TG主要衍生代谢指数与糖尿病患者并发冠心病关系的研究进展
Research Progress on the Relationship between Major Triglyceride-Derived Metabolic Indices and Coronary Artery Disease Complicating Diabetes Mellitus
DOI: 10.12677/acm.2026.162408, PDF, HTML, XML,   
作者: 井 淼:西安医学院研究生院,陕西 西安;严琴琴:西安医学院全科医学研究所,陕西 西安;张 蓓:西安医学院第一附属医院神经内科,陕西 西安;吴 江:西安市韩森寨社区卫生服务中心,陕西 西安
关键词: 糖尿病冠心病甘油三酯–葡萄糖指数Diabetes Mellitus Coronary Artery Disease Triglyceride-Glucose Index
摘要: 冠状动脉粥样硬化性心脏病(冠心病)是全球范围内严重威胁人类健康的慢性疾病之一。随着生活水平的提高,其常见危险因素之一——糖尿病的发病率——也逐年升高。胰岛素抵抗与糖尿病和冠心病的发生、发展密切相关。甘油三酯(TG)是主要衍生代谢指数,包括甘油三酯–葡萄糖指数(TyG)、动脉粥样硬化指数(AIP)及甘油三酯–葡萄糖–体重指数(TyG-BMI),作为反映脂质代谢紊乱和胰岛素抵抗的新型综合指标,近年来在糖尿病患者并发冠心病的风险评估中备受关注。文章归纳总结胰岛素抵抗在糖尿病患者并发冠心病中的病理生理机制,以及TG主要衍生代谢指数(TyG, AIP, TyG-BMI)与糖尿病患者并发冠心病之间的关系。
Abstract: Coronary atherosclerotic heart disease (CAD) is one of the chronic conditions that poses a grave threat to human health worldwide. Concurrently, as living standards improved, the incidence of diabetes mellitus—a key risk factor for CAD—had risen steadily. Insulin resistance (IR) was recognized as playing a central role in the pathogenesis and progression of both diabetes and CAD. Several triglyceride (TG)-derived metabolic indices, including the triglyceride-glucose (TyG) index, the atherogenic index of plasma (AIP), and the triglyceride-glucose-body mass index (TyG-BMI), have emerged as integrated surrogate markers of dyslipidemia and IR. These indices had attracted considerable interest for their potential in risk stratification of CAD among diabetic patients. This article summarizes the pathophysiological mechanisms of insulin resistance in diabetic patients complicated with coronary heart disease, as well as the relationship between triglyceride‑related derivative metabolic indices (TyG, AIP, TyG‑BMI) and the occurrence of coronary heart disease in diabetic patients.
文章引用:井淼, 严琴琴, 张蓓, 吴江. TG主要衍生代谢指数与糖尿病患者并发冠心病关系的研究进展[J]. 临床医学进展, 2026, 16(2): 410-418. https://doi.org/10.12677/acm.2026.162408

1. 引言

冠状动脉粥样硬化心脏病(Coronary Artery Disease, CAD)是由冠状动脉粥样硬化导致血管狭窄或闭塞的一种常见心血管疾病(Cardio Vascular Disease, CVD)。由于不健康的生活习惯和有助于心血管健康因素的控制不佳,使得冠心病的发病率和死亡率持续上升,造成沉重公共卫生负担[1]。2025年《柳叶刀》提出,2022年至2050年间,冠心病的死亡率预计在中低收入国家增加19.2%,在中高收入国家增加4.2% [2]。冠状动脉造影(Coronary Angiography, CAG)是冠心病诊断的金标准,但存在具有侵入性、费用高、潜在并发症等问题。此外,冠心病患者复发风险高,其中2型糖尿病(Type 2 Diabetes Mellitus, T2DM)患者风险尤甚;T2DM本身就是冠心病的重要危险因素,可加速动脉粥样硬化并导致不良临床结局[3]-[5]。因此,亟需无创手段早期识别高危人群。

胰岛素抵抗(Insulin Resistance, IR)是指组织对胰岛素刺激反应性下降,其是T2DM的核心特征,也是驱动冠心病进展的关键机制[6] [7]。然而,传统的IR检测方法操作复杂、耗时、价格昂贵,不宜在基层医院展开。TG主要衍生代谢指数被视为可靠的IR替代指标,成为近年的研究热点。因此,本文将从病理生理机制和临床研究两方面,系统综述TyG、AIP和TyG-BMI与T2DM患者并发冠心病之间的关联及其在基层风险评估中的应用潜力,并提出未来研究方向,以优化糖尿病并发冠心病的防治策略。

