孤独症谱系障碍的研究进展:从早期识别到综合干预
Research Progress in Autism Spectrum Disorder: From Early Identification to Comprehensive Intervention
DOI: 10.12677/acm.2026.162416, PDF, HTML, XML,   
作者: 杨 帆, 雪欣欣:延安大学延安医学院,陕西 延安;孙晓雅:延安市人民医院儿科,陕西 延安;钟红平*:延安大学附属医院儿科,陕西 延安
关键词: 孤独症谱系障碍影响因素生物标志物自然发展行为干预共病管理Autism Spectrum Disorder Influencing Factors Biomarker Naturalistic Developmental Behavioral Interventions Comorbidity Management
摘要: 孤独症谱系障碍(Autism Spectrum Disorder, ASD)是一种常见的儿童神经发育障碍,主要表现为不同程度的社会交流障碍、狭隘兴趣和重复刻板行为,目前全球儿童患病率约为1%~2%,遗传因素、营养状况、外部环境暴露以及家庭相关因素等均可能与该病的发生发展存在关联。通过标准化筛查工具及日常发育监测,可以更早地识别风险并进行干预,应用行为疗法、社交互动训练等干预手段能有效改善患儿的核心症状,积极管理共病问题同样有助于提升整体干预效果。总之,对孤独症谱系障碍患儿的早期识别与综合干预,是改善其远期预后的关键所在。
Abstract: Autism Spectrum Disorder (ASD) is a common neurodevelopmental disorder in children, primarily characterized by varying degrees of social communication impairments, restricted interests, and repetitive stereotyped behaviors. Currently, the global prevalence rate among children is estimated to be approximately 1%~2%. Genetic factors, nutritional status, external environmental exposure, and family related factors may all be associated with the occurrence and development of this disease. By using standardized screening tools and daily developmental monitoring, risks can be identified earlier and intervention can be carried out. Intervention methods such as behavioral therapy and social interaction training can effectively improve the core symptoms of children, and actively managing comorbidities can also help improve the overall intervention effect. In summary, early identification and comprehensive intervention for children with ASD are crucial for enhancing their long-term prognosis.
文章引用:杨帆, 雪欣欣, 孙晓雅, 钟红平. 孤独症谱系障碍的研究进展:从早期识别到综合干预[J]. 临床医学进展, 2026, 16(2): 477-485. https://doi.org/10.12677/acm.2026.162416

1. 引言

孤独症谱系障碍(Autism Spectrum Disorder, ASD),又称孤独症或自闭症,是描述一系列早期出现的社交沟通缺陷和重复感觉运动行为的总称,临床表现主要为不同程度的社会交流障碍、狭隘兴趣和重复刻板行为[1]。自1943年美国医生Kanner发表题为“Autistic Disturbances of Affective Contact”的论文,首次系统描述孤独症儿童的行为特征,儿童孤独症作为一个罕见的儿童疾病开始走进公众的视野。近年来,ASD的患病率呈逐渐上升趋势,从最初的4/10,000到现在约1%~2% [2],逐渐成为影响儿童健康,甚至导致儿童残疾的最普遍精神性疾病。随着患病率的升高及大众认知的提高,孤独症谱系障碍已经从一种狭义的、罕见的儿童疾病变成了一种广为人知、研究和攻克的终身疾病。

与正常儿童相比,孤独症谱系障碍(ASD)儿童存在明显的社会沟通及互动缺陷,在沟通方面,ASD儿童语言发育多存在滞后,部分儿童沉默寡言,即使会说话,也常出现重复、刻板的语言,或用特殊代词,难以进行双向对话,无法清晰表达自己的需求;在社交互动中,他们常缺乏眼神交流,难以理解他人表情和肢体语言,对父母的拥抱等亲密接触可能表现出抗拒或无反应,难以建立正常的同伴关系。除此之外,ASD儿童的行为模式往往也有局限重复的特征,他们兴趣范围狭窄,可能对旋转的物体、特定的声音等表现出异常执着,而对普通儿童喜爱的玩具兴趣缺缺;行为上通常存在刻板重复的模式,如固定的行走路线、反复排列物品等,环境稍有变化就可能出现烦躁、哭闹等情绪反应[3]。同时,一些儿童会有感知觉异常,如对某些声音、光线过度敏感或迟钝。值得注意的是,部分孤独症儿童还可能存在胃肠道障碍,表现为腹胀、便秘、腹泻或食物过敏等症状,这些不适可能进一步加剧他们的情绪波动和行为问题[4]

