and Schmidt, T.M. (2018) Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits. Neuron, 99, 754-767.e4. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, A., Liu, Y., Wang, G., Shao, Y., Yu, C., Yang, Z., et al. (2022) The Role of ipRGCs in Ocular Growth and Myopia Development. Science Advances, 8, eabm9027. [Google Scholar] [CrossRef] [PubMed]
[44] Barlow, H.B., Hill, R.M. and Levick, W.R. (1964) Retinal Ganglion Cells Responding Selectively to Direction and Speed of Image Motion in the Rabbit. The Journal of Physiology, 173, 377-407. [Google Scholar] [CrossRef] [PubMed]
[45] Liu, J. (2015) The Anatomy and Physiology of Direction-Selective Retinal Ganglion Cells.
https://www.ncbi.nlm.nih.gov/books/NBK321299/
[46] Oyster, C.W. and Barlow, H.B. (1967) Direction-selective Units in Rabbit Retina: Distribution of Preferred Directions. Science, 155, 841-842. [Google Scholar] [CrossRef] [PubMed]
[47] Trenholm, S., Johnson, K., Li, X., Smith, R.G. and Awatramani, G.B. (2011) Parallel Mechanisms Encode Direction in the Retina. Neuron, 71, 683-694. [Google Scholar] [CrossRef] [PubMed]
[48] Sun, W., Deng, Q., Levick, W.R. and He, S. (2006) On Direction‐Selective Ganglion Cells in the Mouse Retina. The Journal of Physiology, 576, 197-202. [Google Scholar] [CrossRef] [PubMed]
[49] Kim, I., Zhang, Y., Yamagata, M., Meister, M. and Sanes, J.R. (2008) Molecular Identification of a Retinal Cell Type That Responds to Upward Motion. Nature, 452, 478-482. [Google Scholar] [CrossRef] [PubMed]
[50] Kay, J.N., De la Huerta, I., Kim, I., Zhang, Y., Yamagata, M., Chu, M.W., et al. (2011) Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections. The Journal of Neuroscience, 31, 7753-7762. [Google Scholar] [CrossRef] [PubMed]
[51] Gauvain, G. and Murphy, G.J. (2015) Projection-specific Characteristics of Retinal Input to the Brain. The Journal of Neuroscience, 35, 6575-6583. [Google Scholar] [CrossRef] [PubMed]
[52] Levick, W.R. (1967) Receptive Fields and Trigger Features of Ganglion Cells in the Visual Streak of the Rabbit’s Retina. The Journal of Physiology, 188, 285-307. [Google Scholar] [CrossRef] [PubMed]
[53] Jacoby, J. and Schwartz, G.W. (2016) Three Small-Receptive-Field Ganglion Cells in the Mouse Retina Are Distinctly Tuned to Size, Speed, and Object Motion. The Journal of Neuroscience, 37, 610-625. [Google Scholar] [CrossRef] [PubMed]
[54] Zhang, Y., Kim, I., Sanes, J.R. and Meister, M. (2012) The Most Numerous Ganglion Cell Type of the Mouse Retina Is a Selective Feature Detector. Proceedings of the National Academy of Sciences of the United States of America, 109, E2391-E2398. [Google Scholar] [CrossRef] [PubMed]
[55] VanderWall, K.B., Lu, B., Alfaro, J.S., Allsop, A.R., Carr, A.S., Wang, S., et al. (2020) Differential Susceptibility of Retinal Ganglion Cell Subtypes in Acute and Chronic Models of Injury and Disease. Scientific Reports, 10, Article No. 17359. [Google Scholar] [CrossRef] [PubMed]
[56] Ou, Y., Jo, R.E., Ullian, E.M., Wong, R.O.L. and Della Santina, L. (2016) Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension. Journal of Neuroscience, 36, 9240-9252. [Google Scholar] [CrossRef] [PubMed]
[57] Zhang, N., He, X., Xing, Y. and Yang, N. (2022) Differential Susceptibility of Retinal Ganglion Cell Subtypes against Neurodegenerative Diseases. Graefes Archive for Clinical and Experimental Ophthalmology, 260, 1807-1821. [Google Scholar] [CrossRef] [PubMed]
[58] Zhao, M., Toma, K., Kinde, B., Li, L., Patel, A.K., Wu, K., et al. (2023) Osteopontin Drives Retinal Ganglion Cell Resiliency in Glaucomatous Optic Neuropathy. Cell Reports, 42, Article ID: 113038. [Google Scholar] [CrossRef] [PubMed]
[59] Muench, N.A., Patel, S., Maes, M.E., Donahue, R.J., Ikeda, A. and Nickells, R.W. (2021) The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells, 10, Article 1593. [Google Scholar] [CrossRef] [PubMed]
[60] Kingston, R., Amin, D., Misra, S., Gross, J.M. and Kuwajima, T. (2021) Serotonin Transporter-Mediated Molecular Axis Regulates Regional Retinal Ganglion Cell Vulnerability and Axon Regeneration after Nerve Injury. PLOS Genetics, 17, e1009885. [Google Scholar] [CrossRef] [PubMed]
[61] Zhang, X., Yang, C., Zhang, C., Wu, J., Zhang, X., Gao, J., et al. (2025) Functional Optic Tract Rewiring via Subtype-and Target-Specific Axonal Regeneration and Presynaptic Activity Enhancement. Nature Communications, 16, Article No. 2174. [Google Scholar] [CrossRef] [PubMed]
[62] Jacobi, A., Tran, N.M., Yan, W., Benhar, I., Tian, F., Schaffer, R., et al. (2022) Overlapping Transcriptional Programs Promote Survival and Axonal Regeneration of Injured Retinal Ganglion Cells. Neuron, 110, 2625-2645.e7. [Google Scholar] [CrossRef] [PubMed]
[63] Bray, E.R., Yungher, B.J., Levay, K., Ribeiro, M., Dvoryanchikov, G., Ayupe, A.C., et al. (2019) Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells. Neuron, 103, 642-657.e7. [Google Scholar] [CrossRef] [PubMed]
[64] Peng, Y., Shekhar, K., Yan, W., Herrmann, D., Sappington, A., Bryman, G.S., et al. (2019) Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell, 176, 1222-1237.e22. [Google Scholar] [CrossRef] [PubMed]