2. IR的研究进展

2.1. 高胰岛素–正葡萄糖钳夹试验(HEGC)

高胰岛素–正葡萄糖钳夹试验(Hyperinsulinemic-Euglycemic Glucose Clam, HEGC)是目前评估IR的“金标准”[8]。其核心方法:持续静脉输注外源性胰岛素,导致体内高胰岛素血症,在此条件下,同步监测血糖,通过可变速率输注葡萄糖,维持血糖在正常生理范围,待胰岛素和血糖均达到稳态后,以葡萄糖输注速率反映IR程度。该方法操作过程复杂、耗时较长、价格昂贵,不适合在临床中推广。

2.2. 胰岛素抵抗的稳态模型评估(HOMA)

近些年,胰岛素抵抗的稳态模型评估(Homeostatic Model Assessment, HOMA)被广泛应用于临床,通过测量空腹血浆胰岛素和葡萄糖浓度评估IR和β细胞功能缺陷的程度,计算公式:空腹血糖(mmol/L) × 空腹胰岛素(μU/mL)/22.5。Matthews等[9]研究发现,正常人和T2DM病人运用HOMA计算出的IR与HEGC技术评估的结果接近,从而证实了HOMA的可靠性。但该检测项目需以空腹胰岛素检测为基础,且整体检测成本偏高,只能应用于医疗条件较好的大型医疗机构,而基层医院医疗设备有限,难以利用该方法进行评估IR。因此,探索简便、经济且适配基层医疗机构开展的胰岛素抵抗评估方案,具有重要的现实意义与应用价值。

2.3. TG衍生代谢指数

TG衍生代谢指数近年来被广泛关注,被视为IR的新型替代指标。甘油三酯葡萄糖指数(Triglyceride Glucose, TyG)是由空腹三酰甘油(Fasting Triglyceride, TG)和空腹血糖(Fasting Plasma Glucose, FPG)乘积得到。高密度脂蛋白胆固醇(High Density Lipoprotein Cholesterol, HDL-C)是一种有益的胆固醇分子,可摄取外周多余胆固醇并转运至肝脏代谢[10]。血浆致动脉粥样硬化指数(Atherogenic Index of Plasma, AIP)则是由TG和HDL-C的比值取对数计算得来。甘油三酯–葡萄糖(TyG-BMI)指数是由Er等[11]于2016年首次提出的一种IR的替代标志物,计算公式为 BMI×ln TG( mg/ dl )×FPG( mg/ dl ) 2 。一项研究表明,AIP、TyG、TyG-BMI指数均与T2DM合并冠心病患者发生不良心脑血管事件的风险显著正相关[12]。TyG、AIP、TyG-BMI易测量,且不受体内胰岛素影响,便于在基层医疗机构中推广应用。

3. IR与T2DM并发冠心病的相关机制

Yang等[13]采用代谢组学方法通过血脂代谢物诊断T2DM,表明了机体脂质代谢与T2DM的相关性。脂质代谢紊乱可致IR,与T2DM和冠心病密切相关[14] [15]。从最近研究中发现,IR主要通过损伤内皮功能、氧化应激、炎症反应和血管平滑肌细胞增殖迁移促进T2DM患者的冠状动脉粥样硬化。

一方面IR通过抑制磷脂酰肌醇3-激酶(PI3K)/Akt信号通路,损害一氧化氮(NO)介导的血管舒张功能[16],而T2DM患者胰岛素水平升高会过度刺激MAPK通路并使得ET-1增加,导致血管收缩和炎症[17],进一步加重内皮功能障碍。另一方面高糖状态下,线粒体功能障碍、多元醇途径的激活、晚期糖基化终产物(AGE)的积累以及烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶活性增强会导致活性氧(ROS)过度产生,进一步造成慢性氧化应激状态[18] [19]。氧化应激还会激活氧化还原敏感转录因子,如NF-κB和AP-1,导致炎症细胞因子(如TNF-α、IL-1β、IL-6)和粘附分子(如ICAM-1、血管细胞粘附分子-1 (VCAM-1))的表达增加,从而促进慢性炎症反应[20]。此外,内皮细胞释放趋化蛋白,如单核细胞趋化蛋白-1 (MCP-1)来召唤单核细胞,一方面分泌促炎细胞因子,加重炎症反应;另一方面还会促进单核细胞迁移到血管内膜,并刺激单核细胞和血管平滑肌细胞分化为巨噬细胞[21],巨噬细胞进一步吸收脂质形成泡沫细胞[22] [23],促进冠脉粥样硬化。而AIP与脂蛋白粒径相关性较大,是sdLDL颗粒的替代物,AIP增加表示LDL粒径减小和sdLDL占比增加[24]。sdLDL颗粒易于氧化,促进泡沫细胞的形成,加速动脉粥样硬化[25]。这四大机制相互交织,推动T2DM患者冠状动脉病变,增加患心血管疾病的风险,甚至导致严重的心血管并发症。

