KRAS突变结直肠癌药物治疗的增敏策略
Sensitization Strategies for Drug Therapy in KRAS-Mutant Colorectal Cancer
DOI: 10.12677/acm.2026.162386, PDF, HTML, XML,    科研立项经费支持
作者: 孟秋韵, 郎靖瑜, 罗 敏, 张学彬, 孟渝维, 毛 佳, 张世谱, 卿 晨*:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明
关键词: KRAS突变结直肠癌耐药机制治疗增敏KRAS Mutation Colorectal Cancer Drug Resistance Mechanism Therapeutic Sensitization
摘要: KRAS (kirsten rat sarcoma viral oncogene)是肿瘤高频突变基因,在结直肠癌中的突变频率超过40%。结直肠癌从癌前病变到确诊通常要经历5~10年,多数患者确诊时已处于中晚期。尽管靶向KRASG12C突变体小分子酪氨酸激酶抑制剂对KRAS突变非小细胞肺癌疗效显著,但对KRAS突变结直肠癌则疗效不佳。KRAS通路以KRAS蛋白为中枢节点,连接上游受体酪氨酸激酶(RTK)与下游效应分子,形成复杂的信号转导网络,对单一靶点的抑制可导致多种反馈和旁路激活,是现有靶向药物产生耐药的原因。本文结合本领域的相关研究成果,从KRAS突变结直肠癌对相关靶向治疗耐药的产生机制及应对策略等方面进行了综述,为克服KRAS及相关突变靶向治疗的耐药提供参考。
Abstract: KRAS (Kirsten rat sarcoma viral oncogene) is a high-frequency mutation gene in tumors, with a mutation frequency exceeding 40% in colorectal cancer (CRC). The progression from precancerous lesions to confirmed diagnosis in CRC typically takes 5 to 10 years, and most patients are diagnosed at an advanced stage. Although small-molecule tyrosine kinase inhibitors targeting the KRAS G12C mutant have shown significant efficacy in KRAS-mutant non-small cell lung cancer, their effectiveness in KRAS-mutant CRC remains limited. The KRAS pathway, with KRAS protein as its central hub, connects upstream receptor tyrosine kinases (RTKs) and downstream effector molecules, forming a complex signal transduction network. Inhibition of a single target can lead to various feedback and bypass activation mechanisms, which contribute to the development of resistance to existing targeted therapies. This review integrates relevant research achievements in the field, summarizing the mechanisms underlying resistance to targeted therapies in KRAS-mutant CRC and corresponding strategies, thereby providing insights for overcoming resistance in the targeted treatment of KRAS and related mutations
文章引用:孟秋韵, 郎靖瑜, 罗敏, 张学彬, 孟渝维, 毛佳, 张世谱, 卿晨. KRAS突变结直肠癌药物治疗的增敏策略[J]. 临床医学进展, 2026, 16(2): 244-253. https://doi.org/10.12677/acm.2026.162386

1. 引言

根据国际癌症研究机构(IARC) 2024年发布的2022年全球癌症统计数据,结直肠癌在全球新发病例数中占所有癌症的9.6%,位居第三,其导致的死亡人数则高居第二位,仅次于肺癌[1]

在结直肠癌患者中,KRAS基因的突变超过40%。突变的KRAS蛋白通过干扰与之结合的GTP/GDP正常交换调控,导致KRAS蛋白处于与GTP结合的持续激活状态,进而驱动下游多条信号通路(如MAPK、PI3K等),促进肿瘤细胞的存活、增殖、侵袭、转移及血管生成等。此外,KRAS突变还可重塑肿瘤微环境、引起代谢重编程,并与肠道菌群形成交互作用,从而在多个层面共同加速结直肠癌的疾病演进[2]

在40多年的研究中,靶向KRAS突变体的药物研究未取得突破性进展,KRAS被认为是“不可成药”的靶点,其涉及多方面的原因:1) KRAS蛋白表面平滑,缺乏深层的疏水结合区域,难以找到与小分子药物结合的“口袋”;2) 在调控KRAS激活的蛋白–蛋白相互作用界面中,其拓扑结构相对无特征,进一步限制了高亲和力抑制剂的设计[3] [4];3) KRAS处于与GTP/GDP结合的激活/失活循环中,且对GTP具有极高亲和力,使小分子药物既难以竞争性取代GTP与KRAS的结合,也难以精准调控其与GTP/GDP结合切换的动态过程,极大地阻碍了靶向KRAS药物的研发[5] [6]

2013年研究发现,KRASG12C突变体蛋白的开关Ⅱ区域(switch II pocket)中存在可与半胱氨酸残基发生共价结合的变构口袋[7],在此基础上,经十余年持续探索研发出的多个KRASG12C抑制剂,在多种实体瘤中展现出抗肿瘤活性[8],其中,AMG 510 (sotorasib)与MRTX849 (adagrasib)分别于2021年5月和2022年12月获美国FDA批准用于KRASG12C突变型非小细胞肺癌的治疗;AMG 510亦于2025年1月获准用于KRASG12C突变转移性结直肠癌的治疗。然而,在结直肠癌中,KRASG12C突变仅占约3%~7%,且对其抑制剂的疗效弱于非小细胞肺癌[9]。结直肠癌中最常见的KRAS突变类型是KRASG12D,但KRASG12D突变体中天冬氨酸残基的羧基亲核性弱于半胱氨酸巯基,导致KRASG12D突变体的Switch II口袋难以通过共价结合的形式与小分子结合[10]。目前尚无获批的KRASG12D靶向抑制剂上市,大多数小分子抑制剂仍处于早期临床研究阶段。

KRAS是转移性结直肠癌最常见的驱动突变之一,已被确认为关键性生物标志物,其阳性通常提示肿瘤侵袭转移性较高、预后较差,目前认为对表皮生长因子受体(EGFR)抑制剂如西妥昔单抗等耐药。针对KRAS突变的转移性结直肠癌,临床一线标准治疗仍以传统化疗联合贝伐珠单抗为主,治疗选择有限[11]

