腰椎融合术后邻近节段退变的研究进展
Research Progress of Adjacent Segment Degeneration after Lumbar Fusion
DOI: 10.12677/acm.2026.162389, PDF, HTML, XML,   
作者: 吴健威, 李剑锋, 王建钧*:暨南大学珠海临床医学院(珠海市人民医院,北京理工大学附属医院),广东 珠海
关键词: 腰椎融合邻近节段退变发病机制风险因素预防和治疗Lumbar Fusion Adjacent Segment Degeneration Pathogenesis Risk Factors Prevention and Therapy
摘要: 邻近节段退变(Adjacent Segment Degeneration, ASD)是指脊柱融合手术后重要的临床并发症,其特征是融合区邻近节段的退变。目前的文献综述旨在阐明导致ASD的风险因素,并评估当前和新兴的治疗策略。流行病学数据表明,患者相关因素和手术相关因素在术后ASD的发生中起着重要作用。本研究旨在系统综述ASD的可能发病机制、有关风险因素以及防治策略,为临床提供一定的理论参考。
Abstract: Adjacent segment degeneration (ASD) is an important clinical complication after spinal fusion surgery, which is characterized by the degeneration of adjacent segments in the fusion area. The current literature review aims to elucidate the risk factors leading to ASD and evaluate current and emerging treatment strategies. Epidemiological data show that patient-related factors and surgery-related factors play an important role in the occurrence of postoperative ASD. The purpose of this study is to systematically review the possible pathogenesis, risk factors and prevention and treatment strategies of ASD, and to provide a theoretical reference for clinical practice.
文章引用:吴健威, 李剑锋, 王建钧. 腰椎融合术后邻近节段退变的研究进展[J]. 临床医学进展, 2026, 16(2): 265-273. https://doi.org/10.12677/acm.2026.162389

1. 引言

腰椎退行性疾病是脊柱外科最常见的疾病之一,典型临床症状包括慢性腰背疼痛、下肢放射性疼痛及间歇性跛行,严重病例甚至出现下肢神经功能障碍。腰椎融合术作为治疗慢性腰背痛的主要手段,中短期随访显示临床疗效良好,可有效缓解疼痛并改善患者生活质量[1]。然而长期随访发现,部分患者术后出现邻近节段退变(Adjacent Segment Degeneration, ASD),Meta分析显示,7374例患者中ASD的总体发病率为17.2% [2]。邻近节段退变(ASD)是脊柱融合术后融合区相邻椎间盘及小关节的退行性改变[3],伴或不伴有腰背疼痛和下肢神经功能障碍[4] [5]。本文就ASD的发病机制、风险因素以及防治策略作一综述,旨在为临床工作提供一定参考。

2. ASD的发病机制

2.1. 生物力学代偿机制

腰椎融合术借助固定病变椎体节段,达到重建脊柱稳定的效果,但术后邻近节段生物力学环境变化,正是ASD出现的核心诱发因素[6]。这一现象的核心机制在于术后脊柱运动链的完整性遭到破坏,使得邻近节段的活动范围出现代偿性增加,同时应力重新分布,进一步加快邻近节段的退变过程[7] [8]。术后原融合节段活动功能完全丧失,邻近节段必须依靠活动范围的代偿性增加,才能维持脊柱整体的正常功能。这类代偿性机制会加快关节突关节的机械性磨损,同时造成椎间盘纤维环的撕裂损伤,导致邻近节段椎间盘与关节突关节承受的应力峰值提高30%至60%。有限元分析结果显示[9],在L4/5节段融合之后,屈曲时L3/4椎间盘后缘的应力从基线水平的4.2 MPa上升至6.8 MPa,接近椎体终板骨质的屈服强度(约7.5 MPa),最终造成邻近节段的终板微骨折以及髓核营养传递通路的损伤破坏。黄道余团队对Dynesys动态内固定系统的研究,发现其凭借保留固定节段的部分活动功能,有效减轻邻近节段的生物力学代偿压力,在短期内可延缓ASD的进展[10]。Zhang等[11]对Dynesys动态内固定系统和传统后路腰椎椎间融合术的对比研究也有同样的结论。

2.2. 炎症与代谢失衡机制

已有研究证实,血清炎症生物标志物(如C反应蛋白、IL-6)浓度上升与腰痛轻重及椎间盘退变进程存在正向关联,这一结果表明全身性炎症对脊柱退变过程具有调控作用[12]。炎症与代谢相关因素和生物力学因素并非单独发挥效用,而是存在协同作用模式:异常机械应力会诱发局部炎症级联反应,同时炎症介质会造成椎间盘与韧带结构的力学功能衰退,进一步增加了邻近节段的生物力学代偿压力,进而提升其在机械负荷下的组织脆弱性[13]。这种“生物力学–生物学耦合”引发的恶性循环,正是ASD快速进展的关键病理基础。

