ROX指数预测急性呼吸衰竭患者气管插管时机的研究进展
Research Progress on the ROX Index for Predicting the Timing of Endotracheal Intubation in Patients with Acute Respiratory Failure
DOI: 10.12677/acm.2026.162371, PDF, HTML, XML,    科研立项经费支持
作者: 张之琪*, 许 珊, 秦开秀#:重庆医科大学附属第二医院急诊科,重庆
关键词: ROX指数急性呼吸衰竭气管插管时机预测ROX Index Acute Respiratory Failure Endotracheal Intubation Timing Prediction
摘要: 急性呼吸衰竭患者气管插管的时机选择一直是临床面临的重大挑战,过早或延迟插管均会带来严重风险。ROX指数作为一个兼顾氧合与呼吸代偿状态的指标,不仅可动态监测,还便于获取,为这一困境提供了有价值的解决方案。本综述系统阐述了ROX指数在不同氧疗模式(如经鼻高流量氧疗、无创通气)及不同疾病人群(如COVID-19、COPD)中预测气管插管时机的效能。研究表明,ROX指数的动态变化趋势对治疗反应的评估比单次测量值更具预测价值,但其最佳阈值存在异质性,需结合具体临床情境进行个体化解读。尽管ROX指数在单独应用时存在局限,但若与其他变量甚至与机器学习相结合,构建多维度智能预警系统,则可以协助医师更早期、更精准地制定气管插管决策。
Abstract: Determining the optimal timing for endotracheal intubation in patients with acute respiratory failure remains a major clinical challenge, as both premature and delayed intubation can lead to serious risks. The ROX index, which integrates both oxygenation and respiratory compensation status, offers a valuable solution to this dilemma due to its suitability for dynamic monitoring and easy accessibility. This review systematically elaborates on the efficacy of the ROX index in predicting intubation timing across diverse respiratory support modalities (e.g., high-flow nasal cannula oxygen therapy, non-invasive ventilation), and various diseases (e.g., COVID-19, COPD). Studies indicate that the dynamic trend of the ROX index holds greater predictive value for assessing treatment response than single measurements. However, its optimal threshold exhibits heterogeneity and requires individualized interpretation based on specific clinical contexts. Although the ROX index has limitations when used alone, integrating it with other variables and machine learning to establish a multi-dimensional intelligent early-warning system could assist clinicians in making earlier and more accurate decisions regarding endotracheal intubation.
文章引用:张之琪, 许珊, 秦开秀. ROX指数预测急性呼吸衰竭患者气管插管时机的研究进展[J]. 临床医学进展, 2026, 16(2): 139-147. https://doi.org/10.12677/acm.2026.162371

1. 背景

急性呼吸衰竭(Acute Respiratory Failure, ARF)是急诊科以及重症监护病房(Intensive Care Unit, ICU)中最常见的危重症之一,其在全球的发病率持续上升,且病死率较高[1]-[3]。气管插管与机械通气是治疗ARF的重要措施,可迅速恢复通气、维持氧合[2],然而在临床实践中,何时实施气管插管仍是最具争议的问题,过早插管会增加机械通气时间与并发症风险,而延迟插管则可能导致低氧性器官损伤、心肺骤停甚至死亡[4]。因此,急性呼吸衰竭患者气管插管时机的选择成为临床最具挑战性的决策之一。

目前,临床上多依赖动脉血气和医生主观经验等判断患者是否需要气管插管,但受医疗水平、测量条件及操作者经验的影响,缺乏统一标准[5]。所以,如何寻找一种可操作性强、床旁易获取、可连续监测、能够客观反映患者氧合和呼吸负荷的综合指标以辅助气管插管时机的判断成为临床研究的焦点。在此背景下,ROX指数(Respiratory rate-Oxygenation index)应运而生,并逐渐显示出其在评估气管插管时机中的潜在价值。

本文将系统阐述ROX指数在不同氧疗模式与人群中的应用进展,并重点探讨其在急性呼吸衰竭气管插管时机判断中的临床意义与未来研究方向。

2. ROX的由来

ROX指数为血氧饱和度(SpO2)与吸氧浓度(FiO2)和呼吸频率(RR)的比值,最初被Roca等用于评估经鼻高流量氧疗(High-Flow Nasal Cannula oxygen therapy, HFNC)对肺炎伴呼吸衰竭患者的疗效,其认为ROX > 4.88时可避免气管插管[6]。经典的氧合指数(PaO2/FiO2)虽然反映了肺部气体交换功能,但无法体现呼吸负荷;呼吸频率可反映患者呼吸驱动,但易受焦虑、疼痛或测量误差影响,ROX指数结合上述两者的优点,可全面评估肺脏功能,因此成为预测呼吸支持治疗效果及判断气管插管时机的潜在工具,有助于医师快速评估患者病情,并对患者进行精准管理[7]