孤独症谱系障碍(ASD)不仅对患儿本身的社交、语言及生活能力造成显著影响,对家庭而言也是一场漫长的身心考验与沉重的责任担当,ASD患儿在日常起居、沟通交流、礼仪规范等方面需要家长的特别照顾,康复训练也需要依赖于家长,不仅给社会和家庭带来巨大的经济负担,同时也带来了沉重的精神压力[5]。因此,对于孤独症儿童的早期识别及综合干预尤为重要,尽早发现孩子在社交互动、语言沟通等方面的异常信号,及时开展行为干预、语言训练、感统训练等多方面的综合干预,才能为他们搭建起与世界连接的桥梁,为家庭减轻负担、带来希望。

2. ASD的影响因素

孤独症谱系障碍(ASD)是一种复杂的神经系统发育疾病,遗传因素在其发生发展中起着非常重要的作用。目前普遍认为,年长父母所生的孩子患ASD的风险更高,Gao Y等人提出,不仅父母,祖父母的年龄过小也与孙辈患病的风险相关[6],具有早产、低出生体重等不良出生特征的父母的后代患病风险高出约31%~43% [7],ASD儿童的同胞也更容易出现相关的精神行为障碍问题,且同卵双胞胎影响程度更大[8],男性兄弟姐妹出现类似症状的可能性是女性的3倍[9],这些结论提示我们,ASD的遗传或许存在着某些世代累计。目前已经发现多个基因、风险等位基因和拷贝数变异与ASD有关[10],包括单基因(NLGN3等)、新兴风险基因(CHD8等)和拷贝数变体(15q11~q13缺失等) [11],近年来,我们对于ASD遗传基础的理解随着理论的严谨和研究技术的发展不断深化,越来越多的可能的基因易感点位陆续被报道。Wang L等人通过对ASD可能的相关基因进行测序,发现rs7180500的C等位基因是高风险基因,可能与小脑中GABRG3的表达相关,并鉴定出其中的2个罕见变异体(rs201602655和rs201427468)和GABRB3基因中的6个罕见变异体(c.693A>T, c.417C>T, c.704A>T, c.1730G>A, c.2583C>T, c.3536T>C),虽然其出现的概率很低但存在该变异体的患儿有典型的临床表现,说明GABRG3和GABRB3可能参与发病,且可能增加汉族人群的患病风险[12]。由于男女患病率的不同,多数学者认为孤独症可能与性染色体遗传有关,Zhang Y等人对174个候选基因进行突变负荷分析,提示女性需要更高的遗传负荷才能达到诊断阈值,且女性候选基因的缺陷更有可能出现代偿效应[13]。但由于ASD病因复杂,且具有高度的临床和遗传异质性,到目前为止已发现的易感基因位点也只有很少一部分被重复,多数易感位点缺乏重复验证,大部分患儿相关遗传学变化仍是未知数,还值得我们更深入的研究。

尽管遗传因素在孤独症谱系障碍(ASD)的发病机制中占据核心地位,但其并非唯一的决定性因素。母孕早期是胎儿神经系统发育的关键窗口期,患有妊娠期糖尿病最为典型,其通过破坏5-羟色胺(5-HT)系统功能及引起神经炎症进而诱导后代ASD样行为[14],一些孕产妇自身的免疫性疾病例如抗磷脂综合征(APLS)、先兆子痫、干燥综合征和类风湿性关节炎等,则可能通过IgG抗体影响胎儿的大脑及神经发育[15] [16],增加后代患病风险。多项研究进一步证实,ASD的发病风险与多种围生期及早期生命因素相关,包括父母高龄、精神疾病家族史、孕期被动吸烟暴露、酒精接触、孕期先兆流产史、剖宫产分娩方式以及出生体重偏低等[17] [18]。此外,非甾体抗炎药以及丙戊酸盐、拉莫三嗪等抗癫痫药物的使用也是患ASD的重要危险因素[19] [20]。Fowler SP等人的研究还发现,生命早期通过母体接触过多的含阿斯巴甜等非营养性甜味剂的饮品,可能会增加后代神经发育异常的风险,尤其是在男性胎儿中患病的几率增加了两倍多[21]。关键营养素缺乏也是患ASD的重要危险因素,母孕期补充叶酸及复合维生素,尤其是维持足量维生素D水平,可显著降低子代患病风险[22] [23],与此同时,患儿常因食物的气味、口感等特征表现出明显饮食选择性,该饮食模式进一步限制了多种关键营养素的摄入,导致营养素缺乏状态持续加剧,不仅不利于症状的改善,更对患儿的神经发育进程及整体健康状态构成双重负面影响。相关研究已明确指出,居住在排放空气污染物和重金属的工业设施附近ASD的发病率更高,且患者排泄重金属的能力下降,镉、铅、砷、汞等重金属可能会积聚于中枢神经元系统内,导致神经递质失衡,特别是谷氨酰胺、去甲肾上腺素和犬尿氨酸水平显着降低可能导致其临床症状[24] [25]。据Udagawa的研究报道,母孕期暴露于产前压力可能会通过表观遗传修饰、母体免疫激活(MIA)和下丘脑–垂体–肾上腺(HPA)轴的改变增加后代对ASD的易感性[26]。社会支持不足的家庭环境也与儿童ASD的发病存在关联,具体表现为父母社会参与度低、家庭互动频率少,其患病风险较普通家庭儿童高1.8倍,而且,社会对疾病的认知不足会导致家庭干预延迟,进而间接加重患儿症状[27]。综上,ASD的发病与发展并非单一因素所致,个体从胎儿期到婴幼儿期自身的营养状况、外部环境暴露,以及家庭结构、教养方式等家庭相关因素,同样在疾病的发生发展中扮演着不可忽视的角色,与遗传因素相互作用共同影响疾病的最终表现。目前虽已明确部分作用线索,但不同因素间的交互作用机制尚未阐明,且现有研究多为回顾性研究,难以精准把握非研究因素的影响,研究结果存在异质性。未来可开展大样本前瞻性队列研究,系统整合遗传与非遗传因素,明确各因素的作用权重及交互机制。明确该病的病因机制,对推进疾病的精准早期筛查及规范化系统干预具有重要意义。