2.3. 自然退变

脊柱退变是随年龄增长普遍出现的生理或病理性进程,即便未接受手术治疗,腰椎的其余节段(含未来可能成为“邻近节段”的区域)也会随时间进展出现退行性改变[14]。故在评估融合术后ASD状况时需纳入这种潜在的自然退变作为基础[3]。尽管存在自然退变的基础,但众多临床与生物力学研究证据更倾向于支持腰椎融合手术加快邻近节段退变的观点[15]-[20]

3. ASD的危险因素

3.1. 年龄

年龄是腰椎融合术后ASD的独立风险因素,Cheh等[21]的研究指出,年龄超过50岁的患者术后ASD的发生风险显著增加。Ankrah等[22]对106例患者进行随访观察,发现65岁以上的患者术后ASD的发生风险是65岁以下的4.1倍。Lee等[23]同样发现60岁以上的患者术后ASD的发生风险是50岁以下的2.5倍。其原因主要是随着年龄增加,椎间盘内含水量逐渐减少,髓核中蛋白多糖含量下降、纤维环弹性变弱等生理改变使邻近节段在融合节段出现应力转移时更容易退变[24]

3.2. 性别

腰椎融合术后ASD的发生是否与性别构成独立风险关联目前尚有争议,国内外相关研究结论各不相同。主要原因是解剖学结构、激素以及生物力学等多维度机制的复杂相互作用。2021年《中国组织工程研究》刊载的Meta分析纳入18项研究共计3504例患者,结果显示女性性别与ASD风险不存在统计学相关性[25]。年龄、体重指数(BMI)及术前邻近节段退变程度等混杂因素可能掩盖或混淆性别差异的潜在影响。Wang等[26]在系统综述与Meta分析中同样证实了性别因素与术后ASD的发生无显著关联。

3.3. 体重指数(BMI)

BMI作为评估肥胖程度的金标准,经多中心研究证实是腰椎融合术后ASD的独立风险因素。其机制涵盖机械负荷增加、代谢失衡及炎症级联反应等多途径协同作用,并与术后生物力学代偿失衡存在显著关联。研究显示BMI与ASD发生风险呈显著剂量–效应关系。Yuan等[27]对718例微创经椎间孔腰椎椎间融合术患者随访34.3个月发现,BMI每增加1 kg/m2,ASD发生风险上升11.9%。Bagheri等[28]纳入15项研究共9677例患者的Meta分析表明,BMI > 30 kg/m2的患者ASD发生率显著增加。单中心研究显示经椎间孔腰椎椎间融合术后ASD组平均BMI显著高于对照组,且BMI每增加1 kg/m2,ASD发生风险上升45%,该结论与Mesregah等系统综述结果一致,高BMI组ASD发生风险增加97%,且5年以上随访仍具显著性[2] [29]。生物力学研究[30]揭示了其可能的机制,BMI每增加5 kg/m2,L4/5椎间盘压力上升19%,导致机械负荷增加,诱发局部炎症介质释放,通过“生物力学–生物学耦合”引发恶性循环。另外,Bao等[31]提出低BMI (<18.5 kg/m2)合并骨质疏松时亦可增加ASD发生风险,提示临床需实施BMI分层管理策略。

3.4. 骨质疏松

骨质疏松症患者骨量丢失,骨小梁稀疏,可导致终板钙化增加和血管化减少,阻断了椎间盘髓核获取营养的通路。此外,骨质疏松椎体可发生微小骨折,导致椎体高度下降,最终小关节紊乱,椎间盘退化加剧,从而加速术后ASD的发生[5] [32]。研究指出,术前低CT-HU反映骨密度不足,可能导致融合节段生物力学稳定性下降,加速ASD的进展,并且术前低CT-HU是腰椎融合术后因ASD再次手术风险的独立预测因子,CT-HU每增加1个单位,因ASD再次手术的风险降低10.9% [33]-[35]。郑俊勇等[29]研究了椎体骨质量(Vertebral Bone Quality, VBQ)与腰椎椎间融合术后ASD的关系,发现VBQ降低是ASD的独立危险因素,且与传统骨密度(Bone Mineral Density, BMD)评估相比,VBQ对ASD的预测价值更高。临床研究进一步证实,骨质疏松患者术后ASD风险约为非骨质疏松患者的3倍[36]。然而,也有研究指出,骨质疏松症与术后ASD的发生无关[28] [37]。有限元分析指出,骨质疏松症患者的骨密度与骨微结构重塑能力下降,融合节段上方及下方椎间盘的内压分别减少7.59%~10.72%与7.14%~15.90% [38]。当施加轴向扭转载荷时,骨质疏松症联合前路腰椎椎间融合术的模型在大部分方位的邻近节段活动度均小于单纯前路腰椎椎间融合术模型。因此,骨质疏松可能通过降低椎体刚度,减少ALIF术后邻近节段的应力聚集和活动度,降低ASD的发生风险。这种差异可能与不同研究中患者骨质疏松程度不同以及不同术式对脊柱稳定性要求不同有关,未来需结合骨质疏松程度和手术类型进行分层分析。