3. ROX指数在不同氧疗模式下的预测价值

ROX指数因能够同时反映氧合与呼吸代偿状态,已成为指导气管插管时机的重要动态指标,然而,其预测能力容易受到所采用的呼吸支持模式的影响,不同氧疗设备和模式下的气体动力学特征、所提供的呼吸负荷支持程度及人机相互作用等因素,均可能导致ROX指数的波动与最佳预测阈值的改变。

3.1. 经鼻高流量氧疗(HFNC)

HFNC可通过鼻腔途径提供高流量、加热、加湿、可调节浓度的氧气,常用于呼吸衰竭患者的一线治疗,而ROX指数最初应用于HFNC场景,是目前证据最充分的研究领域。

3.1.1. COVID-19患者

COVID-19曾在全球肆虐,其主要攻击呼吸系统,大量研究对此类患者进行了报道。Kwon等[8]对在急诊科接受HFNC治疗的呼吸衰竭患者观察时发现,相较于非COVID-19患者,COVID-19患者的ROX指数更低(HFNC治疗12小时的ROX中位数:8.82 vs. 6.11;P < 0.001),COVID-19患者经HFNC治疗后6小时ROX < 5.79可预测HFNC失败,灵敏度为85.7%,特异度为68.4% (AUC = 0.83, 95% CI = 0.70~0.92, P < 0.001)。还有一项研究[9]对ICU行HFNC治疗的COVID-19患者进行了每日ROX指数的监测,发现ROX ≤ 4.06时提示患者在24小时内将进行气管插管(AUC = 0.86, 95% CI: 0.83~0.88)。Vega等[10]则动态收集了COVID-19患者行HFNC治疗第2~24小时的ROX指数,发现治疗第12小时的ROX指数是气管插管的最佳预测指标(AUC为0.7916,95% CI:0.6905~0.8927,特异性为96%,敏感性为62%),且ROX < 5.99提示插管风险显著升高。在COVID-19相关急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)中,多项研究也提出了不同的预警阈值。Poopipatpab等[11]提出,在HFNC治疗期间,若患者ROX ≤ 5.84则提示气管插管的可能性较大,此时AUC为0.84 (95% CI: 0.79~0.88),敏感性为80.2%,特异性为86.9%;还有研究发现[12],在HFNC治疗开始后2~6小时测得ROX指数 ≤ 4.94与插管风险增加相关(HR = 4.03, 95% CI: 1.18~13.7)。可见ROX指数在早期识别COVID-19患者治疗失败方面具有较高的预测能力。

3.1.2. 脓毒血症患者

脓毒血症是使用有创机械通气治疗最常见的原因之一,Ahn等[13]为了探讨ROX指数能否预测急诊科脓毒血症患者气管插管的情况,回顾性收集了131例于急诊科就诊的患者,发现24小时内进行气管插管的患者的ROX指数ROC曲线下面积为0.854 (95% CI: 0.791~0.918, P < 0.001),最佳阈值为5.238,灵敏度为75.0%,特异性为81.6%,ROX指数是24小时内进行气管插管的独立危险因素(调整后的HR = 0.78,95% CI:0.68~0.90,P < 0.001),且低水平ROX的患者气管插管率更高。

3.1.3. 拔管后再次插管的患者

ROX的应用已逐渐延伸至拔管后阶段,用于预警再次气管插管的风险。Okazaki等[14]研究发现,气管拔管后接受HFNC治疗的患者中,拔管后ROX < 7.44提示再插管发生率显著增高(AUC为0.77,95% CI:0.59~0.89,敏感性为97%,特异性为42%),且ROX指数越低,短时间内再次插管的可能性越大。Lee等[15]则记录了ICU内拔管后进行HFNC治疗患者的ROX值,发现拔管后12小时的ROX > 10.4时,患者72小时内不需要再次插管的可能性更大(AUC为0.729,95% CI:0.668~0.785,敏感性为55.2%,特异性为81.3%)。这些证据共同表明,ROX不仅适用于在气管插管前对病情进行评估,也可作为气管拔管后呼吸功能恶化的早期预警指标。

3.1.4. 特殊群体患者

老年患者常存在心肺储备不足、合并症多及代谢能力下降等特点,容易发生感染性疾病。有研究表明[16],在行HFNC或NIV治疗的老年重症肺炎患者中,ROX指数越高,气管插管的风险越低,且插管前30 min内最差ROX指数(气管插管前30分钟内最低SpO2、最高FiO2、最快呼吸频率计算出的ROX指数)预测气管插管的AUC为0.93 (95% CI: 0.01~0.60, P < 0.001),研究还建议ROX ≤ 5.5时就应积极气管插管(敏感性为67%,特异性为97%)。