KRAS信号通路是介导细胞增殖、存活、分化和代谢的关键通路,其异常激活(尤其是KRAS基因突变)是结直肠癌、肺癌、胰腺癌等肿瘤发生发展的核心驱动事件。该通路以KRAS蛋白为中枢节点,连接上游受体酪氨酸激酶(RTK)与下游效应分子,形成“信号接收–转导–效应输出”的完整通路,形成信号转导的复杂网络。

KRAS的上游RTK包括EGFR、HER2、MET、FGFR、PDGFR等,是EGF、VEGF、HGF等细胞外信号的“接收器”;KRAS的下游主要包括MAPK、PI3K/AKT/mTOR和RAL三条平行且交叉的信号分支。鉴于KRAS信号转导的复杂网络,因此,针对KRAS突变治疗的耐药是临床中的重要课题。本文结合本领域的相关研究成果,从KRAS突变结直肠癌对相关靶向治疗耐药的产生机制及应对策略等方面进行了综述,为克服KRAS及相关突变靶向治疗的耐药提供参考。

2. KRAS突变结直肠癌对相关靶向药耐药的产生机制

2.1. KRAS通路上下游信号的反馈代偿机制及旁路激活

KRAS是细胞内信号转导的关键枢纽,其活性主要受EGFR、HER2等细胞表面受体的精密调控。KRAS信号主要通过MAPK、PI3K等核心通路向下游传递。鉴于KRAS所参与的上下游信号网络高度复杂,反馈性信号通路的重新激活被认为是介导耐药形成的关键机制之一。

2.1.1. KRAS上游信号通路抑制剂的耐药

EGFR和HER2均处于KRAS通路的上游,前者在60%~80%的结直肠癌组织中高表达或异常激活,后者在结直肠癌中则多以基因扩增或蛋白过表达为主。由于西妥昔单抗等EGFR抑制剂是抑制KRAS的上游信号,故仅被推荐用于KRAS野生型的患者。多项临床研究证实,西妥昔单抗可显著改善KRAS野生型患者的总生存期(OS),但在KRAS突变患者,无论是OS还是无进展生存期(PFS)均未显著获益[12]。其内在机制在于KRAS突变可导致下游信号分子发生不依赖于EGFR的持续激活,从而削弱EGFR抑制剂的治疗效果[13]。此外,KRAS突变常与PIK3CA/PTEN信号通路的异常并存,也会进一步加剧患者对西妥昔单抗的耐药性[14]。除上述机制外,肿瘤微环境中的缺氧状态也被认为是介导EGFR抑制剂耐药的重要因素。2015年发表的一项研究显示,在结直肠癌细胞中,缺氧或缺氧诱导因子HIF-1α的过表达能激活KRASG12V信号,进而促进肿瘤恶性进展并诱导对EGFR抑制剂的耐药[15]。同样,由于HER2也主要通过KRAS及其下游的MAPK、PI3K等通路传递信号,故KRAS的突变亦可导致下游通路发生不依赖于HER2的持续激活,削弱HER2靶向治疗的疗效[16]

2.1.2. KRAS下游信号通路抑制剂的耐药

在KRAS突变肿瘤中,反馈性信号通路的异常激活会导致KRAS下游单一靶点治疗效果有限,因此,单纯抑制KRAS下游的某一信号分子往往难以有效阻断肿瘤的恶性进展。以MEK抑制剂为例,PI3K信号通路的活化状态显著影响KRAS突变细胞对MEK抑制剂的敏感性,而PIK3CA的功能获得性突变或PTEN的缺失均可导致该通路异常激活,从而介导对MEK抑制剂的耐药[17]。还有研究提示,SIRT2缺失和ADAM17活性也与MEK抑制剂抗KRAS突变结直肠癌治疗的敏感性有关[18] [19]

2.1.3. 直接靶向KRAS抑制剂的耐药

直接靶向KRAS的抑制剂在临床应用中常因旁路信号激活等多种机制产生耐药。有研究显示,在经KRASG12C抑制剂AMG510作用的敏感细胞系中发现,上皮–间质转化(EMT)可诱导多个受体酪氨酸激酶(RTKs)重新表达,进而激活PI3K与MAPK信号通路,最终导致耐药[20]。另外,通过对经KRASG12C抑制剂MRTX849 (adagrasib)和AMG510 (sotorasib)治疗后产生获得性耐药患者的样本进行分析,结果提示,其耐药机制涉及KRAS二次突变,G12C等位基因及MET基因扩增,NRAS、BRAF、MAP2K1等基因的激活突变等旁路激活;还观察到肺腺癌在组织学方面出现向鳞状细胞癌转化的现象[21]-[23]。此外,HER2表达上调、FAK-YAP信号通路异常活化、以及CDK4/6依赖性细胞周期进程改变和免疫微环境缺陷也被证实参与了KRASG12C抑制剂的耐药形成[24]-[26]。另有研究表明,在KRASG12C抑制剂治疗后,部分肿瘤细胞进入KRAS低活性静止状态,而另一部分则通过表皮生长因子受体(EGFR)及其它激酶信号以恢复细胞的增殖能力,以及合成新的KRASG12C蛋白并维持其活性,从而逃避药物的抑制[27]

2.2. 肿瘤异质性

2019年的一项研究,利用结直肠癌类器官模型探讨了肿瘤异质性对KRAS/MAPK信号通路的影响,结果表明,MAPK信号的显著异质性与其对EGFR抑制剂的治疗反应密切相关[28]。为进一步解析KRAS突变肿瘤内部的异质性,继续运用多组学分析,将此类肿瘤划分为两种分子亚型:KRAS-M1 (KM1)与KRAS-M2 (KM2)。其中,KM2亚型的特征为上皮–间质转化(EMT)、TGF-β信号及血管生成相关通路存在富集,提示其具有更强的浸润转移特性,与患者不良预后相关;而KM1亚型则主要表现为细胞周期与RNA转录过程的激活。这种内在的分子分型揭示了KRAS突变结直肠癌的异质性格局,是导致不同亚型对靶向药物产生差异性反应及耐药的重要生物学基础[29]