3. ASD发病机制及相关生物标志物

以上各种危险因素通过调控神经发育关键通路,导致婴幼儿期显著的神经发育异常,并共同诱发孤独症谱系障碍(ASD)的核心病理特征,而这些特异性的病理改变也为疾病早期生物标志物的筛选提供了重要生物学基础。ASD儿童的神经发育异常核心集中于婴幼儿期脑结构发育失衡与感觉信息加工功能紊乱。小脑被认为是介导多重神经回路功能整合的核心枢纽,其结构或功能异常已被证实与ASD的核心症状密切相关,Clausi S等人对ASD患儿的头颅MRI进行研究,发现其小脑Crus-II区域灰质减少,通过调控大脑额叶、顶叶等社交认知相关网络参与心理化过程,可能导致社交行为无法适应环境需求,进而引发心理理论缺陷[28]。康倩倩等人报道ASD儿童的MRS结果中存在明显的左侧丘脑NAA/Cr和右侧小脑Cho/Cr降低,提示患儿小脑与丘脑存在神经元或轴突损伤,且与患儿发育严重程度正相关,进而导致患儿听力–语言、手眼协调及社交能力等核心功能受损,同时提示这些代谢物与ASD临床症状间存在关联,或许可作为评估其严重程度的临床指标[29]。此外,70%~90%的ASD儿童存在感觉处理异常,其中听觉过敏与触觉防御最为常见,其基本感官区域如听觉和视觉皮层的激活更强,情绪处理区域如杏仁核、海马体和前额叶皮层也更为活跃[30],听觉障碍则可能与脑干低层级与高层神经传递通路成熟延迟有关[31]。脑电信号(EEG)研究显示,孤独症婴幼儿存在与面部识别相关的N170成分延迟、α波功率降低等异常,不仅反映大脑皮层兴奋性平衡失调,还与症状严重程度相关,为早期筛查与预后评估提供了客观依据[32]。针对高风险婴幼儿开展的前瞻性纵向研究,揭示了一系列具有潜在诊断价值的眼动相关生物标志物,非社交注意力脱离效率降低、瞳孔光反射(PLR)参数异常(包括幅度增强、潜伏期延长、基线瞳孔直径增大等),以及注视时间、扫视幅度等动眼指标差异均是潜在生物标志物,但目前相关研究多局限于实验室,单指标诊断效果量偏低,通过整合多指标可提升辨别力,为ASD的发现及诊断提供新路径[33]。未来可开展多模态影像学与多维度生理信号的整合研究,系统解析脑结构、感觉加工功能及生物标志物间的调控网络,并构建多指标联合诊断模型,推动其向临床筛查与预后评估转化。