3.5. 手术方式

不同的腰椎融合手术方式对术后ASD发生的影响尚未完全明确。目前常用的腰椎融合手术方式包括前路腰椎椎间融合术(Anterior Lumbar Interbody Fusion, ALIF)、后路腰椎椎间融合术(Posterior Lumbar Interbody Fusion, PLIF)、经椎间孔腰椎椎间融合术(Transforaminal Lumbar Interbody Fusion, TLIF)和侧路腰椎椎间融合术(Lateral Lumbar Interbody Fusion, LLIF)等[39]。这些不同的手术方式由于手术入路和技术特点的差异,对脊柱附近结构的破坏程度不同,导致生物力学改变存在差异。不同术式对腰椎前凸的恢复和矢状面平衡的影响程度各异,这也是影响术后ASD发生的重要因素[40]。Tao等[41]进行的一项匹配队列研究发现,相比于ALIF,行TLIF手术的患者术后出现ASD及相关并发症的风险更低。这与Zhang等的单中心研究结论恰恰相反,其原因可能是二者的研究设计和研究人群的存在差异[42]。微创手术与开放手术在术后ASD发生风险上同样存在区别。有限元分析结果显示,椎旁肌横截面积(CSA)的损伤程度与术后ASD发生风险存在关联,微创TLIF手术通过减少CSA的损伤,更有助于维持肌肉力量的平衡,进而降低术后ASD发生风险[43]。韩国学者Lin等开展回顾性队列研究后发现,在70例单节段腰椎退行性疾病患者中,微创手术的术后ASD发生率低于传统开放手术[44]。与之相反,Yang等经过5年随访观察,对比显微内镜辅助微创TLIF与传统开放TLIF的临床及影像学表现,发现两种术式的术后ASD发生率无明显差异[45]。目前关于何种术式的术后ASD发生风险最低,相关研究结论仍存在分歧,这种差异可能与研究设计、随访时间和患者纳入排除标准的不同相关。

3.6. 融合节段数目

腰椎融合节段数目是术后ASD关联性最强的危险因素,其相对风险比达到2.5 [46]。从生物力学角度分析,融合节段数目越多,邻近节段的活动度越大,应力集中越明显。不少临床研究结果显示,术后ASD的发生风险随融合节段数目的增多而增加。郭朝阳等[47]发现多节段融合组的术后ASD发生率显著高于单节段组与双节段组。中国学者张腾飞等[25]的Meta分析也有相似的结论,两个及以上的节段融合是术后ASD的独立风险因素。

4. ASD的预防和治疗

手术恢复脊柱–骨盆矢状面平衡是预防术后ASD的生物力学基础。优化手术技术可以减少对腰椎正常结构的损伤,维持腰椎正常生理曲度,减轻邻近节段的生物力学代偿压力,从而减少ASD的发生。已有研究证实,维持或恢复腰椎前凸角(Lumbar Lordosis, LL)能够预防ASD的发生。一项针对腰椎融合术后ASD的Meta分析显示,术后LL不足与ASD显著相关[48]。作者强调,外科医生应在手术中适当恢复LL以降低术后ASD发生风险。恢复LL需要考虑骨盆入射角(Pelvic Incidence, PI),韩国学者Yoon等[49]对61例接受L4/5单节段ALIF的患者随访5年以上,发现PI-LL > 10˚是术后ASD的独立风险因素,提出术者应关注矢状面平衡的个体化重建,将术后PI-LL差值控制在10˚以内,以降低术后ASD发生风险。对于老年患者,LL矫正量需更加保守,术前应结合年龄与矢状面参数优化手术策略,2020年的一项研究为有效预防ASD和减少再手术率,提出了年龄矫正公式:理想LL ≈ PI + (年龄 − 55)/2 ± 9˚ [50]。术中还应尽量恢复患者的矢状面平衡,这对于优化临床效果和预防ASD至关重要[51]。脊柱矢状面垂直轴(Sagittal Vertical Axis, SVA)是反映脊柱–骨盆矢状面平衡的整体参数,研究指出[52],SVA > 50 mm与术后ASD显著相关。2022年的一项研究同样提出术前SVA值增大是术后不良结局的风险因素之一[53]

对于骨质疏松的患者,无论骨质疏松是否增加术后ASD的风险,围术期使用药物强化骨质量均十分必要。研究显示,围术期使用特立帕肽可显著提高融合率,降低螺钉松动和术后ASD的风险,优于双膦酸盐[54] [55]。骨质疏松患者的椎体把持力较弱,术中应用骨水泥强化椎弓根螺钉,可有效预防螺钉松动和术后继发性失平衡。有限元分析显示,骨水泥强化虽能增强内固定,但可能增加邻近节段应力,增加术后ASD的风险,需要谨慎评估[56]