2.3. 化疗耐药

KRAS突变结直肠癌对其他化疗药物也易产生耐药性,尤其是干细胞样特征的KRAS突变肿瘤细胞,对化疗药物易产生耐药性[30],如维持结直肠癌细胞干细胞样特征的KHDRBS3和调节结直肠癌干细胞自我更新的RAD51AP1,在KRAS突变结直肠癌中的表达都增加,显著影响了结直肠癌细胞对5-FU的耐药[31] [32]

3. 基于信号通路互补的联合策略提高KRAS突变结直肠癌对治疗敏感性

3.1. 基于KRAS抑制剂联合策略

KRASG12C抑制剂已经成为KRAS突变肿瘤治疗的研究热点,临床研究却发现这些药物对非小细胞肺癌(NSCLC)患者的疗效很高,但对结直肠癌(CRC)患者的疗效却有限[33] [34],而且普遍存在获得性耐药的问题,所以通过药物联合策略,对提高KRAS抑制剂治疗KRAS突变结直肠癌敏感性至关重要。

EGFR作为KRAS的上游,且存在复杂的反馈和交叉,抑制EGFR可能干扰KRAS突变肿瘤持续激活的下游通路的负反馈平衡,在某些情况下能与其他治疗产生非预期的协同或拮抗效应。虽然在2024年的中国临床肿瘤学会(CSCO)指南中,明确了对转移性结直肠癌的RAS、BARF基因的突变型和野生型进行分型,不推荐西妥昔单抗用于KRAS突变的结直肠癌。但有研究表明,KRAS突变型CRC细胞系中,EGFR信号并非完全冗余,其仍可能参与维持肿瘤细胞生存,在某些亚型中,联合抑制EGFR和其他节点(如KRAS)可能显示出协同效应[35],所以基于信号通路互补的联合策略,KRASG12C抑制剂与抗EGFR单抗的联用,有望提高对治疗的反应、克服耐药,从而增强KRAS突变结直肠癌对靶向治疗的敏感性[36] [37]。在一项临床试验中,对44例转移性结直肠癌患者进行AMG 510 (sotorasib)单药治疗,32例患者进行AMG 510 (sotorasib)和西妥昔单抗联合治疗,单药治疗和联合治疗的中位缓解持续时间分别为4.3和7.6个月,中位无进展生存期分别为5.6和6.9个月,联合治疗的患者获益明显高于单药治疗[38]。另外一项临床试验显示,MRTX849 (adagrasib)联合西妥昔单抗在不可切除或转移性KRASG12C突变结直肠癌患者中具有更高的临床获益和安全性[39]。近期研究表明,KRASG12C抑制剂与EGFR单抗和FGFR3抑制剂的三药联用,有效改善了KRAS突变结直肠癌对单抗的耐药性[40]

研究还发现,平行通路MAP2K4-JNK-JUN的反馈激活和YAP 1/TAZ-TEAD通路都对KRASG12C抑制剂的耐药发挥了关键的驱动作用,通过KRASG12C抑制剂联合MAP2K4抑制剂HRX-0233或TEAD抑制剂,均能增强体外抗肿瘤活性,提示KRASG12C抑制剂与其他旁路抑制剂的联合使用能提高治疗的敏感性[41]-[43]

还有研究显示,过表达激肽释放酶10 (KLK10)也能促进KRAS突变型结直肠癌的进展和肝转移,导致对KRAS抑制剂的耐药;敲低KLK10、阻滞PAR1-PDK1-AKT级联反应,可有效抑制KRAS突变结直肠癌的进展,提高对KRAS抑制剂的敏感性[44]

基于上述联合治疗策略的研究进展,其在临床转化中仍面临多重局限与挑战:首先,机制协同药物的联用常伴随毒性叠加,影响治疗耐受性与安全窗口。其次,肿瘤异质性与旁路信号激活等机制导致原发和获得性耐药,使单一方案难以持续有效。此外,现有证据多来自早期小规模研究,其疗效与安全性尚需Ⅲ期试验在大规模人群中验证。最后,当前策略主要针对KRASG12C亚型,对更常见的非G12C突变仍缺乏有效靶向手段。因此,未来需在克服耐药、平衡疗效毒性、精准筛选人群及优化临床开发等方面取得突破。

3.2. 基于MEK抑制剂的联合策略

MEK抑制剂对KRAS突变结直肠癌的治疗效果不明显,有研究显示,通过抑制ERBB3 (HER3)受体酪氨酸激酶,降低促凋亡蛋白BAD和BIM的抑制性磷酸化,可提高KRAS突变结直肠癌和肺癌对MEK抑制剂的敏感性[45]。面对长期治疗导致的受体酪氨酸激酶反馈激活和获得性耐药,联合MEK-CDK4/6抑制剂治疗KRAS突变的结直肠癌,可达到60%的肿瘤消退,证明两者在治疗上具有协同作用[46]

MEK抑制剂中的曲美替尼,其疗效在不同KRAS突变型肿瘤中存在显著差异。在肺癌与胰腺癌模型中,曲美替尼可诱发成纤维细胞生长因子受体1 (FGFR1)的代偿性激活,从而介导耐药产生;然而在KRAS突变结直肠癌,对该药物仍表现出一定的敏感性[47]。进一步的研究揭示,KRAS突变可促进p-ERK2与p53形成复合物,而曲美替尼通过抑制ERK2的磷酸化,可阻断该复合物的形成,进而释放野生型p53,并诱导肿瘤细胞凋亡[48]