4. 早期识别与诊断

各类生物标志物为孤独症谱系障碍(ASD)的病理机制解析与潜在筛查提供了客观依据,但其临床转化仍面临特异性不足、技术门槛较高、医疗可及性有限等挑战,难以单独满足疾病早期识别的规模化需求。相比之下,ASD患儿在发育早期呈现的行为表型异常具有更强的临床可观察性与实操性,在0~3岁发育的关键窗口期,需重点关注特异性预警征象:12个月时婴儿缺乏手指指向行为、无应答性微笑提示社交沟通萌芽异常;18个月未出现共享注意行为是社交互动能力发育迟缓的重要信号;24个月时出现语言倒退或仅存在机械性重复语言则需高度警惕ASD可能[34]。临床实践中,标准化筛查工具是扩大早期识别覆盖面的重要支撑,2013年美国精神病学会正式发布的精神疾病诊断统计手册第5版(DSM-IV)作为早期标准化诊断依据[35],将典型孤独症、阿斯伯格综合征(Asperger Syndrome, AS)、未分类的广泛性发育障碍(PDD-NOS)等广泛性发育障碍亚类障碍一并纳入孤独症谱系障碍的诊断中。而现在,改良版婴幼儿孤独症筛查量表(M-CHAT-R/F)的应用最为广泛,该量表针对16~30月龄婴幼儿设计,通过聚焦社交互动、沟通表达及行为模式等核心维度的条目,具有灵敏度高、操作简便的特点,可有效识别潜在高风险儿童,为后续评估提供依据[36]。除此之外,ASD患儿常因语言发育迟缓、沟通功能异常首诊于言语治疗机构,这种情况下可以在言语病理学(SLP)评估中同步使用进行临床观察并提供解决方案,避免因仅关注语言问题延误诊断与干预[37]。对于筛查阳性或存在明确预警征象的儿童,需启动多学科协作评估以明确诊断,通过“病史采集–临床观察–辅助检查–标准化评估–鉴别诊断”的系统流程,实现诊断的精准性与全面性。

5. 干预与管理

从2007年联合国大会通过决议后,每年4月2日为全球性的世界自闭症日,该活动旨在提高公众对孤独症群体的认知,消除偏见与歧视,倡导包容与支持,世界各地通过科普宣传、公益活动等呼吁社会关注孤独症群体,推动早期干预、教育融合及终身支持体系。孤独症谱系障碍(ASD)的干预与管理需构建多维度、全周期支持体系,自然发展行为干预(Naturalistic Developmental Behavioral Interventions, NDBI)是一类结合了行为原则和发展理论,并在自然情境中实施的孤独症早期干预方法。早期干预丹佛模式(ESDM)作为其中代表性干预方法,创新性融合发展心理学与应用行为分析(ABA)理论,强调家长作为干预团队的核心成员通过日常活动培养患儿沟通与参与能力,家庭参与不仅体现为执行训练计划,更需通过系统学习干预技巧,将训练融入生活场景,形成持续支持环境[38] [39]。除ESDM外,NDBI体系还包含关键反应训练(PRT)、社交沟通–情绪调节–交往支持模式(SCERTS)等多种循证方法,其中PRT聚焦动机、社交主动发起等关键技能干预,SCERTS则注重社交沟通、情绪调节与环境支持的协同能显著提升患儿的语言沟通与社会交往能力[40] [41]

6. 共病管理

值得注意的是,临床实践中发现孤独症群体常伴随多种共病问题,因此在进行早期核心症状干预的同时,需同步关注共病的筛查与管理,Micai M等人全面整合了全球范围内关于ASD患者共患病的流行病学证据,注意力缺陷多动障碍(ADHD)、焦虑–抑郁障碍、癫痫、胃肠道疾病及睡眠障碍等在临床中较为突出[42],对于ASD共患ADHD的患者,行为干预仍是一线选择,药物使用方面,非典型抗精神病药与α2激动剂对多动冲动与刻板行为有协同改善作用,较哌甲酯等单纯ADHD的一线用药,更常用于共病群体的药物组合[43] [44]。共患焦虑–抑郁障碍适配个体化认知行为治疗(cognitive behavioural therapy, CBT) [45],选择性5-羟色胺再摄取抑制剂(SSRI)可作为中重度症状的辅助治疗[46],同时需结合社交技能训练减少社交挫败引发的情绪应激。癫痫干预以抗癫痫药物(AEDs)规范化使用为核心,需根据发作类型、脑电图特征及共病情况选择左乙拉西坦、奥卡西平等药物,对药物难治性癫痫可评估手术或神经调控治疗[47]。近年来的研究已经明确了ASD患儿存在不同程度的肠道菌群失调,表现为有益菌减少、潜在致病菌增多及菌群多样性改变[48],而这种菌群失衡状态可通过脑–肠轴这一核心调控通路,双向介导肠道与中枢神经系统的信号传递,进而影响发病进程及临床症状表现[49]。针对ASD患儿的困难和挑食行为,饮食干预的影响非常重要,低短链碳水化合物饮食(FODMAP)可快速缓解腹胀、腹泻,无麸质/无酪蛋白饮食(GF/CFD)对部分合并食物不耐受患者,可同时改善疾病核心症状与胃肠道症状[50]。肠道微生态调节优先选用含双歧杆菌、乳酸菌的复合益生菌制剂,搭配低聚果糖、低聚半乳糖等益生元,通过“益生菌 + 益生元”协同作用修复肠道黏膜屏障、调节菌群平衡,进一步提升胃肠道症状改善效果,甚至对部分患儿的社交互动能力产生积极影响[51]。针对ASD合并睡眠障碍,本质上是基于睡眠卫生管理和行为措施,减少妨碍夜间睡眠开始或维持睡眠的习惯,可通过父母教育促进其睡眠发展,结合孩子年龄与特殊情况制定个体化睡前仪式,并辅以特定的行为策略[52]。使用褪黑素干预带来的睡眠改善可间接正向调节患者的行为与情绪状态:一方面能缓解日间社交沟通障碍、重复刻板行为的严重程度,提升社交互动意愿与沟通效率;另一方面可减轻共病的注意力缺陷、情绪冲动、易怒等问题,进而改善患者的日间功能与生活质量[53]。综上所述,联合干预策略已成为共病治疗的共识,通过药物治疗控制核心症状后,衔接父母管理与社交技能训练,既缓解功能障碍,又为心理干预创造条件,避免了单一治疗的局限性。