4. 甘油三酯–葡萄糖(TyG)指数

4.1. TyG指数与T2DM并发冠心病

叶菁等人通过多因素Logistic回归分析发现,在糖尿病患者中,TyG是冠心病发生的独立危险因素(p < 0.01);进一步分析证实,TyG对糖尿病患者合并CAD具有明确的预测价值,其受试者工作特征曲线下面积(AUC)可达0.709,最佳截断值为2.776,提示该指标可有效用于糖尿病人群中冠心病高危个体的早期识别[26]。Lee等[27]的研究结果也能证实这一点,特别是当患者存在高龄、糖尿病病程较长、血糖控制不佳、不使用他汀类药物和男性等心血管危险因素时,TyG指数与T2DM并发冠心病的相关性更加显著。随后一项研究通过对纳入患者的高危冠状动脉斑块特征、易损斑块、斑块类型、冠状动脉狭窄情况、节段受累评分(SIS)、节段狭窄评分(SSS)和多支血管疾病(MVD)进行评估和比较后发现,TyG指数与糖尿病患者冠状动脉脆弱斑块独立相关,说明TyG指数是糖尿病患者发生冠心病的危险因素[28]。另一项接受冠状动脉造影和颈动脉多普勒超声检查的有症状冠心病患者的研究结果显示,在糖尿病患者中,TyG指数最高四分位数组的冠脉病变风险较其他组显著升高(OR = 2.489, 95% CI: [1.084, 5.716], p < 0.05),且该关联独立于性别、年龄、BMI、吸烟、高血压、调脂或降糖药使用等混杂因素;结果表明,无论糖尿病和高脂血症如何,TyG指数都是冠状动脉和颈动脉粥样硬化的有效预测指标,并且TyG指数的预测价值高于FBG或TG单独预测[29]

4.2. TyG指数与T2DM合并冠心病患者冠状动脉病变严重程度

冠状动脉病变的严重程度以狭窄 ≥ 50%的冠状动脉数量来衡量。如果只有一条主干动脉狭窄 ≥ 50%,则诊断为单支冠状动脉病变,两条或更多条动脉狭窄 ≥ 50%则为多支冠状动脉病变。

中国一项多中心回顾性研究纳入731例不同糖代谢状态的冠心病患者,发现在糖尿病患者中,TyG指数与冠心病严重程度显著相关,相比于其他糖代谢状态,OR最高[30]。Wang等[31]的研究也对TyG指数与不同糖代谢状态人群冠心病严重程度的关系进行探讨,结果同样证实TyG指数可作为冠心病严重程度的有价值预测因子,这对糖尿病前期(pre-DM)人群意义重大。另一项研究证实了TyG指数与冠心病严重程度相关,并且其关联存在糖代谢状态差异,正常糖调节(NGR)组关联最强,胰岛素治疗糖尿病组无关联[32]。TyG指数在T2DM合并冠心病患者冠状动脉病变严重程度中的作用存在争议,未来需通过设计严谨的大样本、多中心随机对照试验深入探究并证实

4.3. TyG指数与T2DM合并冠心病患者的预后

此外,有研究发现TyG指数与2型糖尿病合并急性心肌梗死(AMI)及射血分数保留型心力衰竭(HFpEF)患者主要不良心血管事件呈独立正相关[33]。一项基于NHANES数据库、纳入2440例20~65岁美国糖尿病患者(含合并冠心病者)的研究,通过Cox回归与限制性立方样条(RCS)分析发现,TyG指数与全因死亡、CVD死亡呈U型关系当TyG ≥ 9.18时,每升高1个单位,全因死亡风险增加77%;当TyG ≥ 9.16时,每升高1个单位,CVD死亡风险增加138%多因素校正后,TyG指数仍为全因死亡与心血管疾病死亡的独立危险因素[34]

5. 血浆致动脉粥样硬化指数AIP

5.1. AIP与T2DM并发冠心病

近年来研究发现,AIP与IR和T2DM风险增加相关[35],也是动脉粥样硬化和心血管疾病风险的良好标志物[36]。郭云飞等人[37]的研究对AIP与T2DM并发冠心病的关系进行探讨,研究通过多因素Logistic回归分析显示,AIP是T2DM并发冠心病的独立危险因素。另一项将AIP与TyG指数同时纳入的多元回归模型亦发现,除冠心病经典危险因素外,AIP ≥ −2.6是T2DM发生冠心病新的独立风险预测因子[38]