研究显示,将低剂量MEK抑制剂曲美替尼与Bcl-xL拮抗剂ABT263联合使用,同时抑制Bcl-xL与磷酸化ERK的表达,能够克服低剂量曲美替尼的耐药[46] [49]

此外,作用于MEK的靶向蛋白水解嵌合体(Proteolysis-targeting chimeras, PROTACs),能够选择性地降解细胞蛋白;MEK1/2降解剂联合双表皮生长因子受体(EGFR/HER2)/MDR抑制剂拉帕替尼,可同时抑制药物外排泵MDR1的过表达,抑制KRAS突变结直肠癌异种移植瘤的生长[50]

局限性与挑战:尽管以MEK抑制剂为核心的联合策略为KRAS突变结直肠癌提供了新的方向,但其临床转化仍面临多重挑战。首先,肿瘤强大的代偿与反馈激活机制(如RTK上调)可迅速导致耐药。其次,联合治疗常伴随毒性叠加,限制了治疗窗口与患者耐受性。再者,现有协同效应数据多源于临床前研究,其在人体内的疗效与安全性尚需大规模临床试验,而且PROTAC的临床可行性仍需探索。

3.3. 基于PI3K抑制剂的联合策略

针对PI3K抑制剂的通路联合策略,也不断有研究发表。其中PI3K和MAPK信号通路的双功能激酶抑制剂ST-162可使KRAS突变的结直肠癌异种移植瘤模型的肿瘤消退;ST-162联合免疫检查点抑制剂,也在KRAS突变结直肠癌异种移植瘤模型中显示出疗效的提高[51]。有研究构建了对PI3K/mTOR双小分子抑制剂PF-04691502耐药的KRAS突变患者来源的异种移植瘤模型,发现该模型激活了转录因子FOXO3,并诱导了EGFR、ERBB2 (HER2)和ERBB3 (HER3)的丰度、磷酸化及活性,提示联合使用PI3K/mTOR和EGRF抑制剂能改善KRAS突变结直肠癌患者的疗效[52]。近期的研究结果表明,穿心术内酯和中药活性化合物platycotin-d可通过抑制PI3K和AKT信号通路、增加KRAS突变结直肠癌细胞对西妥昔单抗的敏感性,抑制肿瘤细胞生长、迁移和侵袭[53] [54]

针对PI3K抑制剂的联合策略,都仅在细胞及异种移植瘤模型中有用,距离临床应用甚远。其普遍受到通路代偿与反馈激活(如抑制PI3K/mTOR诱导的EGFR/ERBB家族上调)易导致耐药的挑战,且多靶点抑制可能带来叠加毒性,影响耐受性。中药活性成分穿心术内酯和中药活性化合物platycotin-d联用的挑战尤为突出,其多成分、多靶点的特性使得协同机制难以精确阐明,药代动力学参数不清、制备标准化不足,影响疗效的稳定性与可重复。

3.4. 基于化疗的联合策略

针对化疗耐药的直接增敏策略包括联合MicroRNA-143和紫杉醇可诱导KRAS突变肿瘤细胞的凋亡,认为MiR-143是治疗KRAS突变肿瘤的化疗增敏剂[55]。有研究采用NF-κB信号通路抑制剂PMBA和5-FU联合治疗KRAS突变结直肠癌,发现PMBA可通过增加caspase-3的活性来促进细胞凋亡,且影响耐药基因和标志物的表达,PMBA改善了5-FU对KRAS突变结直肠癌的治疗效果[56]

虽然西妥昔单抗不推荐用于KRAS突变的肿瘤,但有研究通过建立数学模型,分析KRAS突变在结直肠癌西妥昔单抗与化疗联合治疗中的作用,结果支持高免疫强度患者推荐用西妥昔单抗和伊立替康(化疗药物)作为KRAS突变细胞较少结直肠癌的一线治疗方案[57]。4-AAQB (4-acetyl-antroquinonol B)与西妥昔单抗联合应用,可降低致癌标志物EGFR和p-MEK、p-ERK、c-RAF/p-c-RAF的表达,恢复KRAS突变型细胞对西妥昔单抗的敏感性[58]。另外铁死亡被发现与KRAS突变肿瘤密切相关,联合使用铁死亡诱导剂RSL3和西妥昔单抗,能增强铁死亡,从而增强西妥昔单抗对KRAS突变结直肠癌细胞的杀伤作用[59]。还有研究发现,在KRAS突变结肠癌中,维生素C能改变丙酮酸脱氢酶(PDH)活性,然后调节线粒体代谢和三羧酸循环(TCA循环);在抗EGFR的治疗中,缺氧环境产生的代谢改变是导致KRAS突变型结肠癌对EGRF抑制剂耐药的原因之一,但维生素C会不会提高抗EGRF结直肠肿瘤治疗敏感性还有待进一步验证[60]

针对上述联合策略,其临床转化仍面临很大问题。多数增敏机制尚处于临床前研究阶段,人体内的有效性与安全性均未可知。数学模型虽提供了理论框架,但其预测能力受限于体内复杂的微环境。另外试图逆转KRAS突变肿瘤对抗EGFR治疗敏感性的策略,与当前明确的临床指南推荐相悖。这些策略均未能从根本上突破KRAS突变所驱动的强大多通路耐药网络。