近年关于儿科患者的研究也逐渐增多,Yuniar等[17]对1月~18岁发生呼吸窘迫并予以HFNC治疗的儿童进行了回顾性研究,发现ROX指数在HFNC治疗60分钟时<5.52 (AUC为0.785,敏感性为0.9,特异性为0.708)、治疗90分钟时<5.68 (AUC为0.797,灵敏度为0.78,特异性为0.758),提示HFNC调整为无创或有创机械通气的风险大大增加,表明ROX指数是儿科患者HFNC治疗失败的良好预测因素。但由于儿童肺容积小、代谢快、血氧饱和波动大[18],ROX阈值的设定可能需要对年龄进行专门的校正。

还有研究对ICU中行HFNC治疗的免疫功能低下的急性呼吸衰竭患者进行了回顾性调查[19],发现气管插管患者的ROX指数低于不插管的患者[4.79 (3.69~7.01) vs. 6.10 (4.48~8.68), P < 0.001],较高的ROX指数还与较低的气管插管率独立相关(OR = 0.89, 95% CI: 0.82~0.96; P < 0.05),但当ROX < 4.88时,其预测气管插管的敏感性仅为52.1%、特异性为68.9%,提示ROX指数在免疫功能低下的呼吸衰竭患者中作为独立决策工具的价值有限,不过仍不失为一个有效的疾病风险分层工具。

与上述低氧性呼吸衰竭不同,慢性阻塞性肺疾病急性加重(Acute Exacerbations of Chronic Obstructive Pulmonary Disease, AECOPD)的患者通常伴有明显的二氧化碳潴留和通气不足[20],可能出现低氧血症和/或高碳酸血症,而不是单纯缺氧。Schaeffer等[21]对1286例行HFNC或NIV治疗的AECOPD住院患者进行研究,发现当ROX > 6.88时,气管插管或死亡风险显著降低(敏感性为62%,特异性为57%),但ROX指数预测气管插管这一结局的效能有限(AUC仅为0.38),未来或许需要更多的研究和验证。

后续研究进一步揭示了ROX的变化具有显著时间依赖性和敏感性[22]-[25],指出ROX指数的动态变化趋势比单次测量值更能真实准确地反映治疗效果,基于这一规律,建议未来HFNC治疗过程中应进行ROX值的周期性复测,并将“动态ROX监测”纳入HFNC患者气管插管的决策流程。

3.2. 无创通气(Non-Invasive Ventilation, NIV)

NIV通过正压支持改善氧合并减轻呼吸负荷,与传统氧疗相比,NIV可降低气管插管的风险[26],但NIV治疗的失败率仍高达40%~65% [27],ROX指数在此场景下同样展现出重要的预测价值。

3.2.1. 新发急性呼吸衰竭及COVID-19的患者

Duan等[27]研究显示,对于新发急性呼吸衰竭的患者,NIV治疗前ROX ≤ 2插管率为92.3% (AUC = 0.64,95% CI:0.61~0.67),当ROX指数预测NIV治疗1~2、12和24小时后的气管插管时,AUC分别增加到0.71 (95% CI: 0.68~0.74)、0.74 (95% CI: 0.71~0.77)和0.77 (95% CI: 0.74~0.80),研究还发现NIV治疗1~2小时后、ROX ≤ 2的患者,其进行气管插管的概率可高达75%。类似地,Anand等[28]发现,新发呼吸衰竭的COVID-19患者在NIV治疗第3天时,ROX ≤ 4.77的患者进行气管插管风险最高(AUC为0.94)。还有研究收集了NIV开始时、开始后6小时和12小时的ROX指数,显示入住ICU的COVID-19患者在NIV治疗时,ROX持续下降常意味着病情严重和不良预后[29]。可见,ROX指数在预测NIV失败行气管插管这一方面有较高的能力,同时连续评估ROX的数值可作为NIV过程中判断治疗反应、避免延迟插管的重要参考依据。

3.2.2. 拔管后再次插管的患者

一项关于AECOPD患者的研究发现[30],在气管拔管并使用无创呼吸机辅助支持治疗12小时后,ROX指数 ≤ 9.6是影响48小时内再插管率的独立危险因素(OR = 2.815; P < 0.05)。该阈值与其他研究差别较大,可能与患者疾病差异导致的病理生理状态不同有关,并且目前有关此类人群的文献较少,将来需要进行更进一步的探讨。

综上所述,在不同氧疗模式、不同疾病类型的患者中,ROX指数预测气管插管的最佳阈值不同,较低的ROX值均提示患者存在病情加重的风险及早期气管插管的必要,因为ROX指数降低意味着氧合恶化与呼吸增快,即病情进展与呼吸驱动增强,这是需要高级呼吸支持的明确信号。具体阈值因目标人群的疾病谱、年龄、病理生理本质、气体交换和呼吸支持机制本质不同而存在差异,这些差异恰恰表明其临床应用必须结合具体病情和呼吸支持模式进行解读,避免“一刀切”式使用。