5.2. AIP与T2DM合并冠心病患者冠状动脉病变严重程度

国内研究[39]发现AIP与新发冠心病严重程度之间存在显著联系。李彤等人探讨AIP对T2DM合并冠心病患者冠状动脉病变程度的预测价值,研究结果表明AIP是T2DM合并冠心病患者评估冠状动脉病变支数的独立危险因素,可作为预测冠状动脉病变程度的可行性指标[40]。一项研究将纳入的501例T2DM患者根据冠状动脉狭窄程度(syntax积分 ≤ 22分为低危冠状动脉狭窄,syntax积分 > 22分为高危冠状动脉狭窄)分为:未合并冠心病、低危狭窄组和高危狭窄组,多因素Logistic回归分析结果显示,AIP是T2DM患者并发冠心病的独立影响因素,OR值为3.29;同时也是T2DM合并冠心病患者冠状动脉狭窄程度的独立影响因素,OR值为2.74ROC曲线显示,AIP预测糖尿病合并冠心病及狭窄程度的AUC高于LDL-C等传统血脂指标(p < 0.05),具备更高的临床识别价值[41]。以上研究提示,AIP对于T2DM合并冠心病患者冠状动脉狭窄程度具有一定的预测价值。

5.3. AIP与T2DM合并冠心病患者的预后

Tao等[12]通过多因素Cox回归分析了1034例T2DM合并冠心病患者,探讨了AIP与主要不良心脑血管事件(MACCEs)的关联,并评估了AIP对MACCEs的预测价值,研究发现,AIP与MACCEs风险呈正相关,且相较于TyG和TyG-BMI,AIP预测MACCEs的AUC最高。韩延辉等[42]研究发现AIP与老年T2DM合并冠心病患者冠状动脉正性重构密切相关,可作为预测冠状动脉正性重构的有效指标。正性重构的冠状动脉斑块脂质核心大、纤维帽薄,易于破裂并继发血栓形成,引发急性冠状动脉综合征等心血管事件。

6. 甘油三酯葡萄糖–体重指数(TyG-BMI)

6.1. TyG-BMI与T2DM并发冠心病

一项研究发现在2型糖尿病患者中,TyG-BMI与冠心病存在非线性关联且具有预测价值[43]。国内研究发现,在糖尿病患者中,TyG-BMI是预测冠心病效能最强的指标,其AUC为0.699,灵敏度为70.8%,特异度为62.4%;该研究进一步探讨在不同葡萄糖代谢条件下TyG-BMI与冠心病严重程度,结果表明,TyG-BMI在糖尿病患者多血管冠心病中预测价值最高,AUC为0.720 [44]。因此临床中监测糖尿病患者血脂指标和体重变化,对于预防T2DM患者并发冠心病有重要意义。

6.2. TyG-BMI与T2DM合并冠心病患者的预后

另一项研究表明,在女性急性冠脉综合征(ACS)患者中,TyG-BMI与冠心病严重程度呈线性相关[45]。肖等[46]人利用美国国家健康与营养调查(NHANES, 2001~2018年)数据集发现,在糖尿病患者中,TyG-BMI指数与心血管疾病死亡率之间存在U型关系。此外,在一项评估TyG-BMI指数与老年(65岁)重度心力衰竭(HF)合并T2DM患者不同时间点(60、90、180、365天)全因死亡率关联的研究中,发现低TyG-BMI指数是老年重度HF + T2DM患者短期、中期及长期全因死亡的独立预测因子[47]。TyG-BMI指数在预测糖尿病新发冠心病方面有一定的预测价值,在糖尿病合并心血管疾病的严重程度及预后评估有重要的临床价值。需要大量大样本、前瞻性研究来进一步探讨。

7. 讨论

TyG、AIP与TyG-BMI作为胰岛素抵抗的简易替代指标,在不同研究中三者对2型糖尿病并发冠心病、冠状动脉病变严重程度的预测效果如表1所示。

Table 1. Optimal cut-off values, AUC, sensitivities and specificities of TyG, AIP and TyG-BMI in different studies

1. TyG、AIP和TyG-BMI在不同研究中的最佳截断值、曲线下面积、敏感度和特异度

参考 文献

研究 指标

最佳 截断值

AUC (95% CI)

敏感 度(%)

特异 度(%)