4. 结语与展望

在KRAS突变型结直肠癌中,旁路信号通路的激活是最常见的耐药机制之一。通过将西妥昔单抗、KRASG12C抑制剂与靶向MAPK、MEK、PI3K等通路的抑制剂联合使用,可在多个层面协同阻断信号转导,从而恢复肿瘤细胞对治疗的敏感性。针对抑制单一突变难以覆盖所有突变类型这一挑战,开发能够广泛靶向不同KRAS突变的“泛KRAS”抑制剂受到广泛关注。该类策略有望克服因突变异质性导致的耐药,显著提升治疗效果,但也可能伴随更强的毒性反应[61]。已有研究显示,苯甲酰基砜类RAS信号干扰剂rigosertib在化疗耐药的人癌异种移植模型中,疗效优于FOLFOXIRI (结直肠癌核心化疗联合方案)联合贝伐珠单抗方案[62]。此外,新型泛KRAS抑制剂BI-2865能够选择性结合多种KRAS突变体及野生型KRAS,而对其他RAS家族蛋白影响较小,在提高疗效的同时显著降低了传统泛抑制剂的潜在毒性[63] [64]。另一种策略是通过蛋白降解技术靶向KRAS,例如化合物TKD可特异性结合癌细胞中的KRAS并引导其经溶酶体降解,显示出较强的抗肿瘤活性且未观察到明显毒副作用。此外,多项临床前研究提示,RM-018、Pan-KRAS-In-1、RMC-7797等新型(K) RAS抑制剂,对改善由RAS/MAPK信号异常引起的耐药也表现出良好潜力[65]

KRAS突变在塑造肿瘤微环境(TME)中发挥重要作用。突变型KRAS可介导CXCL-8、IL-1等多种炎症因子表达,并激活NF-κB、YAP-TAZ及JAK-STAT等信号通路,进一步促进炎症因子释放。这些调控作用共同改变肿瘤微环境的免疫与分子构成,加速肿瘤血管生成,从而驱动疾病进展[66]。基于上述机制,靶向肿瘤微环境已成为KRAS突变型结直肠癌的治疗策略之一。在临床实践中,贝伐珠单抗被推荐作为KRAS突变转移性结直肠癌的一线治疗药物,该药物靶向肿瘤血管生成,通过特异性结合血管内皮生长因子(VEGF)抑制肿瘤新生血管形成,同时也对肿瘤微环境产生影响。由于贝伐珠单抗不直接作用于肿瘤细胞本身,其疗效不易受肿瘤基因不稳定性等内在耐药机制的影响,因此在KRAS突变型患者中显示出显著的治疗效果,且耐药发生率相对较低。因此,应用针对肿瘤微环境的药物,也为KRAS突变结直肠癌的治疗提供了除直接靶向信号通路之外的另一种重要途径。

基金项目

云南省科技人才与平台计划(202305AF150054);

