|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Meng, M., Zhong, K., Jiang, T., Liu, Z., Kwan, H.Y. and Su, T. (2021) The Current Understanding on the Impact of KRAS on Colorectal Cancer. Biomedicine & Pharmacotherapy, 140, Article ID: 111717. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Qunaj, L., May, M.S., Neugut, A.I. and Herzberg, B.O. (2023) Prognostic and Therapeutic Impact of the KRAS G12C Mutation in Colorectal Cancer. Frontiers in Oncology, 13, Article ID: 1252516. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ryan, M.B. and Corcoran, R.B. (2018) Therapeutic Strategies to Target Ras-Mutant Cancers. Nature Reviews Clinical Oncology, 15, 709-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rathod, L.S., Dabhade, P.S. and Mokale, S.N. (2023) Recent Progress in Targeting KRAS Mutant Cancers with Covalent G12c-Specific Inhibitors. Drug Discovery Today, 28, Article ID: 103557. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Singhal, A., Li, B.T. and O’Reilly, E.M. (2024) Targeting KRAS in Cancer. Nature Medicine, 30, 969-983. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras (G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature, 503, 548-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, J., Kang, R. and Tang, D. (2021) The KRAS-G12C Inhibitor: Activity and Resistance. Cancer Gene Therapy, 29, 875-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yaeger, R. (2023) Combination Therapy and Appropriate Dosing to Target KRAS in Colorectal Cancer. New England Journal of Medicine, 389, 2197-2199. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang X, Allen S, Blake J F, Bowcut V, Briere D M, Calinisan A, et al. (2021) Identification of MRTX1133, a Non-covalent, Potent, and Selective KRASG12D Inhibitor. Journal of Medicinal Chemistry, 4, 3123-3133.
|
|
[11]
|
Formica, V., Sera, F., Cremolini, C., Riondino, S., Morelli, C., Arkenau, H., et al. (2021) kras and braf Mutations in Stage II and III Colon Cancer: A Systematic Review and Meta-Analysis. JNCI: Journal of the National Cancer Institute, 114, 517-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lièvre, A., Bachet, J., Boige, V., Cayre, A., Le Corre, D., Buc, E., et al. (2008) kras Mutations as an Independent Prognostic Factor in Patients with Advanced Colorectal Cancer Treated with Cetuximab. Journal of Clinical Oncology, 26, 374-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cann, C.G., LaPelusa, M.B., Cimino, S.K. and Eng, C. (2023) Molecular and Genetic Targets within Metastatic Colorectal Cancer and Associated Novel Treatment Advancements. Frontiers in Oncology, 13, Article ID: 1176950. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Perrone, F., Lampis, A., Orsenigo, M., Di Bartolomeo, M., Gevorgyan, A., Losa, M., et al. (2009) PI3KCA/PTEN Deregulation Contributes to Impaired Responses to Cetuximab in Metastatic Colorectal Cancer Patients. Annals of Oncology, 20, 84-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Sun, W., Wang, Y., Lei, F., Rong, W. and Zeng, Q. (2015) Positive Feedback between Oncogenic KRAS And HIF-1α Confers Drug Resistance in Colorectal Cancer. OncoTargets and Therapy, 8, 1229-1237. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Maruyama, K., Shimizu, Y., Nomura, Y., Oh-hara, T., Takahashi, Y., Nagayama, S., et al. (2025) Mechanisms of KRAS Inhibitor Resistance in Kras-Mutant Colorectal Cancer Harboring Her2 Amplification and Aberrant KRAS Localization. NPJ Precision Oncology, 9, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wee, S., Jagani, Z., Xiang, K.X., Loo, A., Dorsch, M., Yao, Y., et al. (2009) PI3K Pathway Activation Mediates Resistance to MEK Inhibitors in KRAS Mutant Cancers. Cancer Research, 69, 4286-4293. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Bajpe, P.K., Prahallad, A., Horlings, H., Nagtegaal, I., Beijersbergen, R. and Bernards, R. (2014) A Chromatin Modifier Genetic Screen Identifies SIRT2 as a Modulator of Response to Targeted Therapies through the Regulation of MEK Kinase Activity. Oncogene, 34, 531-536. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Van Schaeybroeck, S., Kyula, J.N., Fenton, A., Fenning, C.S., Sasazuki, T., Shirasawa, S., et al. (2011) Oncogenic kras Promotes Chemotherapy-Induced Growth Factor Shedding via Adam17. Cancer Research, 71, 1071-1080. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Adachi, Y., Ito, K., Hayashi, Y., Kimura, R., Tan, T.Z., Yamaguchi, R., et al. (2020) Epithelial-to-Mesenchymal Transition Is a Cause of both Intrinsic and Acquired Resistance to KRAS G12C Inhibitor in KRAS G12C-Mutant Non-Small Cell Lung Cancer. Clinical Cancer Research, 26, 5962-5973. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Awad, M.M., Liu, S., Rybkin, I.I., Arbour, K.C., Dilly, J., Zhu, V.W., et al. (2021) Acquired Resistance to KRAS g12c Inhibition in Cancer. New England Journal of Medicine, 384, 2382-2393. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhu, C., Guan, X., Zhang, X., Luan, X., Song, Z., Cheng, X., et al. (2022) Targeting KRAS Mutant Cancers: From Druggable Therapy to Drug Resistance. Molecular Cancer, 21, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Suzuki, S., Yonesaka, K., Teramura, T., Takehara, T., Kato, R., Sakai, H., et al. (2022) Correction: KRAS Inhibitor Resistance in met-Amplified kras G12C Non-Small Cell Lung Cancer Induced by RAS-and Non-Ras-Mediated Cell Signaling Mechanisms. Clinical Cancer Research, 28, 428-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ho, C.S.L., Tüns, A.I., Schildhaus, H., Wiesweg, M., Grüner, B.M., Hegedus, B., et al. (2021) HER2 Mediates Clinical Resistance to the KRASG12C Inhibitor Sotorasib, Which Is Overcome by Co-Targeting Shp2. European Journal of Cancer, 159, 16-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, B., Zhang, Y., Zhang, J., Liu, P., Jiao, B., Wang, Z., et al. (2021) Focal Adhesion Kinase (FAK) Inhibition Synergizes with KRAS G12C Inhibitors in Treating Cancer through the Regulation of the FAK-YAP Signaling. Advanced Science, 8, Article ID: 2100250. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Akhave, N.S., Biter, A.B. and Hong, D.S. (2021) Mechanisms of Resistance to Kras G12C-Targeted Therapy. Cancer Discovery, 11, 1345-1352. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xue, J.Y., Zhao, Y., Aronowitz, J., Mai, T.T., Vides, A., Qeriqi, B., et al. (2020) Rapid Non-Uniform Adaptation to Conformation-Specific KRAS (G12C) Inhibition. Nature, 577, 421-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Schumacher, D., Andrieux, G., Boehnke, K., Keil, M., Silvestri, A., Silvestrov, M., et al. (2019) Heterogeneous Pathway Activation and Drug Response Modelled in Colorectal-Tumor-Derived 3D Cultures. PLOS Genetics, 15, e1008076. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chong, W., Zhu, X., Ren, H., Ye, C., Xu, K., Wang, Z., et al. (2022) Integrated Multi-Omics Characterization of KRAS Mutant Colorectal Cancer. Theranostics, 12, 5138-5154. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, M., Zang, F. and Zhang, S. (2019) RBCK1 Contributes to Chemoresistance and Stemness in Colorectal Cancer (CRC). Biomedicine & Pharmacotherapy, 118, Article ID: 109250. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ukai, S., Sakamoto, N., Taniyama, D., Harada, K., Honma, R., Maruyama, R., et al. (2021) KHDRBS3 Promotes Multi‐drug Resistance and Anchorage‐independent Growth in Colorectal Cancer. Cancer Science, 112, 1196-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bridges, A.E., Ramachandran, S., Tamizhmani, K., Parwal, U., Lester, A., Rajpurohit, P., et al. (2021) RAD51AP1 Loss Attenuates Colorectal Cancer Stem Cell Renewal and Sensitizes to Chemotherapy. Molecular Cancer Research, 19, 1486-1497. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Amodio, V., Yaeger, R., Arcella, P., Cancelliere, C., Lamba, S., Lorenzato, A., et al. (2020) EGFR Blockade Reverts Resistance to KRASG12C Inhibition in Colorectal Cancer. Cancer Discovery, 10, 1129-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., et al. (2019) The Clinical KRAS (G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hallin, J., Engstrom, L.D., Hargis, L., Calinisan, A., Aranda, R., Briere, D.M., et al. (2020) The KRASG12C Inhibitor MRTX849 Provides Insight toward Therapeutic Susceptibility of Kras-Mutant Cancers in Mouse Models and Patients. Cancer Discovery, 10, 54-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Foo, T., Roy, A., Karapetis, C., Townsend, A. and Price, T. (2024) Metastatic Colorectal Cancer-Third Line Therapy and Beyond. Expert Review of Anticancer Therapy, 24, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chakraborty, A. (2020) KRASG12C Inhibitor: Combing for Combination. Biochemical Society Transactions, 48, 2691-2701. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yaeger, R., Weiss, J., Pelster, M.S., Spira, A.I., Barve, M., Ou, S.I., et al. (2023) Adagrasib with or without Cetuximab in Colorectal Cancer with Mutated kras G12c. New England Journal of Medicine, 388, 44-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yaeger, R., Uboha, N.V., Pelster, M.S., Bekaii-Saab, T.S., Barve, M., Saltzman, J., et al. (2024) Efficacy and Safety of Adagrasib plus Cetuximab in Patients with kras G12c-Mutated Metastatic Colorectal Cancer. Cancer Discovery, 14, 982-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, Y., Chen, J., She, Y., Fang, Z., Zhang, Y., Ruan, D., et al. (2025) Paneth-Like Transition Drives Resistance to Dual Targeting of KRAS and EGFR in Colorectal Cancer. Cancer Cell, 44, 77-93.e8.