结论

26

TyG

2.776

0.709

71.4

62.7

TyG对糖尿病患者合并CAD有预测价值

28

TyG

9.15

0.736

78.9

67.4

TyG是易损斑块的独立预测因子

29

TyG

8.97

0.742

75.6

68.2

TyG是冠状动脉和颈动脉粥样硬化的有效预测指标

30

TyG

8.0

0.601

57.3

60.9

TyG指数与冠脉病变严重程度独立相关

38

AIP

−2.6

0.672

70.7

69.0

AIP是2型糖尿病合并冠心病风险预测因子

41

AIP

2.194

0.684

60.0

74.0

AIP是评估冠状动脉病变支数的独立危险因素,可预测冠状动脉病变程度

42

AIP

2.21

0.178

90.5

74.3

AIP是糖尿病合并冠心病患者冠状动脉狭窄程度的独立影响因素

46

TyG-BMI

225

0.699

70.8

62.4

TyG-BMI在糖尿病患者并发冠心病中有预测价值

TyG指数是一种简单、易获得和可靠的胰岛素抵抗的临床替代标志物。国外一项研究为探讨TyG指数对成人IR诊断的准确性,系统综述了既往采用HOMA-IR或HIEC评估TyG与IR关系的研究,结果发现低到中等质量证据表明TyG指数作为IR替代生化标志物的实用性[48]。此外已有文献表明TyG指数是冠状动脉和颈动脉粥样硬化的有效预测指标,并且其预测价值高于FBG或TG单独预测[29]。然而其单一反映糖–脂代谢交汇点,无法评估肥胖背景及脂蛋白颗粒特性,对斑块稳定性的提示有限。而AIP聚焦脂蛋白谱,与小而密的LDL高度相关,在判断粥样硬化活动度及易损斑块方面具有独特优势,其包括了TG、HDL-C两项血脂指标,综合了CHD的危险因素和保护性因素,可全面评估冠状动脉病变程度。但该指数依赖HDL-C,且对数运算增加临床即时计算难度。TyG-BMI同时纳入体重信息,一些研究表明,TyG-BMI在预测IR方面比纯TyG指数更具优势[49]。有研究发现糖尿病组TyG-BMI与CAD风险呈非线性关系,当TyG-BMI指数超过230.49的关键阈值时,风险显著上升。这种非线性模式挑战了传统心血管风险评估模型的线性关系,并提示:在TyG-BMI指数升至临界水平前即需开展早期干预,以切实降低糖尿病患者的CAD风险[44]。但目前研究多为回顾性研究,在确定TyG-BMI与CAD严重程度之间的因果关系方面存在一定限制。

TyG、AIP、TyG-BMI指数的互补性源于其不同的病理生理靶点:TyG主要反映肝脏胰岛素抵抗(通过调控糖异生和TG合成),AIP聚焦脂蛋白代谢异常(与sdLDL颗粒生成相关),TyG-BMI则整合脂肪组织胰岛素抵抗(通过BMI反映脂肪炎症与游离脂肪酸释放),三者分别靶向“糖代谢–脂蛋白代谢–脂肪代谢”的关键环节,可全面覆盖代谢紊乱的多维度病理机制。

8. 总结与展望

循证证据表明,TG主要衍生代谢指数(TyG, AIP, TyG-BMI)与T2DM并发冠心病的预测、冠状动脉严重程度及预后密切相关。其作为反映胰岛素抵抗和脂质代谢紊乱的高效衍生指标,具有低成本、易获取、可重复的优势,可在传统危险因素之外提供增量预测价值,亦可作为全科医师在门诊随访中快速筛查、风险分层及疗效评估的实用工具。

但是,该方面研究仍有一定的不足,主要是还存在以下三个角度的局限性,有待进一步解决:1) 目前针对TG主要衍生代谢指数与T2DM并发冠心病联系的研究多为回顾性研究,尚需更多的前瞻性研究证实其二者的因果关系;2) 关于动态观察TyG、AIP、TyG-BMI与T2DM并发冠心病关系的研究较少;3) 未来的研究可致力于开发基于TyG、AIP、TyG-BMI的风险预测模型。基于此,可为全科医生在基层防治T2DM并发冠心病提供更多经济、可行、有效的方法,从而降低T2DM并发冠心病的发病率,改善患者预后,减轻医疗负担,推动全科医学在慢性病综合管理领域的发展。