与传统开放手术相比,微创技术具有创伤小、出血少、恢复快等优点,同时也能降低ASD的发生率[57]。单侧双通道内镜技术(Unilateral Biportal Endoscopy, UBE)作为微创领域的“后起之秀”,在2023年的一项前瞻性研究中,其微创性得到了认可,能更大程度上保护手术部位的肌肉和韧带,降低术后脊柱不稳定和ASD发生风险[58] [59]。这与Li等[60]的研究结论相似,他比较了开放PLIF与UBE-PLIF治疗腰椎管狭窄症对邻近节段稳定性的影响,发现UBE组术后邻近节段不稳定的发生率更低。

尽管腰椎融合术后ASD在临床上愈发常见,但大部分患者不需要手术干预。Burch等[61]检索了大量文献,纳入55项研究,涉及1940名患者,发现因术后ASD再手术的总体发生率约为8%。ASD的典型影像学表现包括椎管狭窄、脊柱不稳定及假关节形成,当出现明显脊髓或神经根受压时则需手术干预。传统手术的目的为减压与重建脊柱稳定性,其中开放减压融合内固定术为当前标准术式,但受限于初次手术后的瘢痕粘连及原有内固定装置的处理,术中二次暴露术野并移除内植物的时长显著延长,增加了神经损伤、术中失血及术后感染等风险。Kapetanakis等[62]通过前瞻性队列分析,评估了经皮椎间孔镜椎间盘切除术(Percutaneous Transforaminal Endoscopic Discectomy, PTED)治疗腰椎融合术后ASD的早期疗效,首次验证PTED作为微创技术治疗ASD的有效性。李涛和楼超二人的研究均肯定了PTED治疗腰椎融合术后ASD的临床疗效[63] [64]。Murata等[65]的一项回顾性研究同样肯定了微创技术治疗腰椎融合术后ASD的临床疗效,避免了传统的追加融合节段,术后5年随访中,患者的功能评分(JOA评分)和疼痛指数(VAS评分)显著改善。这与Kapetanakis、李涛和楼超等的研究结论互补,共同支持脊柱内镜技术作为腰椎融合术后ASD的有效治疗选择。

5. 总结与展望

综上可知,腰椎融合术后出现ASD属于复杂的多因素作用结果,生物力学层面的代偿机制在此过程中发挥核心驱动作用。脊柱融合操作会打破脊柱整体的生物力学稳态,使得相邻未融合的脊柱节段承担更为显著的应力集中,这一变化会促使该部位退变进程加快,最终发生ASD。从内在因素来看,患者年龄偏大、BMI数值较高以及骨质疏松状态,构成了该并发症发生的重要病理生理前提。不过性别因素与术后ASD之间的关联,还需要更多多中心、大样本量的临床研究加以深入厘清。外在因素方面,与手术操作相关的各类条件(如手术方式、融合节段数目),在ASD发生中起到了关键影响作用。对于无明显症状的ASD病例,通常无需特殊治疗干预。若患者出现脊髓或神经受压的相关表现,则需要通过手术方式进行处理。目前针对ASD的手术治疗方案种类较多,相较于传统开放减压融合内固定手术,微创技术的运用可在减少手术创伤、降低术中出血量、缩短住院时长的同时,有效缓解患者的不适症状,但该技术的长期治疗效果,仍需更多长期随访、前瞻性设计且随机化的临床研究予以进一步验证。尽管临床学界对ASD的认识不断深化,但该疾病的预防与治疗工作仍存在诸多挑战。