7. 结论

孤独症谱系障碍(ASD)的诊疗与管理已从传统的症状干预转向全周期、多维度的综合模式,早发现、早干预是改善预后的核心关键。早期预测技术的进步为早期识别提供了可能,规范的发育筛查体系则为早期干预的落地奠定基础,而靶向治疗的探索与过渡期管理的优化,进一步拓展了诊疗的深度与广度。未来需进一步加强孤独症相关专业培训,推动基层医疗机构与专业诊疗中心的联动协作,同时加速前沿技术的临床转化与靶向治疗的机制研究,最终实现孤独症患者从儿童期到成年期的连续性健康保障,助力其最大限度地融入社会。

NOTES

*通讯作者。

参考文献

[1] Courchesne, E., Gazestani, V.H. and Lewis, N.E. (2020) Prenatal Origins of ASD: The When, What, and How of ASD Development. Trends in Neurosciences, 43, 326-342. [Google Scholar] [CrossRef] [PubMed]
[2] Chiarotti, F. and Venerosi, A. (2020) Epidemiology of Autism Spectrum Disorders: A Review of Worldwide Prevalence Estimates since 2014. Brain Sciences, 10, Article No. 274. [Google Scholar] [CrossRef] [PubMed]
[3] Parmeggiani, A., Corinaldesi, A. and Posar, A. (2019) Early Features of Autism Spectrum Disorder: A Cross-Sectional Study. Italian Journal of Pediatrics, 45, Article No. 144. [Google Scholar] [CrossRef] [PubMed]
[4] McElhanon, B.O., McCracken, C., Karpen, S. and Sharp, W.G. (2014) Gastrointestinal Symptoms in Autism Spectrum Disorder: A Meta-Analysis. Pediatrics, 133, 872-883. [Google Scholar] [CrossRef] [PubMed]
[5] 饶颖婷, 吴美琦, 贾美香, 等. 孤独症谱系障碍儿童家庭的照顾负担研究进展[J]. 中国生育健康杂志, 2025, 36(2): 175-178.
[6] Gao, Y., Yu, Y., Xiao, J., Luo, J., Zhang, Y., Tian, Y., et al. (2020) Association of Grandparental and Parental Age at Childbirth with Autism Spectrum Disorder in Children. JAMA Network Open, 3, e202868. [Google Scholar] [CrossRef] [PubMed]
[7] Xiao, J., Gao, Y., Yu, Y., Toft, G., Zhang, Y., Luo, J., et al. (2021) Associations of Parental Birth Characteristics with Autism Spectrum Disorder (ASD) Risk in Their Offspring: A Population-Based Multigenerational Cohort Study in Denmark. International Journal of Epidemiology, 50, 485-495. [Google Scholar] [CrossRef] [PubMed]
[8] Le Couteur, A., Bailey, A., Goode, S., Pickles, A., Gottesman, I., Robertson, S., et al. (1996) A Broader Phenotype of Autism: The Clinical Spectrum in Twins. Journal of Child Psychology and Psychiatry, 37, 785-801. [Google Scholar] [CrossRef] [PubMed]
[9] Chawarska, K., Shic, F., Macari, S., Campbell, D.J., Brian, J., Landa, R., et al. (2014) 18-Month Predictors of Later Outcomes in Younger Siblings of Children with Autism Spectrum Disorder: A Baby Siblings Research Consortium Study. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 1317-1327.e1. [Google Scholar] [CrossRef] [PubMed]
[10] Voineagu, I. (2012) Gene Expression Studies in Autism: Moving from the Genome to the Transcriptome and Beyond. Neurobiology of Disease, 45, 69-75. [Google Scholar] [CrossRef] [PubMed]
[11] Varghese, M., Keshav, N., Jacot-Descombes, S., Warda, T., Wicinski, B., Dickstein, D.L., et al. (2017) Autism Spectrum Disorder: Neuropathology and Animal Models. Acta Neuropathologica, 134, 537-566. [Google Scholar] [CrossRef] [PubMed]
[12] Wang, L., Li, J., Shuang, M., Lu, T., Wang, Z., Zhang, T., et al. (2018) Association Study and Mutation Sequencing of Genes on Chromosome 15q11-Q13 Identified GABRG3 as a Susceptibility Gene for Autism in Chinese Han Population. Translational Psychiatry, 8, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