昆明医科大学硕士研究生教育创新基金(2025S023)。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
[2] Meng, M., Zhong, K., Jiang, T., Liu, Z., Kwan, H.Y. and Su, T. (2021) The Current Understanding on the Impact of KRAS on Colorectal Cancer. Biomedicine & Pharmacotherapy, 140, Article ID: 111717. [Google Scholar] [CrossRef] [PubMed]
[3] Qunaj, L., May, M.S., Neugut, A.I. and Herzberg, B.O. (2023) Prognostic and Therapeutic Impact of the KRAS G12C Mutation in Colorectal Cancer. Frontiers in Oncology, 13, Article ID: 1252516. [Google Scholar] [CrossRef] [PubMed]
[4] Ryan, M.B. and Corcoran, R.B. (2018) Therapeutic Strategies to Target Ras-Mutant Cancers. Nature Reviews Clinical Oncology, 15, 709-720. [Google Scholar] [CrossRef] [PubMed]
[5] Rathod, L.S., Dabhade, P.S. and Mokale, S.N. (2023) Recent Progress in Targeting KRAS Mutant Cancers with Covalent G12c-Specific Inhibitors. Drug Discovery Today, 28, Article ID: 103557. [Google Scholar] [CrossRef] [PubMed]
[6] Singhal, A., Li, B.T. and O’Reilly, E.M. (2024) Targeting KRAS in Cancer. Nature Medicine, 30, 969-983. [Google Scholar] [CrossRef] [PubMed]
[7] Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras (G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature, 503, 548-551. [Google Scholar] [CrossRef] [PubMed]
[8] Liu, J., Kang, R. and Tang, D. (2021) The KRAS-G12C Inhibitor: Activity and Resistance. Cancer Gene Therapy, 29, 875-878. [Google Scholar] [CrossRef] [PubMed]
[9] Yaeger, R. (2023) Combination Therapy and Appropriate Dosing to Target KRAS in Colorectal Cancer. New England Journal of Medicine, 389, 2197-2199. [Google Scholar] [CrossRef] [PubMed]
[10] Wang X, Allen S, Blake J F, Bowcut V, Briere D M, Calinisan A, et al. (2021) Identification of MRTX1133, a Non-covalent, Potent, and Selective KRASG12D Inhibitor. Journal of Medicinal Chemistry, 4, 3123-3133.
[11] Formica, V., Sera, F., Cremolini, C., Riondino, S., Morelli, C., Arkenau, H., et al. (2021) kras and braf Mutations in Stage II and III Colon Cancer: A Systematic Review and Meta-Analysis. JNCI: Journal of the National Cancer Institute, 114, 517-527. [Google Scholar] [CrossRef] [PubMed]
[12] Lièvre, A., Bachet, J., Boige, V., Cayre, A., Le Corre, D., Buc, E., et al. (2008) kras Mutations as an Independent Prognostic Factor in Patients with Advanced Colorectal Cancer Treated with Cetuximab. Journal of Clinical Oncology, 26, 374-379. [Google Scholar] [CrossRef] [PubMed]
[13] Cann, C.G., LaPelusa, M.B., Cimino, S.K. and Eng, C. (2023) Molecular and Genetic Targets within Metastatic Colorectal Cancer and Associated Novel Treatment Advancements. Frontiers in Oncology, 13, Article ID: 1176950. [Google Scholar] [CrossRef] [PubMed]
[14] Perrone, F., Lampis, A., Orsenigo, M., Di Bartolomeo, M., Gevorgyan, A., Losa, M., et al. (2009) PI3KCA/PTEN Deregulation Contributes to Impaired Responses to Cetuximab in Metastatic Colorectal Cancer Patients. Annals of Oncology, 20, 84-90. [Google Scholar] [CrossRef] [PubMed]
[15] Sun, W., Wang, Y., Lei, F., Rong, W. and Zeng, Q. (2015) Positive Feedback between Oncogenic KRAS And HIF-1α Confers Drug Resistance in Colorectal Cancer. OncoTargets and Therapy, 8, 1229-1237. [Google Scholar] [CrossRef] [PubMed]
[16] Maruyama, K., Shimizu, Y., Nomura, Y., Oh-hara, T., Takahashi, Y., Nagayama, S., et al. (2025) Mechanisms of KRAS Inhibitor Resistance in Kras-Mutant Colorectal Cancer Harboring Her2 Amplification and Aberrant KRAS Localization. NPJ Precision Oncology, 9, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[17] Wee, S., Jagani, Z., Xiang, K.X., Loo, A., Dorsch, M., Yao, Y., et al. (2009) PI3K Pathway Activation Mediates Resistance to MEK Inhibitors in KRAS Mutant Cancers. Cancer Research, 69, 4286-4293. [Google Scholar] [CrossRef] [PubMed]
[18] Bajpe, P.K., Prahallad, A., Horlings, H., Nagtegaal, I., Beijersbergen, R. and Bernards, R. (2014) A Chromatin Modifier Genetic Screen Identifies SIRT2 as a Modulator of Response to Targeted Therapies through the Regulation of MEK Kinase Activity. Oncogene, 34, 531-536. [Google Scholar] [CrossRef] [PubMed]
[19] Van Schaeybroeck, S., Kyula, J.N., Fenton, A., Fenning, C.S., Sasazuki, T., Shirasawa, S., et al. (2011) Oncogenic kras Promotes Chemotherapy-Induced Growth Factor Shedding via Adam17. Cancer Research, 71, 1071-1080. [Google Scholar] [CrossRef] [PubMed]
[20] Adachi, Y., Ito, K., Hayashi, Y., Kimura, R., Tan, T.Z., Yamaguchi, R., et al. (2020) Epithelial-to-Mesenchymal Transition Is a Cause of both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 5962-5973. [Google Scholar] [CrossRef] [PubMed]
[21] Awad, M.M., Liu, S., Rybkin, I.I., Arbour, K.C., Dilly, J., Zhu, V.W., et al. (2021) Acquired Resistance to KRAS g12c Inhibition in Cancer. New England Journal of Medicine, 384, 2382-2393. [Google Scholar] [CrossRef] [PubMed]
[22] Zhu, C., Guan, X., Zhang, X., Luan, X., Song, Z., Cheng, X., et al. (2022) Targeting KRAS Mutant Cancers: From Druggable Therapy to Drug Resistance. Molecular Cancer, 21, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
[23] Suzuki, S., Yonesaka, K., Teramura, T., Takehara, T., Kato, R., Sakai, H., et al. (2022) Correction: KRAS Inhibitor Resistance in met-Amplified kras G12C Non-Small Cell Lung Cancer Induced by RAS-and Non-Ras-Mediated Cell Signaling Mechanisms. Clinical Cancer Research, 28, 428-428. [Google Scholar] [CrossRef] [PubMed]