4. ROX与其他指标的比较及联合应用

ROX指数作为一种能够同时反映氧合与呼吸代偿状态的复合参数,在指导气管插管时机方面展现出独特优势,近年来已成为临床研究的热点,其效能在与传统指标及综合评分的对比中得到展现。

4.1. 与传统单一指标的比较

PaO2/FiO2比值(P/F比)是评估氧合状态的经典指标,但其测量手段依赖有创动脉血气分析,具有侵入性且难以反映实时变化,难以实现持续动态监测,相比之下,SpO2/FiO2比值(S/F比)虽可替代P/F比进行无创监测,但未纳入反映呼吸窘迫和通气状态的关键指标——呼吸频率,ROX在S/F比的基础上引入呼吸频率,能更全面地反映氧合与通气之间的动态平衡,实用性显著增强。然而,呼吸频率并非评估呼吸驱动的唯一指标,有研究指出,潮气量是比呼吸频率更敏感的呼吸驱动变化指标,VOX指数(Volume-Oxygenation index)用潮气量取代了呼吸频率变量,在呼吸衰竭患者的治疗早期,VOX指数预测气管插管的能力优于ROX指数(AUC: 0.84 vs. 0.66) [31]。还有学者提出了改良ROX指数(mROX),即用PaO2替换SpO2,其在预测呼吸衰竭患者HFNC治疗早期失败方面的能力与ROX指数相当[32]

不同于上述指标,膈肌超声(Diaphragm Ultrasound, DUS)能够在床旁对膈肌结构和功能进行直观监测,以实时评估患者呼吸驱动情况[33]。常用DUS评价方法包括测量膈肌位移(Diaphragm Excursion, DE)、膈肌厚度(Diaphragm Thickness, DT)以及膈肌增厚分数(Diaphragm Thickening Fraction, DTF)。目前研究显示,DTF可用来评价机械通气患者的呼吸驱动水平和预测脱机结局[34] [35]。除此之外,食管压(Esophageal pressure, Pes)已被广泛证实可作为胸腔内压力的估算指标,是量化呼吸肌用力程度的“金标准”,其不仅能够识别吸气过程的开始和结束,还能够精确测量吸气驱动的强度[36]。但DUS和食管压测量在预测气管插管时机方面的研究极少,与ROX指数相比孰优孰劣或许需要更深入的研究。

4.2. 与综合评分系统的比较

APACHE II评分曾广泛用于评估危重症患者的预后[37],虽能全面反映病情严重程度,但并非为呼吸衰竭患者的插管决策所专门设计。近年来,有研究评估COVID-19患者进行无创通气的有效性时[38],发现ROX指数的AUC略优于APACHE II (0.759 vs. 0.751)。同样地,HACOR评分最初是作为预测无创通气失败的工具而开发的综合评分系统[39],也被用于与ROX指数进行比较。在Valencia等[40]关于COVID-19患者气管插管风险的研究中发现,ROX指数预测气管插管的AUC为0.72,HACOR的AUC为0.71。但HACOR评分计算相对复杂且更新频率低,在需要快速决策的床旁场景中,便捷性不如ROX指数。

4.3. 多维预测模型

ROX指数的本质侧重于呼吸系统,无法有效反映循环或代谢等全身性异常,当前已有部分研究尝试将ROX与心率[13] [41] [42]、血糖[43]、SOFA评分[44]、NEWS2评分[45]等变量整合,以构建预测能力更强的复合模型共同预测气管插管风险。随着人工智能的发展,已有许多机器学习模型诞生用于呼吸衰竭患者的气管插管预测[46]-[49],更有研究首次提出一种与ROX指数相结合的新型人工智能驱动预测模型[50],为实现更精准的个体化预测开辟了新路径。

5. 挑战与未来展望

尽管ROX指数在急性呼吸衰竭患者的管理中表现出广阔的临床应用前景,但其在不同疾病与临床场景下的标准化应用仍面临诸多挑战。

5.1. 阈值标准不统一

目前,ROX指数预测气管插管的最佳阈值在不同研究之间存在显著差异,缺乏统一标准。造成差异的主要原因如下:首先,研究人群的疾病谱和年龄阶段不同,不同疾病(如COVID-19、COPD)及人群(如老年、儿童)的肺生理特征存在显著差异,导致ROX的阈值和动态变化规律不尽相同;其次,各研究的氧疗参数、测量时间点、呼吸频率获取方式等未完全统一;此外,不同医疗中心的资源水平及实践环境差异也影响了阈值的普适性。

5.2. 自身局限性

ROX指数仅反映肺部氧合与呼吸代偿能力,无法全面评估循环、代谢及神经功能状态,若临床决策过度依赖ROX指数,可能忽视全身性氧输送障碍或代谢性酸中毒等隐性风险。更为重要的是,部分低氧血症的患者不会出现明显呼吸困难,若患者症状隐匿、呼吸频率代偿性增快不明显,ROX指数可能无法及时预警[51]。同时因临床普及受限于医生认知、指南缺乏,ROX尚未在医疗机构中标准化使用。