[13] Zhang, Y., Li, N., Li, C., Zhang, Z., Teng, H., Wang, Y., et al. (2020) Genetic Evidence of Gender Difference in Autism Spectrum Disorder Supports the Female-Protective Effect. Translational Psychiatry, 10, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[14] Qin, G., Ni, H., Ren, W., Wang, Z., Yan, W., Li, K., et al. (2025) Gestational Diabetes Mellitus Induces 5-HT System Dysfunction and Exacerbates an ASD-Like Phenotype in Male Offspring by Inhibiting the Ahi1/B9D1/Shh Axis. Brain, Behavior, and Immunity, 130, Article ID: 106127. [Google Scholar] [CrossRef
[15] Chen, C.C., Lin, C.H. and Lin, M.C. (2023) Maternal Autoimmune Disease and Risk of Offspring Autism Spectrum Disorder—A Nationwide Population-Based Cohort Study. Frontiers in Psychiatry, 14, Article ID: 1254453. [Google Scholar] [CrossRef] [PubMed]
[16] Ornoy, A., Weinstein-Fudim, L. and Ergaz, Z. (2016) Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD). Frontiers in Neuroscience, 10, Article No. 316. [Google Scholar] [CrossRef] [PubMed]
[17] 钱晟, 李佳钰, 李静, 等. 儿童孤独症的妊娠期和围产期危险因素Meta分析[J]. 中国妇幼健康研究, 2021, 32(3): 430-435.
[18] Hertz‐Picciotto, I., Korrick, S.A., Ladd‐Acosta, C., Karagas, M.R., Lyall, K., Schmidt, R.J., et al. (2022) Maternal Tobacco Smoking and Offspring Autism Spectrum Disorder or Traits in ECHO Cohorts. Autism Research, 15, 551-569. [Google Scholar] [CrossRef] [PubMed]
[19] Chowdhury, M.A.K., Hardin, J.W., Love, B.L., Merchant, A.T. and McDermott, S. (2023) Relationship of Nonsteroidal Anti-Inflammatory Drug Use during Pregnancy with Autism Spectrum Disorder and Intellectual Disability among Offspring. Journal of Womens Health, 32, 356-365. [Google Scholar] [CrossRef] [PubMed]
[20] Hernández-Díaz, S., Straub, L., Bateman, B.T., Zhu, Y., Mogun, H., Wisner, K.L., et al. (2024) Risk of Autism after Prenatal Topiramate, Valproate, or Lamotrigine Exposure. New England Journal of Medicine, 390, 1069-1079. [Google Scholar] [CrossRef] [PubMed]
[21] Fowler, S.P., Gimeno Ruiz de Porras, D., Swartz, M.D., Stigler Granados, P., Heilbrun, L.P. and Palmer, R.F. (2023) Daily Early-Life Exposures to Diet Soda and Aspartame Are Associated with Autism in Males: A Case-Control Study. Nutrients, 15, Article No. 3772. [Google Scholar] [CrossRef] [PubMed]
[22] Wang, M., Li, K., Zhao, D. and Li, L. (2017) The Association between Maternal Use of Folic Acid Supplements during Pregnancy and Risk of Autism Spectrum Disorders in Children: A Meta-Analysis. Molecular Autism, 8, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
[23] Wang, Z., Ding, R. and Wang, J. (2020) The Association between Vitamin D Status and Autism Spectrum Disorder (ASD): A Systematic Review and Meta-Analysis. Nutrients, 13, 86. [Google Scholar] [CrossRef] [PubMed]
[24] Ding, M., Shi, S., Qie, S., Li, J. and Xi, X. (2023) Association between Heavy Metals Exposure (Cadmium, Lead, Arsenic, Mercury) and Child Autistic Disorder: A Systematic Review and Meta-analysis. Frontiers in Pediatrics, 11, Article ID: 1169733. [Google Scholar] [CrossRef] [PubMed]
[25] Shi, Z., Jin, Y., Xu, H., Gao, L., Wu, M., Chang, Y., et al. (2025) Altered Neurotransmitters in Cerebrospinal Fluid of Children with Autism Spectrum Disorder. Brain Research, 1865, Article ID: 149851. [Google Scholar] [CrossRef] [PubMed]
[26] Udagawa, J. and Hino, K. (2016) Impact of Maternal Stress in Pregnancy on Brain Function of the Offspring. Nippon Eiseigaku Zasshi (Japanese Journal of Hygiene), 71, 188-194. [Google Scholar] [CrossRef] [PubMed]