参考文献

[1] Virani, S.S., Alonso, A., Aparicio, H.J., Benjamin, E.J., Bittencourt, M.S., Callaway, C.W., et al. (2021) Heart Disease and Stroke Statistics—2021 Update. Circulation, 143, e254-e743. [Google Scholar] [CrossRef] [PubMed]
[2] Zaman, S., Wasfy, J.H., Kapil, V., Ziaeian, B., Parsonage, W.A., Sriswasdi, S., et al. (2025) The Lancet Commission on Rethinking Coronary Artery Disease: Moving from Ischaemia to Atheroma. The Lancet, 405, 1264-1312. [Google Scholar] [CrossRef] [PubMed]
[3] Zhang, Y., Ding, X., Hua, B., Liu, Q., Gao, H., Chen, H., et al. (2021) Predictive Effect of Triglyceride‑Glucose Index on Clinical Events in Patients with Type 2 Diabetes Mellitus and Acute Myocardial Infarction: Results from an Observational Cohort Study in China. Cardiovascular Diabetology, 20, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
[4] Babes, E.E., Bustea, C., Behl, T., Abdel-Daim, M.M., Nechifor, A.C., Stoicescu, M., et al. (2022) Acute Coronary Syndromes in Diabetic Patients, Outcome, Revascularization, and Antithrombotic Therapy. Biomedicine & Pharmacotherapy, 148, Article 112772. [Google Scholar] [CrossRef] [PubMed]
[5] Dwivedi, A.K., Dubey, P., Reddy, S.Y. and Clegg, D.J. (2022) Associations of Glycemic Index and Glycemic Load with Cardiovascular Disease: Updated Evidence from Meta-Analysis and Cohort Studies. Current Cardiology Reports, 24, 141-161. [Google Scholar] [CrossRef] [PubMed]
[6] Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
[7] Tao, L.C., Xu, J.N., Wang, T.T., Hua, F. and Li, J.J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
[8] De Fronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology-Endocrinology and Metabolism, 237, E214. [Google Scholar] [CrossRef] [PubMed]
[9] Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419. [Google Scholar] [CrossRef] [PubMed]
[10] Iwani, N.A.K.Z., Jalaludin, M.Y., Zin, R.M.W.M., Fuziah, M.Z., Hong, J.Y.H., Abqariyah, Y., et al. (2017) Triglyceride to HDL-C Ratio Is Associated with Insulin Resistance in Overweight and Obese Children. Scientific Reports, 7, Article No. 40055. [Google Scholar] [CrossRef] [PubMed]
[11] Er, L.K., Wu, S., Chou, H.H., Hsu, L.A., Teng, M., Sun, Y., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731. [Google Scholar] [CrossRef] [PubMed]
[12] Tao, S., Yu, L., Li, J., Huang, L., Xue, T., Yang, D., et al. (2024) Multiple Triglyceride-Derived Metabolic Indices and Incident Cardiovascular Outcomes in Patients with Type 2 Diabetes and Coronary Heart Disease. Cardiovascular Diabetology, 23, Article No. 359. [Google Scholar] [CrossRef] [PubMed]
[13] Yang, J., Xu, G., Hong, Q., Liebich, H., Lutz, K., Schmulling, R., et al. (2004) Discrimination of Type 2 Diabetic Patients from Healthy Controls by Using Metabonomics Method Based on Their Serum Fatty Acid Profiles. Journal of Chromatography B, 813, 53-58. [Google Scholar] [CrossRef] [PubMed]
[14] de Luis, D.A., Izaola, O., Primo, D., Aller, R., Ortola, A., Gómez, E., et al. (2018) The Association of SNP276G>T at Adiponectin Gene with Insulin Resistance and Circulating Adiponectin in Response to Two Different Hypocaloric Diets. Diabetes Research and Clinical Practice, 137, 93-99. [Google Scholar] [CrossRef] [PubMed]
[15] Bhat, N. and Mani, A. (2023) Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients, 15, Article 2323. [Google Scholar] [CrossRef] [PubMed]
[16] Horton, W.B., Love, K.M., Gregory, J.M., Liu, Z. and Barrett, E.J. (2025) Metabolic and Vascular Insulin Resistance: Partners in the Pathogenesis of Cardiovascular Disease in Diabetes. American Journal of Physiology-Heart and Circulatory Physiology, 328, H1218-H1236. [Google Scholar] [CrossRef] [PubMed]
[17] Muniyappa, R. and Sowers, J.R. (2013) Role of Insulin Resistance in Endothelial Dysfunction. Reviews in Endocrine and Metabolic Disorders, 14, 5-12. [Google Scholar] [CrossRef] [PubMed]