NOTES

*通讯作者。

参考文献

[1] 王经宇, 王孝宾, 韦超, 等. 极外侧椎间融合术及其在腰椎退行性疾病中应用的研究进展[J]. 中国脊柱脊髓杂志, 2022, 32(1): 79-84.
[2] Mesregah, M.K., Yoshida, B., Lashkari, N., Abedi, A., Meisel, H., Diwan, A., et al. (2022) Demographic, Clinical, and Operative Risk Factors Associated with Postoperative Adjacent Segment Disease in Patients Undergoing Lumbar Spine Fusions: A Systematic Review and Meta-Analysis. The Spine Journal, 22, 1038-1069. [Google Scholar] [CrossRef] [PubMed]
[3] Radcliff, K.E., Kepler, C.K., Jakoi, A., Sidhu, G.S., Rihn, J., Vaccaro, A.R., et al. (2013) Adjacent Segment Disease in the Lumbar Spine Following Different Treatment Interventions. The Spine Journal, 13, 1339-1349. [Google Scholar] [CrossRef] [PubMed]
[4] Lawrence, B.D., Wang, J., Arnold, P.M., Hermsmeyer, J., Norvell, D.C. and Brodke, D.S. (2012) Predicting the Risk of Adjacent Segment Pathology after Lumbar Fusion: A Systematic Review. Spine, 37, S123-S132. [Google Scholar] [CrossRef] [PubMed]
[5] Xia, X., Chen, H. and Cheng, H. (2013) Prevalence of Adjacent Segment Degeneration after Spine Surgery: A Systematic Review and Meta-Analysis. Spine, 38, 597-608. [Google Scholar] [CrossRef] [PubMed]
[6] Cao, L., Liu, Y., Mei, W., Xu, J. and Zhan, S. (2020) Biomechanical Changes of Degenerated Adjacent Segment and Intact Lumbar Spine after Lumbosacral Topping-Off Surgery: A Three-Dimensional Finite Element Analysis. BMC Musculoskeletal Disorders, 21, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
[7] Wawrose, R.A., LeVasseur, C.M., Byrapogu, V.K., Dombrowski, M.E., Donaldson, W.F., Shaw, J.D., et al. (2020) In Vivo Changes in Adjacent Segment Kinematics after Lumbar Decompression and Fusion. Journal of Biomechanics, 102, Article 109515. [Google Scholar] [CrossRef] [PubMed]
[8] Chuang, W., Lin, S., Chen, S., Wang, C., Tsai, W., Chen, Y., et al. (2012) Biomechanical Effects of Disc Degeneration and Hybrid Fixation on the Transition and Adjacent Lumbar Segments: Trade-Off between Junctional Problem, Motion Preservation, and Load Protection. Spine, 37, E1488-E1497. [Google Scholar] [CrossRef] [PubMed]
[9] Zhou, C., Cha, T., Wang, W., Guo, R. and Li, G. (2021) Investigation of Alterations in the Lumbar Disc Biomechanics at the Adjacent Segments after Spinal Fusion Using a Combined in Vivo and in Silico Approach. Annals of Biomedical Engineering, 49, 601-616. [Google Scholar] [CrossRef] [PubMed]
[10] 黄道余. Dynesys动态内固定治疗腰椎退行性疾病生物力学特点与邻近节段退变的关系[J]. 中国组织工程研究, 2019, 23(24): 3895-3900.
[11] Zhang, Y., Shan, J., Liu, X., Li, F., Guan, K. and Sun, T. (2016) Comparison of the Dynesys Dynamic Stabilization System and Posterior Lumbar Interbody Fusion for Lumbar Degenerative Disease. PLOS ONE, 11, e0148071. [Google Scholar] [CrossRef] [PubMed]
[12] Khan, A.N., Jacobsen, H.E., Khan, J., Filippi, C.G., Levine, M., Lehman, R.A., et al. (2017) Inflammatory Biomarkers of Low Back Pain and Disc Degeneration: A Review. Annals of the New York Academy of Sciences, 1410, 68-84. [Google Scholar] [CrossRef] [PubMed]
[13] Francisco, V., Pino, J., González-Gay, M.Á., Lago, F., Karppinen, J., Tervonen, O., et al. (2022) A New Immunometabolic Perspective of Intervertebral Disc Degeneration. Nature Reviews Rheumatology, 18, 47-60. [Google Scholar] [CrossRef] [PubMed]
[14] Hilibrand, A.S. and Robbins, M. (2004) Adjacent Segment Degeneration and Adjacent Segment Disease: The Consequences of Spinal Fusion? The Spine Journal, 4, S190-S194. [Google Scholar] [CrossRef] [PubMed]
[15] Wang, J.C., Arnold, P.M., Hermsmeyer, J.T. and Norvell, D.C. (2012) Do Lumbar Motion Preserving Devices Reduce the Risk of Adjacent Segment Pathology Compared with Fusion Surgery? A Systematic Review. Spine, 37, S133-S143. [Google Scholar] [CrossRef] [PubMed]
[16] Epstein, N. (2016) Older Literature Review of Increased Risk of Adjacent Segment Degeneration with Instrumented Lumbar Fusions. Surgical Neurology International, 7, Article 70. [Google Scholar] [CrossRef] [PubMed]