[24] Ho, C.S.L., Tüns, A.I., Schildhaus, H., Wiesweg, M., Grüner, B.M., Hegedus, B., et al. (2021) HER2 Mediates Clinical Resistance to the KRASG12C Inhibitor Sotorasib, Which Is Overcome by Co-Targeting Shp2. European Journal of Cancer, 159, 16-23. [Google Scholar] [CrossRef] [PubMed]
[25] Zhang, B., Zhang, Y., Zhang, J., Liu, P., Jiao, B., Wang, Z., et al. (2021) Focal Adhesion Kinase (FAK) Inhibition Synergizes with KRAS G12C Inhibitors in Treating Cancer through the Regulation of the FAK-YAP Signaling. Advanced Science, 8, Article ID: 2100250. [Google Scholar] [CrossRef] [PubMed]
[26] Akhave, N.S., Biter, A.B. and Hong, D.S. (2021) Mechanisms of Resistance to Kras G12C-Targeted Therapy. Cancer Discovery, 11, 1345-1352. [Google Scholar] [CrossRef] [PubMed]
[27] Xue, J.Y., Zhao, Y., Aronowitz, J., Mai, T.T., Vides, A., Qeriqi, B., et al. (2020) Rapid Non-Uniform Adaptation to Conformation-Specific KRAS (G12C) Inhibition. Nature, 577, 421-425. [Google Scholar] [CrossRef] [PubMed]
[28] Schumacher, D., Andrieux, G., Boehnke, K., Keil, M., Silvestri, A., Silvestrov, M., et al. (2019) Heterogeneous Pathway Activation and Drug Response Modelled in Colorectal-Tumor-Derived 3D Cultures. PLOS Genetics, 15, e1008076. [Google Scholar] [CrossRef] [PubMed]
[29] Chong, W., Zhu, X., Ren, H., Ye, C., Xu, K., Wang, Z., et al. (2022) Integrated Multi-Omics Characterization of KRAS Mutant Colorectal Cancer. Theranostics, 12, 5138-5154. [Google Scholar] [CrossRef] [PubMed]
[30] Liu, M., Zang, F. and Zhang, S. (2019) RBCK1 Contributes to Chemoresistance and Stemness in Colorectal Cancer (CRC). Biomedicine & Pharmacotherapy, 118, Article ID: 109250. [Google Scholar] [CrossRef] [PubMed]
[31] Ukai, S., Sakamoto, N., Taniyama, D., Harada, K., Honma, R., Maruyama, R., et al. (2021) KHDRBS3 Promotes Multi‐drug Resistance and Anchorage‐independent Growth in Colorectal Cancer. Cancer Science, 112, 1196-1208. [Google Scholar] [CrossRef] [PubMed]
[32] Bridges, A.E., Ramachandran, S., Tamizhmani, K., Parwal, U., Lester, A., Rajpurohit, P., et al. (2021) RAD51AP1 Loss Attenuates Colorectal Cancer Stem Cell Renewal and Sensitizes to Chemotherapy. Molecular Cancer Research, 19, 1486-1497. [Google Scholar] [CrossRef] [PubMed]
[33] Amodio, V., Yaeger, R., Arcella, P., Cancelliere, C., Lamba, S., Lorenzato, A., et al. (2020) EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discovery, 10, 1129-1139. [Google Scholar] [CrossRef] [PubMed]
[34] Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS (G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. [Google Scholar] [CrossRef] [PubMed]
[35] Hallin, J., Engstrom, L.D., Hargis, L., Calinisan, A., Aranda, R., Briere, D.M., et al. (2020) The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of Kras-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 10, 54-71. [Google Scholar] [CrossRef] [PubMed]
[36] Foo, T., Roy, A., Karapetis, C., Townsend, A. and Price, T. (2024) Metastatic Colorectal Cancer-Third Line Therapy and Beyond. Expert Review of Anticancer Therapy, 24, 219-227. [Google Scholar] [CrossRef] [PubMed]
[37] Chakraborty, A. (2020) KRASG12C Inhibitor: Combing for Combination. Biochemical Society Transactions, 48, 2691-2701. [Google Scholar] [CrossRef] [PubMed]
[38] Yaeger, R., Weiss, J., Pelster, M.S., Spira, A.I., Barve, M., Ou, S.I., et al. (2023) Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated kras G12c. New England Journal of Medicine, 388, 44-54. [Google Scholar] [CrossRef] [PubMed]
[39] Yaeger, R., Uboha, N.V., Pelster, M.S., Bekaii-Saab, T.S., Barve, M., Saltzman, J., et al. (2024) Efficacy and Safety of Adagrasib plus Cetuximab in Patients with kras G12c-Mutated Metastatic Colorectal Cancer. Cancer Discovery, 14, 982-993. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, Y., Chen, J., She, Y., Fang, Z., Zhang, Y., Ruan, D., et al. (2025) Paneth-Like Transition Drives Resistance to Dual Targeting of KRAS and EGFR in Colorectal Cancer. Cancer Cell, 44, 77-93.e8.
[41] Jansen, R.A., Mainardi, S., Dias, M.H., Bosma, A., van Dijk, E., Selig, R., et al. (2024) Small-Molecule Inhibition of MAP2K4 Is Synergistic with RAS Inhibitors in kras-Mutant Cancers. Proceedings of the National Academy of Sciences, 121, e2319492121. [Google Scholar] [CrossRef] [PubMed]
[42] Edwards, A.C., Stalnecker, C.A., Jean Morales, A., Taylor, K.E., Klomp, J.E., Klomp, J.A., et al. (2023) TEAD Inhibition Overcomes Yap1/Taz-Driven Primary and Acquired Resistance to KRASG12C Inhibitors. Cancer Research, 83, 4112-4129. [Google Scholar] [CrossRef] [PubMed]
[43] Mukhopadhyay, S., Huang, H., Lin, Z., Ranieri, M., Li, S., Sahu, S., et al. (2023) Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Research, 83, 4095-4111. [Google Scholar] [CrossRef] [PubMed]
[44] Wu, K., Wu, B., Yan, K., Ding, Q. and Miao, Z. (2023) KLK10 Promotes the Progression of KRAS Mutant Colorectal Cancer via PAR1‐PDK1‐AKT Signaling Pathway. Cell Biology International, 48, 440-449. [Google Scholar] [CrossRef] [PubMed]
[45] Sun, C., Hobor, S., Bertotti, A., Zecchin, D., Huang, S., Galimi, F., et al. (2014) Intrinsic Resistance to MEK Inhibition in KRAS Mutant Lung and Colon Cancer through Transcriptional Induction of Erbb3. Cell Reports, 7, 86-93. [Google Scholar] [CrossRef] [PubMed]
[46] Sorokin, A.V., Kanikarla Marie, P., Bitner, L., Syed, M., Woods, M., Manyam, G., et al. (2022) Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and Cdk4/6. Cancer Research, 82, 3335-3344. [Google Scholar] [CrossRef] [PubMed]
