|
[1]
|
Galluzzi, L. and Green, D.R. (2019) Autophagy-Independent Functions of the Autophagy Machinery. Cell, 177, 1682-1699. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Faruk, M.O., Ichimura, Y. and Komatsu, M. (2021) Selective Autophagy. Cancer Science, 112, 3972-3978. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Malik, A.A., Shariq, M., Sheikh, J.A., Fayaz, H., Srivastava, G., Thakuri, D., et al. (2024) Regulation of Type I Interferon and Autophagy in Immunity against Mycobacterium tuberculosis: Role of CGAS and Sting1. Advanced Biology, 8, e2400174. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Devenish, R.J. and Lai, S. (2014) Autophagy and Burkholderia. Immunology & Cell Biology, 93, 18-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Berton, S., Chen, L., Liang, Y.C., Xu, Z., Afriyie-Asante, A., Rajabalee, N., et al. (2022) A Selective PPM1A Inhibitor Activates Autophagy to Restrict the Survival of Mycobacterium tuberculosis. Cell Chemical Biology, 29, 1126-1139.e12. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, X., Cao, X., Lei, Y., Reheman, A., Zhou, W., Yang, B., et al. (2021) Distinct Persistence Fate of Mycobacterium tuberculosis in Various Types of Cells. mSystems, 6, e0078321. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chen, D., Wu, L., Liu, X., Wang, Q., Gui, S., Bao, L., et al. (2024) Helicobacter pylori Caga Mediated Mitophagy to Attenuate the NLRP3 Inflammasome Activation and Enhance the Survival of Infected Cells. Scientific Reports, 14, Article No. 21648. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Miao, C., Zhang, Y., Yu, M., Wei, Y., Dong, C., Pei, G., et al. (2023) HSPA8 Regulates Anti-Bacterial Autophagy through Liquid-Liquid Phase Separation. Autophagy, 19, 2702-2718. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ayibieke, A., Wajima, T., Kano, S., Chatterjee, N.S. and Hamabata, T. (2024) The Colonization Factor CS6 of Enterotoxigenic Escherichia coli Contributes to Host Cell Invasion. Microbial Pathogenesis, 190, Article ID: 106636. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ma, K., Xian, W., Liu, H., Shu, R., Ge, J., Luo, Z., et al. (2024) Bacterial Ubiquitin Ligases Hijack the Host Deubiquitinase OTUB1 to Inhibit MTORC1 Signaling and Promote Autophagy. Autophagy, 20, 1968-1983. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lamark, T. and Johansen, T. (2021) Mechanisms of Selective Autophagy. Annual Review of Cell and Developmental Biology, 37, 143-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, S., Long, H., Hou, L., Feng, B., Ma, Z., Wu, Y., et al. (2023) The Mitophagy Pathway and Its Implications in Human Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 304. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhu, H., Wang, J., Zhang, Q., Pan, X. and Zhang, J. (2023) Novel Strategies and Promising Opportunities for Targeted Protein Degradation: An Innovative Therapeutic Approach to Overcome Cancer Resistance. Pharmacology & Therapeutics, 244, Article ID: 108371. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vargas, J.N.S., Wang, C., Bunker, E., Hao, L., Maric, D., Schiavo, G., et al. (2019) Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy. Molecular Cell, 74, 347-362.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kim, J., Kundu, M., Viollet, B. and Guan, K. (2011) AMPK and mTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Morelli, E., Ginefra, P., Mastrodonato, V., Beznoussenko, G.V., Rusten, T.E., Bilder, D., et al. (2014) Multiple Functions of the SNARE Protein Snap29 in Autophagy, Endocytic, and Exocytic Trafficking during Epithelial Formation in Drosophila. Autophagy, 10, 2251-2268. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Jian, F., Wang, S., Tian, R., Wang, Y., Li, C., Li, Y., et al. (2024) The STX17-SNAP47-VAMP7/VAMP8 Complex Is the Default SNARE Complex Mediating Autophagosome-Lysosome Fusion. Cell Research, 34, 151-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liu, J., Ming, S., Song, W., Meng, X., Xiao, Q., Wu, M., et al. (2021) B and T Lymphocyte Attenuator Regulates Autophagy in Mycobacterial Infection via the Akt/mTOR Signal Pathway. International Immunopharmacology, 91, Article ID: 107215. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bi, J., Guo, Q., Gong, Y., Chen, X., Wu, H., Song, L., et al. (2024) Troglitazone Reduction of Intracellular Mycobacterium tuberculosis Survival via Macrophage Autophagy through Lkb1-Ampkα Signaling. The Journal of Infectious Diseases, 231, e553-e565. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
White, E. (2016) Autophagy and P53. Cold Spring Harbor Perspectives in Medicine, 6, a026120. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ba, L., Gao, J., Chen, Y., Qi, H., Dong, C., Pan, H., et al. (2019) Allicin Attenuates Pathological Cardiac Hypertrophy by Inhibiting Autophagy via Activation of PI3K/Akt/mTOR and MAPK/ERK/mTOR Signaling Pathways. Phytomedicine, 58, Article ID: 152765. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhang, R., Torraca, V., Yan, C., Lyu, H., Xiao, S., Guo, D., et al. (2025) VAMP8 Stabilization by DRAM1 Enables Autophagosome-Lysosome Fusion and Promotes Metastatic Extravasation. Autophagy, 21, 2531-2533. [Google Scholar] [CrossRef]
|
|
[23]
|
Yan, Z., Han, J., Mi, Z., Wang, Z., Fu, Y., Wang, C., et al. (2025) GPNMB Disrupts SNARE Complex Assembly to Maintain Bacterial Proliferation within Macrophages. Cellular & Molecular Immunology, 22, 512-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sui, X., Liang, X., Chen, L., Guo, C., Han, W., Pan, H., et al. (2016) Bacterial Xenophagy and Its Possible Role in Cancer: A Potential Antimicrobial Strategy for Cancer Prevention and Treatment. Autophagy, 13, 237-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bitto, N.J., Cheng, L., Johnston, E.L., Pathirana, R., Phan, T.K., Poon, I.K.H., et al. (2021) Staphylococcus aureus Membrane Vesicles Contain Immunostimulatory DNA, RNA and Peptidoglycan That Activate Innate Immune Receptors and Induce Autophagy. Journal of Extracellular Vesicles, 10, e12080. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Valdebenito, E.A., Azúa, M., Silva-Sarmiento, D., Ojeda, N., Mercado, L. and Valenzuela, C.A. (2025) Immune-Like Response and Autophagy Modulation in Gill Epithelial Cells of Rainbow Trout Challenged with Piscirickettsia salmonis. Fish & Shellfish Immunology, 167, Article ID: 110878. [Google Scholar] [CrossRef]
|
|
[27]
|
Pandey, S., Kawai, T. and Akira, S. (2014) Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harbor Perspectives in Biology, 7, a016246. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, C.H., Liu, H. and Ge, B. (2017) Innate Immunity in Tuberculosis: Host Defense vs Pathogen Evasion. Cellular & Molecular Immunology, 14, 963-975. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kayagaki, N., Warming, S., Lamkanfi, M., Walle, L.V., Louie, S., Dong, J., et al. (2011) Non-Canonical Inflammasome Activation Targets Caspase-11. Nature, 479, 117-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Guo, M., Li, R., Xiao, Q., Fan, X., Li, N., Shang, Y., et al. (2018) Protective Role of Rabbit Nucleotide-Binding Oligomerization Domain-2 (NOD2)-Mediated Signaling Pathway in Resistance to Enterohemorrhagic Escherichia coli Infection. Frontiers in Cellular and Infection Microbiology, 8, Article No. 220. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Gao, Y., Yang, Y., Wei, J., Yue, J., Wang, Y., Zhang, Q., et al. (2023) Lncgm1082-Mediated NLRC4 Activation Drives Resistance to Bacterial Infection. Cellular & Molecular Immunology, 20, 475-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shariq, M., Quadir, N., Alam, A., Zarin, S., Sheikh, J.A., Sharma, N., et al. (2022) The Exploitation of Host Autophagy and Ubiquitin Machinery by Mycobacterium tuberculosis in Shaping Immune Responses and Host Defense during Infection. Autophagy, 19, 3-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xie, W., Tian, S., Yang, J., Cai, S., Jin, S., Zhou, T., et al. (2022) OTUD7B Deubiquitinates Sqstm1/p62 and Promotes IRF3 Degradation to Regulate Antiviral Immunity. Autophagy, 18, 2288-2302. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rodrigues, P.M., Sousa, L.G., Perrod, C., Maceiras, A.R., Ferreirinha, P., Pombinho, R., et al. (2022) LAMP2 Regulates Autophagy in the Thymic Epithelium and Thymic Stroma-Dependent CD4 T Cell Development. Autophagy, 19, 426-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Pahari, S., Negi, S., Aqdas, M., Arnett, E., Schlesinger, L.S. and Agrewala, J.N. (2019) Induction of Autophagy through CLEC4E in Combination with TLR4: An Innovative Strategy to Restrict the Survival of Mycobacterium tuberculosis. Autophagy, 16, 1021-1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sebastián, V.P., Moreno-Tapia, D., Melo-González, F., Hernández-Cáceres, M.P., Salazar, G.A., Pardo-Roa, C., et al. (2022) Limited Heme Oxygenase Contribution to Modulating the Severity of Salmonella Enterica Serovar Typhimurium Infection. Antioxidants, 11, Article No. 1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, L., Yan, J., Niu, H., Huang, R. and Wu, S. (2018) Autophagy and Ubiquitination in Salmonella Infection and the Related Inflammatory Responses. Frontiers in Cellular and Infection Microbiology, 8, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Gatica, D., Alsaadi, R. and Russell, R.C. (2025) Salmonella Typhimurium Exploits the Reticulophagy/Erphagy Receptor RETREG1 to Promote Infection. Autophagy, 21, 3416-3418. [Google Scholar] [CrossRef]
|
|
[39]
|
Gatica, D., Alsaadi, R.M., El Hamra, R., Li, B., Mueller, R., Miyazaki, M., et al. (2025) The ER-Phagy Receptor FAM134B Is Targeted by Salmonella Typhimurium to Promote Infection. Nature Communications, 16, Article No. 2923. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Xu, Y., Zhou, P., Cheng, S., Lu, Q., Nowak, K., Hopp, A., et al. (2019) A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis That Initiates Xenophagy. Cell, 178, 552-566.e20. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jiang, L., Wang, P., Song, X., Zhang, H., Ma, S., Wang, J., et al. (2021) Salmonella Typhimurium Reprograms Macrophage Metabolism via T3SS Effector Sope2 to Promote Intracellular Replication and Virulence. Nature Communications, 12, Article No. 879. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Lisowski, C., Dias, J., Costa, S., Silva, R.J., Mano, M. and Eulalio, A. (2021) Dysregulated Endolysosomal Trafficking in Cells Arrested in the G1 Phase of the Host Cell Cycle Impairs Salmonella Vacuolar Replication. Autophagy, 18, 1785-1800. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Peng, X., Pu, F., Zhou, F., Dai, X., Xu, F., Wang, J., et al. (2025) Has-miR-30c-1-3p Inhibits Macrophage Autophagy and Promotes Mycobacterium tuberculosis Survival by Targeting ATG4B and ATG9B. Scientific Reports, 15, Article No. 10240. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Saini, N.K., Baena, A., Ng, T.W., Venkataswamy, M.M., Kennedy, S.C., Kunnath-Velayudhan, S., et al. (2016) Suppression of Autophagy and Antigen Presentation by Mycobacterium tuberculosis PE_PGRS47. Nature Microbiology, 1, Article No. 16133. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Barik, S., Panda, A.K., Biswas, V.K., Das, S., Chakraborty, A., Beura, S., et al. (2024) Lysine Acetylation of Hsp16.3: Effect on Its Structure, Chaperone Function and Influence towards the Growth of Mycobacterium tuberculosis. International Journal of Biological Macromolecules, 268, Article No. 131763. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mittal, E. and Philips, J.A. (2024) The Mycobacterium tuberculosis Lipid, PDIM, Inhibits the NADPH Oxidase and Autophagy. Autophagy, 21, 684-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zheng, W., Borja, M., Dorman, L.C., Liu, J., Zhou, A., Seng, A., et al. (2025) Single-Cell Analysis Reveals Mycobacterium tuberculosis ESX-1-Mediated Accumulation of Permissive Macrophages in Infected Mouse Lungs. Science Advances, 11, eadq8158. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shariq, M., Quadir, N., Sharma, N., Singh, J., Sheikh, J.A., Khubaib, M., et al. (2021) Mycobacterium tuberculosis Ripa Dampens Tlr4-Mediated Host Protective Response Using a Multi-Pronged Approach Involving Autophagy, Apoptosis, Metabolic Repurposing, and Immune Modulation. Frontiers in Immunology, 12, Article ID: 636644. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Festjens, N., Bogaert, P., Batni, A., Houthuys, E., Plets, E., Vanderschaeghe, D., et al. (2011) Disruption of the SapM Locus in Mycobacterium bovis BCG Improves Its Protective Efficacy as a Vaccine against M. tuberculosis. EMBO Molecular Medicine, 3, 222-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, W., Dong, C. and Xiong, S. (2024) Mycobacterial SapM Hampers Host Autophagy Initiation for Intracellular Bacillary Survival via Dephosphorylating Raptor. iScience, 27, Article ID: 109671. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ge, P., Lei, Z., Yu, Y., Lu, Z., Qiang, L., Chai, Q., et al. (2021) M. tuberculosis PknG Manipulates Host Autophagy Flux to Promote Pathogen Intracellular Survival. Autophagy, 18, 576-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Bach, H., Papavinasasundaram, K.G., Wong, D., Hmama, Z. and Av-Gay, Y. (2008) Mycobacterium tuberculosis Virulence Is Mediated by PtpA Dephosphorylation of Human Vacuolar Protein Sorting 33b. Cell Host & Microbe, 3, 316-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wang, L., Wu, J., Li, J., Yang, H., Tang, T., Liang, H., et al. (2020) Host-Mediated Ubiquitination of a Mycobacterial Protein Suppresses Immunity. Nature, 577, 682-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Nakagawa, I. (2013) Streptococcus pyogenes Escapes from Autophagy. Cell Host & Microbe, 14, 604-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liu, W., Zhou, Y., Peng, T., Zhou, P., Ding, X., Li, Z., et al. (2018) Nε-Fatty Acylation of Multiple Membrane-Associated Proteins by Shigella IcsB Effector to Modulate Host Function. Nature Microbiology, 3, 996-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Gluschko, A., Farid, A., Herb, M., Grumme, D., Krönke, M. and Schramm, M. (2021) Macrophages Target Listeria monocytogenes by Two Discrete Non-Canonical Autophagy Pathways. Autophagy, 18, 1090-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, C., Bauckman, K.A., Ross, A.S.B., Symington, J.W., Ligon, M.M., Scholtes, G., et al. (2018) A Non-Canonical Autophagy-Dependent Role of the ATG16L1T300A Variant in Urothelial Vesicular Trafficking and Uropathogenic Escherichia coli Persistence. Autophagy, 15, 527-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Sadaghian Sadabad, M., Regeling, A., de Goffau, M.C., Blokzijl, T., Weersma, R.K., Penders, J., et al. (2014) The ATG16L1-T300A Allele Impairs Clearance of Pathosymbionts in the Inflamed Ileal Mucosa of Crohn’s Disease Patients. Gut, 64, 1546-1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Intemann, C.D., Thye, T., Sievertsen, J., Owusu-Dabo, E., Horstmann, R.D. and Meyer, C.G. (2009) Genotyping of IRGM Tetranucleotide Promoter Oligorepeats by Fluorescence Resonance Energy Transfer. BioTechniques, 46, 58-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Xie, H., Li, C., Zhang, M., Zhong, N. and Chen, L. (2017) Association between IRGM Polymorphisms and Tuberculosis Risk: A Meta-Analysis. Medicine, 96, e8189. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Na, S.Y., Park, S.S. and Seo, J.K. (2015) Genetic Polymorphisms in Autophagy‐associated Genes in Korean Children with Early‐Onset Crohn Disease. Journal of Pediatric Gastroenterology and Nutrition, 61, 285-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Rüegg, C., Hersberger, M., Wusk, B., Rentsch, K., Kullak-Ublick, G.A., Eckardstein, A.V., et al. (2004) Detection of the Arg702Trp, Gly908Arg and Leu1007fsinsC Polymorphisms of the NOD2/CARD15 Gene by Real-Time PCR with Melting Curve Analysis. Clinical Chemistry and Laboratory Medicine (CCLM), 42, 494-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Yazdanyar, S., Weischer, M. and Nordestgaard, B.G. (2009) Genotyping for NOD2 Genetic Variants and Crohn Disease: A Meta-Analysis. Clinical Chemistry, 55, 1950-1957. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Kleinnijenhuis, J., Oosting, M., Plantinga, T.S., van der Meer, J.W.M., Joosten, L.A.B., Crevel, R.V., et al. (2011) Autophagy Modulates the Mycobacterium tuberculosis-Induced Cytokine Response. Immunology, 134, 341-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, J., Sha, J., Strong, E., Chopra, A.K. and Lee, S. (2022) FDA-Approved Amoxapine Effectively Promotes Macrophage Control of Mycobacteria by Inducing Autophagy. Microbiology Spectrum, 10, e0250922. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
(2022) Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet (London, England), 400, 2221-2248.
|
|
[67]
|
Fernandez-Soto, P., Bruce, A.J.E., Fielding, A.J., Cavet, J.S. and Tabernero, L. (2019) Mechanism of Catalysis and Inhibition of Mycobacterium tuberculosis SapM, Implications for the Development of Novel Antivirulence Drugs. Scientific Reports, 9, Article No. 10315. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Fernández-Soto, P., Casulli, J., Solano-Castro, D., Rodríguez-Fernández, P., Jowitt, T.A., Travis, M.A., et al. (2021) Discovery of Uncompetitive Inhibitors of SapM That Compromise Intracellular Survival of Mycobacterium tuberculosis. Scientific Reports, 11, Article No. 7667. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Liu, F., Wu, J., Shen, J., Zhang, H., Liu, Y., Sun, J., et al. (2025) Saikosaponin a Targets HDAC6 to Inhibit Mycobacterium tuberculosis-Induced Macrophage Pyroptosis via Autophagy-Mediated NLRP3 Inflammasome Inactivation. Phytomedicine, 142, Article ID: 156693. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Xu, W., Wu, Y., Yang, M., Zhou, J., Zhu, L., Ma, X., et al. (2025) Mir-107-Enriched Exosomes Promote ROS/Wnt/Autophagy, Inhibit Intracellular Mycobacterial Growth and Attenuate Lung Infection. Frontiers in Immunology, 16, Article ID: 1567167. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhou, X., Zhang, S., Ou, M., Tao, H., Cao, T., Li, L., et al. (2025) Berbamine Promotes Autophagy and GPX4 Expression through Inducing Abundant ROS to Restrict HIV-1 and Mtb Coinfection in Macrophages. Journal of Leukocyte Biology, 117, qiaf095. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
He, C. and Klionsky, D.J. (2009) Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43, 67-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Li, J., Kim, S.G. and Blenis, J. (2014) Rapamycin: One Drug, Many Effects. Cell Metabolism, 19, 373-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Sun, D., Gou, H., Zhang, Y., Li, J., Dai, C., Shen, H., et al. (2025) Salmonella Typhimurium Persistently Infects Host via Its Effector SseJ-Induced PHB2-Mediated Mitophagy. Autophagy, 21, 1228-1244. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Zhao, D., Qiang, L., Lei, Z., Ge, P., Lu, Z., Wang, Y., et al. (2024) TRIM27 Elicits Protective Immunity against Tuberculosis by Activating TFEB-Mediated Autophagy Flux. Autophagy, 20, 1483-1504. [Google Scholar] [CrossRef] [PubMed]
|