[27] Osmina, E.V., Verbenko, V.A., Asanova, A.E. and Verbenko, G.N. (2012) P-314—The Role of Social Factors in the Development of Functional Atypical Autism. European Psychiatry, 27, 1. [Google Scholar] [CrossRef
[28] Clausi, S., Olivito, G., Siciliano, L., Lupo, M., Laghi, F., Baiocco, R., et al. (2021) The Cerebellum Is Linked to Theory of Mind Alterations in Autism. A Direct Clinical and MRI Comparison between Individuals with Autism and Cerebellar Neurodegenerative Pathologies. Autism Research, 14, 2300-2313. [Google Scholar] [CrossRef] [PubMed]
[29] 康倩倩, 李旭, 童光磊, 等. 孤独症谱系障碍儿童丘脑和小脑磁共振波谱特征和临床关系的前瞻性研究[J]. 中国当代儿科杂志, 2021, 23(12): 1250-1255.
[30] Gara, S.K., Chhetri, A.G., Alrjoob, M., Abbasi, S.A.A. and Rutkofsky, I. (2020) The Sensory Abnormalities and Neuropsychopathology of Autism and Anxiety. Cureus, 12, e8071. [Google Scholar] [CrossRef] [PubMed]
[31] Pillion, J.P., Boatman-Reich, D. and Gordon, B. (2018) Auditory Brainstem Pathology in Autism Spectrum Disorder: A Review. Cognitive and Behavioral Neurology, 31, 53-78. [Google Scholar] [CrossRef] [PubMed]
[32] Parker, T.C., Crowley, M.J., Naples, A.J., Rolison, M.J., Wu, J., Trapani, J.A., et al. (2021) The N170 Event‐Related Potential Reflects Delayed Neural Response to Faces When Visual Attention Is Directed to the Eyes in Youths with ASD. Autism Research, 14, 1347-1356. [Google Scholar] [CrossRef] [PubMed]
[33] Keehn, B., Monahan, P., Enneking, B., Ryan, T., Swigonski, N. and McNally Keehn, R. (2024) Eye-Tracking Biomarkers and Autism Diagnosis in Primary Care. JAMA Network Open, 7, e2411190. [Google Scholar] [CrossRef] [PubMed]
[34] 中华医学会儿科学分会发育行为学组, 中国医师协会儿科分会儿童保健专业委员会, 儿童孤独症诊断与防治技术和标准研究项目专家组. 孤独症谱系障碍儿童早期识别筛查和早期干预专家共识[J]. 中华儿科杂志, 2017, 55(12): 890-897.
[35] Volkmar, F.R. and McPartland, J.C. (2014) From Kanner to DSM-5: Autism as an Evolving Diagnostic Concept. Annual Review of Clinical Psychology, 10, 193-212. [Google Scholar] [CrossRef] [PubMed]
[36] Wieckowski, A.T., Williams, L.N., Rando, J., Lyall, K. and Robins, D.L. (2023) Sensitivity and Specificity of the Modified Checklist for Autism in Toddlers (Original and Revised): A Systematic Review and Meta-Analysis. JAMA Pediatrics, 177, 373-383. [Google Scholar] [CrossRef] [PubMed]
[37] Davis, A., Chu, S., Scott, L. and Mohiuddin, S. (2025) Use of COACH for Autism Screening in Speech and Language Pathology Evaluations; Preliminary Outcomes. Journal of Autism and Developmental Disorders. [Google Scholar] [CrossRef] [PubMed]
[38] Dawson, G., Rogers, S., Munson, J., Smith, M., Winter, J., Greenson, J., et al. (2010) Randomized, Controlled Trial of an Intervention for Toddlers with Autism: The Early Start Denver Model. Pediatrics, 125, e17-e23. [Google Scholar] [CrossRef] [PubMed]
[39] 段奕, 张雪琴, 倪嘉. 丹佛早期干预模式对孤独症患儿认知能力的影响探讨[J]. 心理月刊, 2024, 19(23): 202-204.
[40] Camarata, S., Stiles, S. and Birer, S. (2024) Naturalistic Developmental Behavioral Interventions for Developmental Language Disorder. American Journal of Speech-Language Pathology, 33, 627-641. [Google Scholar] [CrossRef] [PubMed]
[41] Yi, J., Kim, W. and Lee, J. (2022) Effectiveness of the SCERTS Model-Based Interventions for Autistic Children: A Systematic Review. Journal of Speech, Language, and Hearing Research, 65, 2662-2676. [Google Scholar] [CrossRef