5.3. 未来发展方向

未来应致力于推动ROX指数从一个静态、回顾性的评估工具,向动态、前瞻性、多维度整合的智能预警系统演进,通过将其与其他连续监测数据(如心率、血压、体温等)相融合,有望构建实时插管决策支持系统,实现早期风险识别,从而为治疗团队争取宝贵的干预时间窗。

6. 总结

ROX指数整合了氧合指数与呼吸代偿能力,可在床旁无创的情况下反映患者的呼吸生理状态,核心价值在于动态监测与风险预警,为临床决策提供了关键的量化依据,在确立急性呼吸衰竭患者的气管插管时机方面拥有重要价值。本综述系统阐述了ROX指数在不同氧疗方式以及不同疾病人群中的应用,未来应推动其纳入呼吸衰竭管理路径,通过多中心前瞻性验证与临床决策试验,进一步明确其在不同环境、不同疾病、不同年龄患者治疗上的临床效益与安全性,最终目标是推动其从“研究工具”走向“临床标准”,以求优化气管插管时机,改善患者预后。

基金项目

重庆市科卫联合医学科研项目面上项目“急诊床旁超声造影在腹部实质脏器损伤分层救治中的研究”(2021MSXM162)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ni, J., Lu, J. and Lu, D. (2022) Abnormal Expression and Clinical Value Analysis of Long Noncoding RNA Cancer Susceptibility Candidate 2 in Children with Severe Pneumonia Complicated with Respiratory Failure. The Clinical Respiratory Journal, 16, 460-466. [Google Scholar] [CrossRef] [PubMed]
[2] Kempker, J.A., Abril, M.K., Chen, Y., Kramer, M.R., Waller, L.A. and Martin, G.S. (2020) The Epidemiology of Respiratory Failure in the United States 2002-2017: A Serial Cross-Sectional Study. Critical Care Explorations, 2, e0128. [Google Scholar] [CrossRef] [PubMed]
[3] Ward, J. and Noel, C. (2022) Basic Modes of Mechanical Ventilation. Emergency Medicine Clinics of North America, 40, 473-488. [Google Scholar] [CrossRef] [PubMed]
[4] 钱少兵, 田广, 沙艳萍, 等. 探究气管插管时机对心肺复苏成功率的影响[J]. 中国医药指南, 2024, 22(34): 17-20.
[5] Lee, K.G., Roca, O., Casey, J.D., Semler, M.W., Roman-Sarita, G., Yarnell, C.J., et al. (2024) When to Intubate in Acute Hypoxaemic Respiratory Failure? Options and Opportunities for Evidence-Informed Decision Making in the Intensive Care Unit. The Lancet Respiratory Medicine, 12, 642-654. [Google Scholar] [CrossRef] [PubMed]
[6] Roca, O., Messika, J., Caralt, B., García-de-Acilu, M., Sztrymf, B., Ricard, J., et al. (2016) Predicting Success of High-Flow Nasal Cannula in Pneumonia Patients with Hypoxemic Respiratory Failure: The Utility of the ROX Index. Journal of Critical Care, 35, 200-205. [Google Scholar] [CrossRef] [PubMed]
[7] Gallardo, A., Zamarrón-López, E., Deloya-Tomas, E. and Pérez-Nieto, O.R. (2022) Advantages and Limitations of the ROX Index. Pulmonology, 28, 320-321. [Google Scholar] [CrossRef] [PubMed]
[8] Kwon, H., Ha, S.W., Kim, B., Chae, B., Kim, S., Hong, S., et al. (2024) Respiratory Rate‑Oxygenation (ROX) Index for Predicting High-Flow Nasal Cannula Failure in Patients with and without COVID-19. The American Journal of Emergency Medicine, 75, 53-58. [Google Scholar] [CrossRef] [PubMed]
[9] de Carvalho, V.C.P., da Silva Guimarães, B.L., Fujihara, M.T.F., Ceotto, V.F., Turon, R., Lugon, J.R., et al. (2023) Daily ROX Index Can Predict Transitioning to Mechanical Ventilation within the Next 24 h in COVID-19 Patients on HFNC. The American Journal of Emergency Medicine, 73, 160-165. [Google Scholar] [CrossRef] [PubMed]
[10] Vega, M.L., Dongilli, R., Olaizola, G., Colaianni, N., Sayat, M.C., Pisani, L., et al. (2022) COVID-19 Pneumonia and ROX Index: Time to Set a New Threshold for Patients Admitted Outside the ICU. Pulmonology, 28, 13-17. [Google Scholar] [CrossRef] [PubMed]
[11] Poopipatpab, S., Nuchpramool, P., Phairatwet, P., Lertwattanachai, T. and Trongtrakul, K. (2023) The Use of Respiratory Rate-Oxygenation Index to Predict Failure of High-Flow Nasal Cannula in Patients with Coronavirus Disease 2019-Associated Acute Respiratory Distress Syndrome: A Retrospective Study. PLOS ONE, 18, e0287432. [Google Scholar] [CrossRef] [PubMed]
[12] Panadero, C., Abad-Fernández, A., Rio-Ramírez, M.T., Acosta Gutiérrez, C.M., Calderón-Alcalá, M., López-Riolobos, C., et al. (2020) High-Flow Nasal Cannula for Acute Respiratory Distress Syndrome (ARDS) Due to COVID-19. Multidisciplinary Respiratory Medicine, 15, 1-5. [Google Scholar] [CrossRef] [PubMed]