[17] Li, D., Hai, Y., Meng, X., Yang, J. and Yin, P. (2019) Topping-Off Surgery vs Posterior Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Comparative Study of Clinical Efficacy and Adjacent Segment Degeneration. Journal of Orthopaedic Surgery and Research, 14, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
[18] Cheng, X., Qu, Y., Dong, R., Kang, M. and Zhao, J. (2022) A Comparison of Long-Term Efficacy of K-Rod-Assisted Non-Fusion Operation and Posterior Lumbar Interbody Fusion for Single-Segmental Lumbar Disc Herniation. Journal of Clinical Neuroscience, 95, 1-8. [Google Scholar] [CrossRef] [PubMed]
[19] 刘杰, 金新蒙, 王雷, 等. Wiltse入路动态系统内固定与腰椎后路椎间融合术治疗腰椎椎间盘突出症的长期疗效[J]. 脊柱外科杂志, 2023, 21(6): 375-380.
[20] Tsujino, M., Matsumura, A., Ohyama, S., Kato, M., Namikawa, T., Hori, Y., et al. (2025) Proximal Junctional Disease 5 Years after Surgery for L4 Degenerative Spondylolisthesis: Comparing PLIF versus Minimally Invasive Decompression. European Spine Journal, 34, 1063-1070. [Google Scholar] [CrossRef] [PubMed]
[21] Cheh, G., Bridwell, K.H., Lenke, L.G., Buchowski, J.M., Daubs, M.D., Kim, Y., et al. (2007) Adjacent Segment Disease Followinglumbar/Thoracolumbar Fusion with Pedicle Screw Instrumentation: A Minimum 5-Year Follow-Up. Spine, 32, 2253-2257. [Google Scholar] [CrossRef] [PubMed]
[22] Ankrah, N., Eli, I.M., Magge, S.N., Whitmore, R.G. and Yew, A.Y. (2021) Age, Body Mass Index, and Osteoporosis Are More Predictive than Imaging for Adjacent-Segment Reoperation after Lumbar Fusion. Surgical Neurology International, 12, Article 453. [Google Scholar] [CrossRef] [PubMed]
[23] Lee, J.C., Kim, Y., Soh, J. and Shin, B. (2014) Risk Factors of Adjacent Segment Disease Requiring Surgery after Lumbar Spinal Fusion: Comparison of Posterior Lumbar Interbody Fusion and Posterolateral Fusion. Spine, 39, E339-E345. [Google Scholar] [CrossRef] [PubMed]
[24] Wang, Y.J., Griffith, J.F., Zeng, X., Deng, M., Kwok, A.W.L., Leung, J.C.S., et al. (2013) Prevalence and Sex Difference of Lumbar Disc Space Narrowing in Elderly Chinese Men and Women: Osteoporotic Fractures in Men (Hong Kong) and Osteoporotic Fractures in Women (Hong Kong) Studies. Arthritis & Rheumatism, 65, 1004-1010. [Google Scholar] [CrossRef] [PubMed]
[25] 张腾飞, 王坤, 朱彦谕, 等. 腰椎后路融合术后邻近节段退变相关危险因素的Meta分析[J]. 中国组织工程研究, 2021, 25(12): 1936-1943.
[26] Wang, T. and Ding, W. (2020) Risk Factors for Adjacent Segment Degeneration after Posterior Lumbar Fusion Surgery in Treatment for Degenerative Lumbar Disorders: A Meta-Analysis. Journal of Orthopaedic Surgery and Research, 15, Article No. 582. [Google Scholar] [CrossRef] [PubMed]
[27] Yuan, C., Zhou, J., Wang, L. and Deng, Z. (2022) Adjacent Segment Disease after Minimally Invasive Transforaminal Lumbar Interbody Fusion for Degenerative Lumbar Diseases: Incidence and Risk Factors. BMC Musculoskeletal Disorders, 23, Article No. 982. [Google Scholar] [CrossRef] [PubMed]
[28] Bagheri, S.R., Alimohammadi, E., Zamani Froushani, A. and Abdi, A. (2019) Adjacent Segment Disease after Posterior Lumbar Instrumentation Surgery for Degenerative Disease: Incidence and Risk Factors. Journal of Orthopaedic Surgery, 27, 1-6. [Google Scholar] [CrossRef] [PubMed]
[29] 郑俊勇, 王松, 张鑫, 等. 椎体骨质量及椎旁肌变化与经椎间孔腰椎椎间融合术后邻近节段退变的相关性研究[J]. 四川大学学报(医学版), 2024, 55(5): 1301-1308.
[30] Liuke, M., Solovieva, S., Lamminen, A., Luoma, K., Leino-Arjas, P., Luukkonen, R., et al. (2005) Disc Degeneration of the Lumbar Spine in Relation to Overweight. International Journal of Obesity, 29, 903-908. [Google Scholar] [CrossRef] [PubMed]
[31] Bao, J., Zou, D. and Li, W. (2021) Characteristics of the DXA Measurements in Patients Undergoing Lumbar Fusion for Lumbar Degenerative Diseases: A Retrospective Analysis of over 1000 Patients. Clinical Interventions in Aging, 16, 1131-1137. [Google Scholar] [CrossRef] [PubMed]