[47] Manchado, E., Weissmueller, S., Morris, J.P., Chen, C., Wullenkord, R., Lujambio, A., et al. (2016) A Combinatorial Strategy for Treating Kras-Mutant Lung Cancer. Nature, 534, 647-651. [Google Scholar] [CrossRef] [PubMed]
[48] Wang, X., Xie, Q., Ji, Y., Yang, J., Shen, J., Peng, F., et al. (2023) Targeting Kras-Mutant Stomach/colorectal Tumors by Disrupting the Erk2-P53 Complex. Cell Reports, 42, Article ID: 111972. [Google Scholar] [CrossRef] [PubMed]
[49] Koyama, M., Kitazawa, M., Nakamura, S., Matsumura, T., Miyazaki, S., Miyagawa, Y., et al. (2020) Low-Dose Trametinib and Bcl-xl Antagonist Have a Specific Antitumor Effect in KRAS-Mutated Colorectal Cancer Cells. International Journal of Oncology, 5, 1179-1191. [Google Scholar] [CrossRef] [PubMed]
[50] Kurimchak, A.M., Herrera-Montávez, C., Montserrat-Sangrà, S., Araiza-Olivera, D., Hu, J., Neumann-Domer, R., et al. (2022) The Drug Efflux Pump MDR1 Promotes Intrinsic and Acquired Resistance to PROTACs in Cancer Cells. Science Signaling, 15, eabn2707. [Google Scholar] [CrossRef] [PubMed]
[51] Galbán, S., Apfelbaum, A.A., Espinoza, C., Heist, K., Haley, H., Bedi, K., et al. (2017) A Bifunctional MAPK/PI3K Antagonist for Inhibition of Tumor Growth and Metastasis. Molecular Cancer Therapeutics, 16, 2340-2350. [Google Scholar] [CrossRef] [PubMed]
[52] Belmont, P.J., Jiang, P., McKee, T.D., Xie, T., Isaacson, J., Baryla, N.E., et al. (2014) Resistance to Dual Blockade of the Kinases PI3K and mTOR in kras-Mutant Colorectal Cancer Models Results in Combined Sensitivity to Inhibition of the Receptor Tyrosine Kinase EGFR. Science Signaling, 7, ra107. [Google Scholar] [CrossRef] [PubMed]
[53] Liu, Y.F., Feng, Z.Q., Chu, T.H., Yi, B., Liu, J., Yu, H., et al. (2024) Andrographolide Sensitizes Kras-Mutant Colorectal Cancer Cells to Cetuximab by Inhibiting the EGFR/AKT and PDGFRβ/AKT Signaling Pathways. Phytomedicine, 126, Article ID: 155462. [Google Scholar] [CrossRef] [PubMed]
[54] Liu, Y., Tian, S., Yi, B., Feng, Z., Chu, T., Liu, J., et al. (2022) Platycodin D Sensitizes Kras-Mutant Colorectal Cancer Cells to Cetuximab by Inhibiting the Pi3k/Akt Signaling Pathway. Frontiers in Oncology, 12, Article ID: 1046143. [Google Scholar] [CrossRef] [PubMed]
[55] Fei, B.Y., Wang, X.Y. and Fang, X.D. (2015) MicroRNA-143 Replenishment Re-Sensitizes Colorectal Cancer Cells Harboring Mutant, but Not Wild-Type, KRAS to Paclitaxel Treatment. Tumor Biology, 37, 5829-5835. [Google Scholar] [CrossRef] [PubMed]
[56] Qayum, A., Magotra, A., Shah, S.M., Nandi, U., Sharma, P.R., Shah, B.A., et al. (2022) Synergistic Combination of PMBA and 5-Fluorouracil (5-FU) in Targeting Mutant KRAS in 2D and 3D Colorectal Cancer Cells. Heliyon, 8, e09103. [Google Scholar] [CrossRef] [PubMed]
[57] Sameen, S., Barbuti, R., Milazzo, P., Cerone, A., Del Re, M. and Danesi, R. (2016) Mathematical Modeling of Drug Resistance Due to KRAS Mutation in Colorectal Cancer. Journal of Theoretical Biology, 389, 263-273. [Google Scholar] [CrossRef] [PubMed]
[58] Chu, Y.C., Tsai, T., Yadav, V.K., Deng, L., Huang, C., Tzeng, Y., et al. (2021) 4-Acetyl-Antroquinonol B Improves the Sensitization of Cetuximab on Both Kras Mutant and Wild Type Colorectal Cancer by Modulating the Expression of Ras/Raf/miR-193a-3p Signaling Axis. International Journal of Molecular Sciences, 22, Article No. 7508. [Google Scholar] [CrossRef] [PubMed]
[59] Yang, J., Mo, J., Dai, J., Ye, C., Cen, W., Zheng, X., et al. (2021) Cetuximab Promotes Rsl3-Induced Ferroptosis by Suppressing the Nrf2/ho-1 Signalling Pathway in KRAS Mutant Colorectal Cancer. Cell Death & Disease, 12, Article No. 1079. [Google Scholar] [CrossRef] [PubMed]
[60] Cenigaonandia-Campillo, A., Serna-Blasco, R., Gómez-Ocabo, L., Solanes-Casado, S., Baños-Herraiz, N., Puerto-Nevado, L.D., et al. (2021) Vitamin C Activates Pyruvate Dehydrogenase (PDH) Targeting the Mitochondrial Tricarboxylic Acid (TCA) Cycle in Hypoxic Kras Mutant Colon Cancer. Theranostics, 11, 3595-3606. [Google Scholar] [CrossRef] [PubMed]
[61] Hofmann, M.H., Gerlach, D., Misale, S., Petronczki, M. and Kraut, N. (2022) Expanding the Reach of Precision Oncology by Drugging All kras Mutants. Cancer Discovery, 12, 924-937. [Google Scholar] [CrossRef] [PubMed]
[62] Zhou, X., Xiao, Q., Fu, D., Zhang, H., Tang, Y., He, J., et al. (2021) Efficacy of Rigosertib, a Small Molecular RAS Signaling Disrupter for the Treatment of kras-Mutant Colorectal Cancer. Cancer Biology and Medicine, 18, 213-228. [Google Scholar] [CrossRef] [PubMed]
[63] Corcoran, R.B. (2023) A Single Inhibitor for All KRAS Mutations. Nature Cancer, 4, 1060-1062. [Google Scholar] [CrossRef] [PubMed]
[64] Yang, J., Wang, Q., Wang, G., Ye, J., Li, Z., Wang, J., et al. (2024) A Pan-Kras Degrader for the Treatment of Kras-Mutant Cancers. Cell Discovery, 10, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
[65] Riedl, J.M., Fece de la Cruz, F., Lin, J.J., Parseghian, C., Kim, J.E., Matsubara, H., et al. (2025) Genomic Landscape of Clinically Acquired Resistance Alterations in Patients Treated with KRASG12C Inhibitors. Annals of Oncology, 36, 682-692. [Google Scholar] [CrossRef] [PubMed]
[66] Parikh, K., Banna, G., Liu, S.V., Friedlaender, A., Desai, A., Subbiah, V., et al. (2022) Drugging KRAS: Current Perspectives and State-of-Art Review. Journal of Hematology & Oncology, 15, Article No. 152. [Google Scholar] [CrossRef] [PubMed]