[18] Brownlee, M. (2001) Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature, 414, 813-820. [Google Scholar] [CrossRef] [PubMed]
[19] Nishikawa, T., Edelstein, D., Du, X.L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000) Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature, 404, 787-790. [Google Scholar] [CrossRef] [PubMed]
[20] Rani, V., Deep, G., Singh, R.K., Palle, K. and Yadav, U.C.S. (2016) Oxidative Stress and Metabolic Disorders: Pathogenesis and Therapeutic Strategies. Life Sciences, 148, 183-193. [Google Scholar] [CrossRef] [PubMed]
[21] Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. [Google Scholar] [CrossRef] [PubMed]
[22] Beckman, J.A., Creager, M.A. and Libby, P. (2025) Diabetes and Atherosclerosis: Epidemiology, Pathophysiology, and Management. Journal of the American Medical Association, 287, 2570-2581. [Google Scholar] [CrossRef] [PubMed]
[23] Hirano, T. (2018) Pathophysiology of Diabetic Dyslipidemia. Journal of Atherosclerosis and Thrombosis, 25, 771-782. [Google Scholar] [CrossRef] [PubMed]
[24] Dobiášová, M. (2006) AI Paterogenní index plazmy jako významný prediktor kardiovaskulární horizika: Od výzkumu do praxe. Vnitrní Lékařství, 52, 64-71.
[25] Muraba, Y., Koga, T., Shimomura, Y., Ito, Y., Hirao, Y., Kobayashi, J., et al. (2018) The Role of Plasma Lipoprotein Lipase, Hepatic Lipase and GPIHBP1 in the Metabolism of Remnant Lipoproteins and Small Dense LDL in Patients with Coronary Artery Disease. Clinica Chimica Acta, 476, 146-153. [Google Scholar] [CrossRef] [PubMed]
[26] 叶菁, 徐哲明, 官常荣. 不同葡萄糖代谢状态人群AIP、TyG与冠状动脉疾病及其严重程度的关系研究[J]. 心电与循环, 2024, 43(5): 483-487+492.
[27] Lee, E.Y., Yang, H.K., Lee, J., Kang, B., Yang, Y., Lee, S., et al. (2016) Triglyceride Glucose Index, a Marker of Insulin Resistance, Is Associated with Coronary Artery Stenosis in Asymptomatic Subjects with Type 2 Diabetes. Lipids in Health and Disease, 15, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
[28] Zhang, Y.S., Shi, R., Jiang, Y.N., Gao, Y., Jiang, Y., Wang, J., et al. (2025) The Association between the Triglyceride-Glucose Index and Vulnerable Plaques in Patients with Type 2 Diabetes Mellitus: Insights from Coronary Computed Tomography Angiography. Cardiovascular Diabetology, 24, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
[29] Li, J., Dong, Z., Wu, H., Liu, Y., Chen, Y., Li, S., et al. (2023) The Triglyceride-Glucose Index Is Associated with Atherosclerosis in Patients with Symptomatic Coronary Artery Disease, Regardless of Diabetes Mellitus and Hyperlipidaemia. Cardiovascular Diabetology, 22, Article No. 224. [Google Scholar] [CrossRef] [PubMed]
[30] Su, J., Li, Z., Huang, M., Wang, Y., Yang, T., Ma, M., et al. (2022) Triglyceride Glucose Index for the Detection of the Severity of Coronary Artery Disease in Different Glucose Metabolic States in Patients with Coronary Heart Disease: A RCSCD-TCM Study in China. Cardiovascular Diabetology, 21, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
[31] Wang, X., Xu, W., Song, Q., Zhao, Z., Meng, X., Xia, C., et al. (2022) Association between the Triglyceride-Glucose Index and Severity of Coronary Artery Disease. Cardiovascular Diabetology, 21, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
[32] Zhao, S., Wang, Z., Qing, P., Li, M., Liu, Q., Pang, X., et al. (2024) Comprehensive Analysis of the Association between Triglyceride-Glucose Index and Coronary Artery Disease Severity across Different Glucose Metabolism States: A Large-Scale Cross-Sectional Study from an Asian Cohort. Cardiovascular Diabetology, 23, Article No. 251. [Google Scholar] [CrossRef] [PubMed]
[33] Zhang, X.D., Niu, N., Yu, S.Q., et al. (2025) Correlation of the Triglyceride-Glucose Index with Major Adverse Cardiovascular Events in Type 2 Diabetes Mellitus Patients with Acute Myocardial Infarction Combined with HFpEF. Frontiers in Endocrinology, 16, Article 1585067. [Google Scholar] [CrossRef