[32] 刘庆涛, 王辉, 许星柱, 等. 腰椎融合术后五年邻近节段退变的危险因素分析[J]. 中国骨与关节杂志, 2023, 12(4): 248-253.
[33] Meredith, D.S., Schreiber, J.J., Taher, F., Cammisa, F.P. and Girardi, F.P. (2013) Lower Preoperative Hounsfield Unit Measurements Are Associated with Adjacent Segment Fracture after Spinal Fusion. Spine, 38, 415-418. [Google Scholar] [CrossRef] [PubMed]
[34] Bredow, J., Boese, C.K., Werner, C.M.L., Siewe, J., Löhrer, L., Zarghooni, K., et al. (2016) Predictive Validity of Preoperative CT Scans and the Risk of Pedicle Screw Loosening in Spinal Surgery. Archives of Orthopaedic and Trauma Surgery, 136, 1063-1067. [Google Scholar] [CrossRef] [PubMed]
[35] De Stefano, F., Elarjani, T., Warner, T., Lopez, J., Shah, S., Basil, G.W., et al. (2022) Hounsfield Unit as a Predictor of Adjacent-Level Disease in Lumbar Interbody Fusion Surgery. Neurosurgery, 91, 146-149. [Google Scholar] [CrossRef] [PubMed]
[36] 郝少飞, 曹珺, 冯伟, 等. 老年腰椎管狭窄症患者腰椎融合术后相邻节段退变的危险因素分析[J]. 中国骨科临床与基础研究杂志, 2025, 15(2): 77-81.
[37] 慕春黎, 王朋. PLIF术后邻近节段退变的危险因素分析[J]. 中国骨与关节损伤杂志, 2019, 34(1): 87-89.
[38] Zhang, C., Shi, J., Chang, M., Yuan, X., Zhang, R., Huang, H., et al. (2021) Does Osteoporosis Affect the Adjacent Segments Following Anterior Lumbar Interbody Fusion? A Finite Element Study. World Neurosurgery, 146, e739-e746. [Google Scholar] [CrossRef] [PubMed]
[39] 李明, 种衍学, 宋将, 等. 腰椎椎体间融合不同手术入路及并发症[J]. 中国矫形外科杂志, 2017, 25(13): 1210-1214.
[40] Kumar, M., Baklanov, A. and Chopin, D. (2001) Correlation between Sagittal Plane Changes and Adjacent Segment Degeneration Following Lumbar Spine Fusion. European Spine Journal, 10, 314-319. [Google Scholar] [CrossRef] [PubMed]
[41] Tao, X., Matur, A.V., Khalid, S., Onyewadume, L., Garner, R., McGrath, K., et al. (2023) TLIF Is Associated with Lower Rates of Adjacent Segment Disease and Complications Compared to Alif: A Matched-Cohort Analysis. Spine, 48, 1335-1341. [Google Scholar] [CrossRef] [PubMed]
[42] Zhang, Y., Vengsarkar, V.A., Chi, J., Yang, H., Goudarzi, A., Shen, M., et al. (2026) L4-S1 ALIF Restores and Maintains Lordosis While Minimizing Adjacent Segment Disease Compared to L4-S1 TLIF. The Spine Journal, 26, 292-300. [Google Scholar] [CrossRef] [PubMed]
[43] Kumaran, Y., Shah, A., Katragadda, A., Padgaonkar, A., Zavatsky, J., McGuire, R., et al. (2021) Iatrogenic Muscle Damage in Transforaminal Lumbar Interbody Fusion and Adjacent Segment Degeneration: A Comparative Finite Element Analysis of Open and Minimally Invasive Surgeries. European Spine Journal, 30, 2622-2630. [Google Scholar] [CrossRef] [PubMed]
[44] Lin, G., Park, C., Hur, J. and Kim, J. (2019) Time Course Observation of Outcomes between Minimally Invasive Transforaminal Lumbar Interbody Fusion and Posterior Lumbar Interbody Fusion. Neurologia Medico-Chirurgica, 59, 222-230. [Google Scholar] [CrossRef] [PubMed]
[45] Yang, Y., Liu, Z., Zhang, L., Pang, M., Chhantyal, K., Wu, W., et al. (2018) Microendoscopy-Assisted Minimally Invasive versus Open Transforaminal Lumbar Interbody Fusion for Lumbar Degenerative Diseases: 5-Year Outcomes. World Neurosurgery, 116, e602-e610. [Google Scholar] [CrossRef] [PubMed]
[46] Zhang, C., Berven, S.H., Fortin, M. and Weber, M.H. (2016) Adjacent Segment Degeneration versus Disease after Lumbar Spine Fusion for Degenerative Pathology. Clinical Spine Surgery: A Spine Publication, 29, 21-29. [Google Scholar] [CrossRef] [PubMed]
[47] 郭朝阳, 李明恒, 陈荣春. 腰椎融合内固定术融合节段对相邻节段退变影响的临床分析[J]. 中国医学创新, 2014, 11(7): 3-6.
[48] Phan, K., Nazareth, A., Hussain, A.K., Dmytriw, A.A., Nambiar, M., Nguyen, D., et al. (2018) Relationship between Sagittal Balance and Adjacent Segment Disease in Surgical Treatment of Degenerative Lumbar Spine Disease: Meta-Analysis and Implications for Choice of Fusion Technique. European Spine Journal, 27, 1981-1991. [Google Scholar] [CrossRef] [PubMed]