[13] Ahn, S., Park, J., Song, J., Kim, J., Cho, H. and Moon, S. (2022) Association of ROX Index with Mechanical Ventilator Use in Sepsis Patients in the Emergency Department. Journal of Clinical Medicine, 11, Article 342. [Google Scholar] [CrossRef] [PubMed]
[14] Okazaki, Y., Nishikimi, M., Ishii, J., Ota, K., Ohshimo, S. and Shime, N. (2023) Predictive Accuracy of the ROX Index for Re-Intubation in Mechanically Ventilated Patients with COVID-19. Respiratory Care, 68, 1067-1074. [Google Scholar] [CrossRef] [PubMed]
[15] Lee, Y.S., Chang, S.W., Sim, J.K., Kim, S. and Kim, J.H. (2021) An Integrated Model Including the ROX Index to Predict the Success of High-Flow Nasal Cannula Use after Planned Extubation: A Retrospective Observational Cohort Study. Journal of Clinical Medicine, 10, Article 3513. [Google Scholar] [CrossRef] [PubMed]
[16] 王重阳, 王璐, 郭仁楠, 等. ROX指数预测老年重症社区获得性肺炎患者气管插管的有效性分析[J]. 临床急诊杂志, 2022, 23(12): 854-858.
[17] Yuniar, I., Pudjiadi, A.H., Dewi, R., Prawira, Y., Puspaningtyas, N.W., Tartila, T., et al. (2024) Respiratory Rate Oxygenation (ROX) Index as Predictor of High Flow Nasal Cannula in Pediatric Patients in Pediatric Intensive Care Unit. BMC Pulmonary Medicine, 24, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
[18] Dean, P.N., Hoehn, E.F., Geis, G.L., Frey, M.E., Cabrera-Thurman, M.K., Kerrey, B.T., et al. (2020) Identification of the Physiologically Difficult Airway in the Pediatric Emergency Department. Academic Emergency Medicine, 27, 1241-1248. [Google Scholar] [CrossRef] [PubMed]
[19] Lemiale, V., Dumas, G., Demoule, A., Pène, F., Kouatchet, A., Bisbal, M., et al. (2021) Performance of the ROX Index to Predict Intubation in Immunocompromised Patients Receiving High-Flow Nasal Cannula for Acute Respiratory Failure. Annals of Intensive Care, 11, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
[20] Hoult, G., Gillespie, D., Wilkinson, T.M.A., Thomas, M. and Francis, N.A. (2022) Biomarkers to Guide the Use of Antibiotics for Acute Exacerbations of COPD (AECOPD): A Systematic Review and Meta-Analysis. BMC Pulmonary Medicine, 22, Article No. 194. [Google Scholar] [CrossRef] [PubMed]
[21] Schaeffer, B.Z., Fazio, S.A., Stocking, J.C., Adams, J.Y., Liu, A., Black, H.B., et al. (2024) Using the ROX Index to Predict Treatment Outcome for High-Flow Nasal Cannula And/or Noninvasive Ventilation in Patients with COPD Exacerbations. Respiratory Care, 69, 1100-1107. [Google Scholar] [CrossRef] [PubMed]
[22] Roca, O., Caralt, B., Messika, J., Samper, M., Sztrymf, B., Hernández, G., et al. (2019) An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. American Journal of Respiratory and Critical Care Medicine, 199, 1368-1376. [Google Scholar] [CrossRef] [PubMed]
[23] Yau, C.E., Lee, D.Y.X., Vasudevan, A., Goh, K.J., Wong, E., Ho, A.F.W., et al. (2023) Performance of the ROX Index in Predicting High Flow Nasal Cannula Failure in COVID-19 Patients: A Systematic Review and Meta-Analysis. Critical Care, 27, Article No. 320. [Google Scholar] [CrossRef] [PubMed]
[24] Hancı, P., Uysal, A., Yüksel, B. and İnal, V. (2023) Rox Index Dynamics According to High Flow Nasal Cannula Success in Intensive Care Unit Patients with COVID-19-Related Acute Respiratory Failure. Balkan Medical Journal, 40, 111-116. [Google Scholar] [CrossRef] [PubMed]