[34] Liu, C., Liang, D., Xiao, K. and Xie, L. (2024) Association between the Triglyceride-Glucose Index and All-Cause and CVD Mortality in the Young Population with Diabetes. Cardiovascular Diabetology, 23, Article No. 171. [Google Scholar] [CrossRef] [PubMed]
[35] Yin, B., Wu, Z., Xia, Y., Xiao, S., Chen, L. and Li, Y. (2023) Non-Linear Association of Atherogenic Index of Plasma with Insulin Resistance and Type 2 Diabetes: A Cross-Sectional Study. Cardiovascular Diabetology, 22, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
[36] Mazidi, M., Katsiki, N., Mikhailidis, D.P. and Banach, M. (2019) Association of Ideal Cardiovascular Health Metrics with Serum Uric Acid, Inflammation and Atherogenic Index of Plasma: A Population-Based Survey. Atherosclerosis, 284, 44-49. [Google Scholar] [CrossRef] [PubMed]
[37] 郭云飞, 王亚柱, 刘超, 等. 血浆致动脉硬化指数与冠心病合并2型糖尿病的相关性分析[J]. 医学信息, 2022, 35(9): 108-111.
[38] 刘静怡, 司月乔, 张英, 等. 血浆动脉粥样硬化指数和甘油三酯葡萄糖指数及新风险评分模型对2型糖尿病合并冠心病患病风险评估初探[J]. 中国心血管病研究, 2022, 20(3): 226-230.
[39] Wu, X., Qiu, W., Yang, H., Chen, Y., Liu, J. and Zhao, G. (2024) Associations of the Triglyceride-Glucose Index and Atherogenic Index of Plasma with the Severity of New-Onset Coronary Artery Disease in Different Glucose Metabolic States. Cardiovascular Diabetology, 23, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
[40] 李彤, 徐晨曦, 王钰碧, 等. 血浆致动脉硬化指数对冠心病合并2型糖尿病病人冠状动脉病变程度的预测价值[J]. 中西医结合心脑血管病杂志, 2023, 21(24): 4496-4500.
[41] 王露朝, 柴小奇, 陈玉军, 等. 血浆致动脉粥样硬化指数与2型糖尿病患者并发冠心病及其冠状动脉狭窄程度的关系研究[J]. 实用心脑肺血管病杂志, 2020, 28(6): 22-27+35.
[42] 韩延辉, 张恒亮, 赵劲东, 等. 三酰甘油葡萄糖乘积和血浆致动脉粥样硬化指数与老年冠心病伴2型糖尿病冠状动脉重构关系[J]. 中华老年心脑血管病杂志, 2025, 27(4): 463-467.
[43] Yadegar, A., Mohammadi, F., Seifouri, K., Mokhtarpour, K., Yadegar, S., Bahrami Hazaveh, E., et al. (2025) Surrogate Markers of Insulin Resistance and Coronary Artery Disease in Type 2 Diabetes: U-Shaped TyG Association and Insights from Machine Learning Integration. Lipids in Health and Disease, 24, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
[44] Wang, L., Li, Z., Qiu, R., Luo, L. and Yan, X. (2025) Triglyceride Glucose Index-Body Mass Index as a Predictor of Coronary Artery Disease Severity in Patients with H-Type Hypertension across Different Glucose Metabolic States. Diabetology & Metabolic Syndrome, 17, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
[45] Yang, X., Li, K., Wen, J., Yang, C., Li, Y., Xu, G., et al. (2024) Association of the Triglyceride Glucose-Body Mass Index with the Extent of Coronary Artery Disease in Patients with Acute Coronary Syndromes. Cardiovascular Diabetology, 23, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
[46] Xiao, S., Zhang, Q., Yang, H., Tong, J. and Yang, R. (2024) The Association between Triglyceride Glucose-Body Mass Index and All-Cause and Cardiovascular Mortality in Diabetes Patients: A Retrospective Study from NHANES Database. Scientific Reports, 14, Article No. 13884. [Google Scholar] [CrossRef] [PubMed]
[47] Cheng, J., Cheng, Q., Wu, Y., Yin, J. and He, F. (2025) Association between Triglyceride-Glucose-Body Mass Index and Adverse Prognosis in Elderly Patients with Severe Heart Failure and Type 2 Diabetes: A Retrospective Study Based on the MIMIC-IV Database. Cardiovascular Diabetology, 24, Article No. 299. [Google Scholar] [CrossRef] [PubMed]
[48] Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., González-Nava, V., Díaz González-Colmenero, A., Solis, R.C., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, 1-7. [Google Scholar] [CrossRef] [PubMed]
[49] Lim, J., Kim, J., Koo, S.H. and Kwon, G.C. (2019) Comparison of Triglyceride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLOS ONE, 14, e0212963. [Google Scholar] [CrossRef] [PubMed]