[49] Yoon, S.G., Lee, H.C. and Lee, S. (2023) Pelvic Incidence-Lumbar Lordosis Mismatch Is Predisposed to Adjacent Segment Degeneration after Single-Level Anterior Lumbar Interbody Fusion: A Retrospective Case-Control Study. Neurospine, 20, 301-307. [Google Scholar] [CrossRef] [PubMed]
[50] Wang, S., Zhang, S., Yi, Y., Xu, H. and Wu, D. (2020) Estimation of the Ideal Correction of Lumbar Lordosis to Prevent Reoperation for Symptomatic Adjacent Segment Disease after Lumbar Fusion in Older People. BMC Musculoskeletal Disorders, 21, Article No. 429. [Google Scholar] [CrossRef] [PubMed]
[51] Pinto, E.M., Teixeria, A., Frada, R., Oliveira, F., Atilano, P., Veigas, T., et al. (2021) Patient-Related Risk Factors for the Development of Lumbar Spine Adjacent Segment Pathology. Orthopedic Reviews, 13, Article 24915. [Google Scholar] [CrossRef] [PubMed]
[52] 王林锋, 叶宏, 陈小杰, 等. 矢状位失平衡与腰椎融合术后邻近关节退变的相关性[J]. 中国老年学杂志, 2020, 40(17): 3675-3677.
[53] 李晓君, 姜鸿南, 樊知昌, 等. 脊柱-骨盆影像学指标在腰椎退行性病变中的变化及意义[J]. 影像科学与光化学, 2022, 40(3): 584-589.
[54] Jin, H., Jin, H., Suk, K., Lee, B.H., Park, S.Y., Kim, H., et al. (2025) Antiosteoporosis Medication in Patients with Posterior Spine Fusion: A Systematic Review and Meta-Analysis. The Spine Journal, 25, 1877-1898. [Google Scholar] [CrossRef] [PubMed]
[55] Köhli, P., Hambrecht, J., Wang, S., Zhu, J., Chiapparelli, E., Schönnagel, L., et al. (2024) Untreated Osteoporosis in Lumbar Fusion Surgery Patients: Prevalence, Risk-Factors, and Effect on Bone Metabolism. Spine, 50, 420-428. [Google Scholar] [CrossRef] [PubMed]
[56] Khalaf, K., Nikkhoo, M., Shams, S., Niu, C. and Cheng, C. (2024) Impact of Osteoporosis and Cement-Augmented Fusion on Adjacent Spinal Levels Post-Fusion Surgery: Patient-Specific Finite Element Analysis. Journal of Biomechanics, 166, Article 112070. [Google Scholar] [CrossRef] [PubMed]
[57] Pinto, E.M., Teixeira, A., Frada, R., Atilano, P. and Miranda, A. (2021) Surgical Risk Factors Associated with the Development of Adjacent Segment Pathology in the Lumbar Spine. EFORT Open Reviews, 6, 966-972. [Google Scholar] [CrossRef] [PubMed]
[58] 官丙刚, 杨强. 单侧双通道脊柱内镜治疗腰椎退行性疾病的进展[J]. 中国矫形外科杂志, 2024, 32(13): 1210-1214.
[59] Park, S., Lee, H., Park, H., Choi, J., Kwon, O., Lee, S., et al. (2023) Biportal Endoscopic versus Microscopic Discectomy for Lumbar Herniated Disc: A Randomized Controlled Trial. The Spine Journal, 23, 18-26. [Google Scholar] [CrossRef] [PubMed]
[60] Li, X., Liu, J. and Liu, Z. (2023) Comparison of the Results of Open PLIF versus UBE PLIF in Lumbar Spinal Stenosis: Postoperative Adjacent Segment Instability Is Lesser in Ube. Journal of Orthopaedic Surgery and Research, 18, Article No. 543. [Google Scholar] [CrossRef] [PubMed]
[61] Nourbakhsh, A., Burch, M., Wiegers, N. and Patil, S. (2020) Incidence and Risk Factors of Reoperation in Patients with Adjacent Segment Disease: A Meta-Analysis. Journal of Craniovertebral Junction and Spine, 11, Article 9. [Google Scholar] [CrossRef] [PubMed]
[62] Kapetanakis, S., Gkantsinikoudis, N., Gkasdaris, G. and Charitoudis, G. (2020) Treatment of Adjacent Segment Disease with Percutaneous Transforaminal Endoscopic Discectomy: Early Experience and Results. Journal of Orthopaedic Surgery, 28, 1-9. [Google Scholar] [CrossRef] [PubMed]
[63] 李涛, 徐峰, 徐彬, 等. 椎间孔镜技术治疗腰椎融合后临近节段病变的临床疗效[J]. 中国矫形外科杂志, 2017, 25(2): 170-173.
[64] 楼超, 俞伟杨, 陈剑, 等. 经皮椎间孔入路内镜下治疗腰椎融合术后邻椎腰椎间盘突出症[J]. 中国骨伤, 2022, 35(5): 448-453.
[65] Murata, S., Minamide, A., Nakagawa, Y., Iwasaki, H., Taneichi, H., Schoenfeld, A.J., et al. (2022) Microendoscopic Decompression for Lumbar Spinal Stenosis Associated with Adjacent Segment Disease Following Lumbar Fusion Surgery: 5-Year Follow-Up of a Retrospective Case Series. Journal of Neurological Surgery Part A: Central European Neurosurgery, 83, 403-410. [Google Scholar] [CrossRef] [PubMed]