[42] Bougeard, C., Picarel-Blanchot, F., Schmid, R., Campbell, R. and Buitelaar, J. (2021) Prevalence of Autism Spectrum Disorder and Co-Morbidities in Children and Adolescents: A Systematic Literature Review. Frontiers in Psychiatry, 12, Article ID: 744709. [Google Scholar] [CrossRef] [PubMed]
[43] Ghamdi, K. and AlMusailhi, J. (2024) Attention-Deficit Hyperactivity Disorder and Autism Spectrum Disorder: Towards Better Diagnosis and Management. Medical Archives, 78, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
[44] Manter, M.A., Birtwell, K.B., Bath, J., Friedman, N.D.B., Keary, C.J., Neumeyer, A.M., et al. (2025) Pharmacological Treatment in Autism: A Proposal for Guidelines on Common Co-Occurring Psychiatric Symptoms. BMC Medicine, 23, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
[45] Kilburn, T.R., Juul Sørensen, M., Thastum, M., Rapee, R.M., Rask, C.U., Bech Arendt, K., et al. (2019) Group-Based Cognitive Behavioural Therapy for Anxiety Disorder in Children with Autism Spectrum Disorder: A Feasibility Study. Nordic Journal of Psychiatry, 73, 273-280. [Google Scholar] [CrossRef] [PubMed]
[46] Strawn, J.R., Mills, J.A., Poweleit, E.A., Ramsey, L.B. and Croarkin, P.E. (2023) Adverse Effects of Antidepressant Medications and Their Management in Children and Adolescents. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 43, 675-690. [Google Scholar] [CrossRef] [PubMed]
[47] Besag, F.M.C. and Vasey, M.J. (2021) Seizures and Epilepsy in Autism Spectrum Disorder. Psychiatric Clinics of North America, 44, 51-68. [Google Scholar] [CrossRef] [PubMed]
[48] Iglesias-Vázquez, L., Van Ginkel Riba, G., Arija, V. and Canals, J. (2020) Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients, 12, Article No. 792. [Google Scholar] [CrossRef] [PubMed]
[49] Dargenio, V.N., Dargenio, C., Castellaneta, S., De Giacomo, A., Laguardia, M., Schettini, F., et al. (2023) Intestinal Barrier Dysfunction and Microbiota-Gut-Brain Axis: Possible Implications in the Pathogenesis and Treatment of Autism Spectrum Disorder. Nutrients, 15, Article No. 1620. [Google Scholar] [CrossRef] [PubMed]
[50] Ristori, M.V., Quagliariello, A., Reddel, S., Ianiro, G., Vicari, S., Gasbarrini, A., et al. (2019) Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions. Nutrients, 11, Article No. 2812. [Google Scholar] [CrossRef] [PubMed]
[51] Arnold, L.E., Luna, R.A., Williams, K., Chan, J., Parker, R.A., Wu, Q., et al. (2019) Probiotics for Gastrointestinal Symptoms and Quality of Life in Autism: A Placebo-Controlled Pilot Trial. Journal of Child and Adolescent Psychopharmacology, 29, 659-669. [Google Scholar] [CrossRef] [PubMed]
[52] Schröder, C.M., Broquère, M.A., Claustrat, B., Delorme, R., Franco, P., Lecendreux, M., et al. (2022) Therapeutic Approaches for Sleep and Rhythms Disorders in Children with ASD. LEncéphale, 48, 294-303. [Google Scholar] [CrossRef] [PubMed]
[53] Bjørklund, G., Oleshchuk, O., Ivankiv, Y., Venger, O., Liuta, O., Mocherniuk, K., et al. (2025) Melatonin Interventions in Autism Spectrum Disorder: Sleep Regulation, Behavioral Outcomes, and Challenges across the Lifespan. Molecular Neurobiology, 62, 9710-9732. [Google Scholar] [CrossRef] [PubMed]