|
|
[41]
|
Jansen, R.A., Mainardi, S., Dias, M.H., Bosma, A., van Dijk, E., Selig, R., et al. (2024) Small-Molecule Inhibition of MAP2K4 Is Synergistic with RAS Inhibitors in kras-Mutant Cancers. Proceedings of the National Academy of Sciences, 121, e2319492121. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Edwards, A.C., Stalnecker, C.A., Jean Morales, A., Taylor, K.E., Klomp, J.E., Klomp, J.A., et al. (2023) TEAD Inhibition Overcomes Yap1/Taz-Driven Primary and Acquired Resistance to KRASG12C Inhibitors. Cancer Research, 83, 4112-4129. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Mukhopadhyay, S., Huang, H., Lin, Z., Ranieri, M., Li, S., Sahu, S., et al. (2023) Genome-Wide CRISPR Screens Identify Multiple Synthetic Lethal Targets That Enhance KRASG12C Inhibitor Efficacy. Cancer Research, 83, 4095-4111. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wu, K., Wu, B., Yan, K., Ding, Q. and Miao, Z. (2023) KLK10 Promotes the Progression of KRAS Mutant Colorectal Cancer via PAR1‐PDK1‐AKT Signaling Pathway. Cell Biology International, 48, 440-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sun, C., Hobor, S., Bertotti, A., Zecchin, D., Huang, S., Galimi, F., et al. (2014) Intrinsic Resistance to MEK Inhibition in KRAS Mutant Lung and Colon Cancer through Transcriptional Induction of Erbb3. Cell Reports, 7, 86-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sorokin, A.V., Kanikarla Marie, P., Bitner, L., Syed, M., Woods, M., Manyam, G., et al. (2022) Targeting RAS Mutant Colorectal Cancer with Dual Inhibition of MEK and Cdk4/6. Cancer Research, 82, 3335-3344. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Manchado, E., Weissmueller, S., Morris, J.P., Chen, C., Wullenkord, R., Lujambio, A., et al. (2016) A Combinatorial Strategy for Treating Kras-Mutant Lung Cancer. Nature, 534, 647-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, X., Xie, Q., Ji, Y., Yang, J., Shen, J., Peng, F., et al. (2023) Targeting Kras-Mutant Stomach/colorectal Tumors by Disrupting the Erk2-P53 Complex. Cell Reports, 42, Article ID: 111972. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Koyama, M., Kitazawa, M., Nakamura, S., Matsumura, T., Miyazaki, S., Miyagawa, Y., et al. (2020) Low-Dose Trametinib and Bcl-xl Antagonist Have a Specific Antitumor Effect in KRAS-Mutated Colorectal Cancer Cells. International Journal of Oncology, 5, 1179-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kurimchak, A.M., Herrera-Montávez, C., Montserrat-Sangrà, S., Araiza-Olivera, D., Hu, J., Neumann-Domer, R., et al. (2022) The Drug Efflux Pump MDR1 Promotes Intrinsic and Acquired Resistance to PROTACs in Cancer Cells. Science Signaling, 15, eabn2707. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Galbán, S., Apfelbaum, A.A., Espinoza, C., Heist, K., Haley, H., Bedi, K., et al. (2017) A Bifunctional MAPK/PI3K Antagonist for Inhibition of Tumor Growth and Metastasis. Molecular Cancer Therapeutics, 16, 2340-2350. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Belmont, P.J., Jiang, P., McKee, T.D., Xie, T., Isaacson, J., Baryla, N.E., et al. (2014) Resistance to Dual Blockade of the Kinases PI3K and mTOR in kras-Mutant Colorectal Cancer Models Results in Combined Sensitivity to Inhibition of the Receptor Tyrosine Kinase EGFR. Science Signaling, 7, ra107. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, Y.F., Feng, Z.Q., Chu, T.H., Yi, B., Liu, J., Yu, H., et al. (2024) Andrographolide Sensitizes Kras-Mutant Colorectal Cancer Cells to Cetuximab by Inhibiting the EGFR/AKT and PDGFRβ/AKT Signaling Pathways. Phytomedicine, 126, Article ID: 155462. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Liu, Y., Tian, S., Yi, B., Feng, Z., Chu, T., Liu, J., et al. (2022) Platycodin D Sensitizes Kras-Mutant Colorectal Cancer Cells to Cetuximab by Inhibiting the Pi3k/Akt Signaling Pathway. Frontiers in Oncology, 12, Article ID: 1046143. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Fei, B.Y., Wang, X.Y. and Fang, X.D. (2015) MicroRNA-143 Replenishment Re-Sensitizes Colorectal Cancer Cells Harboring Mutant, but Not Wild-Type, KRAS to Paclitaxel Treatment. Tumor Biology, 37, 5829-5835. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Qayum, A., Magotra, A., Shah, S.M., Nandi, U., Sharma, P.R., Shah, B.A., et al. (2022) Synergistic Combination of PMBA and 5-Fluorouracil (5-FU) in Targeting Mutant KRAS in 2D and 3D Colorectal Cancer Cells. Heliyon, 8, e09103. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sameen, S., Barbuti, R., Milazzo, P., Cerone, A., Del Re, M. and Danesi, R. (2016) Mathematical Modeling of Drug Resistance Due to KRAS Mutation in Colorectal Cancer. Journal of Theoretical Biology, 389, 263-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Chu, Y.C., Tsai, T., Yadav, V.K., Deng, L., Huang, C., Tzeng, Y., et al. (2021) 4-Acetyl-Antroquinonol B Improves the Sensitization of Cetuximab on Both Kras Mutant and Wild Type Colorectal Cancer by Modulating the Expression of Ras/Raf/miR-193a-3p Signaling Axis. International Journal of Molecular Sciences, 22, Article No. 7508. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Yang, J., Mo, J., Dai, J., Ye, C., Cen, W., Zheng, X., et al. (2021) Cetuximab Promotes Rsl3-Induced Ferroptosis by Suppressing the Nrf2/ho-1 Signalling Pathway in KRAS Mutant Colorectal Cancer. Cell Death & Disease, 12, Article No. 1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Cenigaonandia-Campillo, A., Serna-Blasco, R., Gómez-Ocabo, L., Solanes-Casado, S., Baños-Herraiz, N., Puerto-Nevado, L.D., et al. (2021) Vitamin C Activates Pyruvate Dehydrogenase (PDH) Targeting the Mitochondrial Tricarboxylic Acid (TCA) Cycle in Hypoxic Kras Mutant Colon Cancer. Theranostics, 11, 3595-3606. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Hofmann, M.H., Gerlach, D., Misale, S., Petronczki, M. and Kraut, N. (2022) Expanding the Reach of Precision Oncology by Drugging All kras Mutants. Cancer Discovery, 12, 924-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhou, X., Xiao, Q., Fu, D., Zhang, H., Tang, Y., He, J., et al. (2021) Efficacy of Rigosertib, a Small Molecular RAS Signaling Disrupter for the Treatment of kras-Mutant Colorectal Cancer. Cancer Biology and Medicine, 18, 213-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Corcoran, R.B. (2023) A Single Inhibitor for All KRAS Mutations. Nature Cancer, 4, 1060-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Yang, J., Wang, Q., Wang, G., Ye, J., Li, Z., Wang, J., et al. (2024) A Pan-Kras Degrader for the Treatment of Kras-Mutant Cancers. Cell Discovery, 10, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Riedl, J.M., Fece de la Cruz, F., Lin, J.J., Parseghian, C., Kim, J.E., Matsubara, H., et al. (2025) Genomic Landscape of Clinically Acquired Resistance Alterations in Patients Treated with KRASG12C Inhibitors. Annals of Oncology, 36, 682-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Parikh, K., Banna, G., Liu, S.V., Friedlaender, A., Desai, A., Subbiah, V., et al. (2022) Drugging KRAS: Current Perspectives and State-of-Art Review. Journal of Hematology & Oncology, 15, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
|