[25] Al Hashim, A.H., Al Reesi, A., Al Lawati, N.M., Burad, J., Al Khabori, M., Chandwani, J., et al. (2023) Comparison of Noninvasive Mechanical Ventilation with High-Flow Nasal Cannula, Face-Mask, and Helmet in Hypoxemic Respiratory Failure in Patients with COVID-19: A Randomized Controlled Trial. Critical Care Medicine, 51, 1515-1526. [Google Scholar] [CrossRef] [PubMed]
[26] Zayed, Y., Barbarawi, M., Kheiri, B., Haykal, T., Chahine, A., Rashdan, L., et al. (2019) Initial Noninvasive Oxygenation Strategies in Subjects with De Novo Acute Hypoxemic Respiratory Failure. Respiratory Care, 64, 1433-1444. [Google Scholar] [CrossRef] [PubMed]
[27] Duan, J., Yang, J., Jiang, L., Bai, L., Hu, W., Shu, W., et al. (2022) Prediction of Noninvasive Ventilation Failure Using the ROX Index in Patients with De Novo Acute Respiratory Failure. Annals of Intensive Care, 12, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
[28] Anand, A., Kodamanchili, S.T., Joshi, A., Joshi, R., Sharma, J.P., Abhishek, G., et al. (2024) Longitudinal Assessment of ROX and HACOR Scores to Predict Non-Invasive Ventilation Failure in Patients with SARS-CoV-2 Pneumonia. The Journal of Critical Care Medicine, 10, 147-157. [Google Scholar] [CrossRef] [PubMed]
[29] Varpaei, H.A., Bayraktar, N. and Mohammadi, M. (2023) Predictors of Non-Invasive Ventilation Failure and Associated Factors among the COVID-19 Patients Admitted to Intensive Care Unit. Anesthesiology and Pain Medicine, 13, e140847. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, N., Qin, H. and Bao, L. (2025) The Role of the AVAPS Ventilation Mode Combined with TCM Monitoring in Weaning Patients with AECOPD. Scientific Reports, 15, Article No. 4722. [Google Scholar] [CrossRef] [PubMed]
[31] Chen, D., Heunks, L., Pan, C., Xie, J., Qiu, H., Yang, Y., et al. (2022) A Novel Index to Predict the Failure of High-Flow Nasal Cannula in Patients with Acute Hypoxemic Respiratory Failure: A Pilot Study. American Journal of Respiratory and Critical Care Medicine, 206, 910-913. [Google Scholar] [CrossRef] [PubMed]
[32] Karim, H.M.R., Bharadwaj, A., Mujahid, O.M., Borthakur, M.P., Panda, C.K. and Kalbande, J.V. (2022) The Relationship of Respiratory Rate-Oxygenation (ROX) and Modified ROX Index with High-Flow Nasal Cannula Oxygen Therapy in COVID-19 Patients: An Observational Pilot Study. Cureus, 14, e32900. [Google Scholar] [CrossRef] [PubMed]
[33] Goligher, E.C., Dres, M., Patel, B.K., Sahetya, S.K., Beitler, J.R., Telias, I., et al. (2020) Lung-and Diaphragm-Protective Ventilation. American Journal of Respiratory and Critical Care Medicine, 202, 950-961. [Google Scholar] [CrossRef] [PubMed]
[34] Gong, S., Ding, X. and Wang, X. (2024) Assessment of Pulmonary Circulation of Critically Ill Patients Based on Critical Care Ultrasound. Journal of Clinical Medicine, 13, Article 722. [Google Scholar] [CrossRef] [PubMed]
[35] Parada-Gereda, H.M., Tibaduiza, A.L., Rico-Mendoza, A., Molano-Franco, D., Nieto, V.H., Arias-Ortiz, W.A., et al. (2023) Effectiveness of Diaphragmatic Ultrasound as a Predictor of Successful Weaning from Mechanical Ventilation: A Systematic Review and Meta-Analysis. Critical Care, 27, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
[36] Piquilloud, L., Beitler, J.R. and Beloncle, F.M. (2024) Monitoring Esophageal Pressure. Intensive Care Medicine, 50, 953-956. [Google Scholar] [CrossRef] [PubMed]
[37] Czajka, S., Ziębińska, K., Marczenko, K., Posmyk, B., Szczepańska, A.J. and Krzych, Ł.J. (2020) Validation of APACHE II, APACHE III and SAPS II Scores in In-Hospital and One Year Mortality Prediction in a Mixed Intensive Care Unit in Poland: A Cohort Study. BMC Anesthesiology, 20, Article No. 296. [Google Scholar] [CrossRef] [PubMed]
[38] Arunachala, S., Parthasarathi, A., Basavaraj, C.K., Kaleem Ullah, M., Chandran, S., Venkataraman, H., et al. (2023) The Validity of the ROX Index and APACHE II in Predicting Early, Late, and Non-Responses to Non-Invasive Ventilation in Patients with COVID-19 in a Low-Resource Setting. Viruses, 15, Article 2231. [Google Scholar] [CrossRef] [PubMed]
[39] Duan, J., Han, X., Bai, L., Zhou, L. and Huang, S. (2017) Assessment of Heart Rate, Acidosis, Consciousness, Oxygenation, and Respiratory Rate to Predict Noninvasive Ventilation Failure in Hypoxemic Patients. Intensive Care Medicine, 43, 192-199. [Google Scholar] [CrossRef] [PubMed]
[40] Valencia, C.F., Lucero, O.D., Castro, O.C., Sanko, A.A. and Olejua, P.A. (2021) Comparison of ROX and HACOR Scales to Predict High-Flow Nasal Cannula Failure in Patients with SARS-CoV-2 Pneumonia. Scientific Reports, 11, Article No. 22559. [Google Scholar] [CrossRef] [PubMed]
[41] Sarkar, A.G., Sharma, A., Kothari, N., Goyal, S., Meshram, T., et al. (2024) Comparison of Modified ROX Index Score and ROX Index Score for Early Prediction of High Flow Nasal Oxygen Therapy Outcome in Patients with Acute Respiratory Failure: A Prospective Observational Cohort Study. Indian Journal of Critical Care Medicine, 28, 842-846.
[42] 张超青, 卢仲谦, 李兴, 等. 改良ROX指数联合心率变异性对机械通气脓毒症患者延迟撤机的预测价值[J]. 临床肺科杂志, 2025, 30(8): 1164-1169.
[43] 林玉霞, 陈名智. ROX指数、淋巴细胞指标、血糖对重症肺炎经鼻高流量氧疗后再次气管插管的预测效能及意义[J]. 实用临床医药杂志, 2024, 28(6): 30-36.
[44] Mellado-Artigas, R., Mujica, L.E., Ruiz, M.L., Ferreyro, B.L., Angriman, F., Arruti, E., et al. (2021) Predictors of Failure with High-Flow Nasal Oxygen Therapy in COVID-19 Patients with Acute Respiratory Failure: A Multicenter Observational Study. Journal of Intensive Care, 9, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
[45] 戈强, 朱轶, 陈旭锋, 等. ROX指数联合NEWS2评分对老年急性呼吸衰竭患者氧疗12 h内行气管插管的预测价值[J/OL]. 实用心脑肺血管病杂志: 1-5.
https://link.cnki.net/urlid/13.1258.R.20251112.1522.002, 2025-12-15.
[46] Li, X.J., Jiang, C.L., Xie, Q.Y., et al. (2025) Real-Time Prediction of HFNC Treatment Failure in Acute Hypoxemic Respiratory Failure Using Machine Learning. Scientific Reports, 15, Article No. 30245. [Google Scholar] [CrossRef] [PubMed]
[47] Yu, H., Saffaran, S., Tonelli, R., Laffey, J.G., Esquinas, A.M., de Lima, L.M., et al. (2025) Machine Learning Models Compared with Current Clinical Indices to Predict the Outcome of High Flow Nasal Cannula Therapy in Acute Hypoxemic Respiratory Failure. Critical Care, 29, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
[48] Cheng, H.T., Wang, Z.C., Feng, M., et al. (2024) Predicting High‐Flow Nasal Cannula Oxygen Therapy Failure in Patients with Acute Hypoxaemic Respiratory Failure Using Machine Learning: Model Development and External Validation. Journal of Clinical Nursing, 34, 3628-3641. [Google Scholar] [CrossRef] [PubMed]
[49] Pearce, A.K., Nemati, S., Goligher, E.C., Hough, C.L., Holder, A.L., Wardi, G., et al. (2025) Can We Predict the Future of Respiratory Failure Prediction? Critical Care, 29, Article No. 253. [Google Scholar] [CrossRef] [PubMed]
[50] Casano, N., Santini, S.J., Vittorini, P., Sinatti, G., Carducci, P., Mastroianni, C.M., et al. (2023) Application of Machine Learning Approach in Emergency Department to Support Clinical Decision Making for SARS-CoV-2 Infected Patients. Journal of Integrative Bioinformatics, 20, Article 20220047. [Google Scholar] [CrossRef] [PubMed]
[51] Bickler, P.E., Feiner, J.R., Lipnick, M.S. and McKleroy, W. (2020) “Silent” Presentation of Hypoxemia and Cardiorespiratory Compensation in COVID-19. Anesthesiology, 134, 262-269. [Google Scholar] [CrossRef] [PubMed]