神经退行性疾病与神经胶质细胞糖代谢
Neurodegenerative Diseases and Glucose Metabolism of Neuroglial Cells
DOI: 10.12677/acm.2026.162418, PDF, HTML, XML,    科研立项经费支持
作者: 王书浩*, 张 振#:湖北医药学院附属襄阳市第一人民医院麻醉科,湖北 襄阳
关键词: 神经退行性疾病糖代谢小胶质细胞星形胶质细胞少突胶质细胞Neurodegenerative Diseases Glucose Metabolism Microglia Astrocytes Oligodendrocytes
摘要: 神经退行性疾病是神经系统中慢性进行性损害的一类疾病,是神经元或髓鞘功能及结构的破坏引起的功能障碍,包括帕金森,阿尔茨海默病,亨廷顿病,多发性硬化等。神经胶质细胞作为中枢神经系统中的免疫细胞,其数量远超过神经元本身,包括:小胶质细胞、星形胶质细胞、少突胶质细胞,它们在中枢神经系统中各自具有不可替代的作用,主要包括维护神经元免受损害、作为免疫细胞介导免疫应答、以及向神经元供能等。神经退行性疾病的发生以及进展都与各种神经胶质细胞的变化密切关联,然而神经胶质细胞糖代谢的改变在其中的作用尚不清楚,本文将重点介绍糖代谢在不同的神经胶质细胞中生理状态下和病理状态下的变化以及与神经退行性疾病之间的联系,为神经退行性疾病的潜在治疗开发提供新观点。
Abstract: Neurodegenerative diseases are a group of disorders characterized by chronic and progressive damage to the nervous system. They are functional impairments caused by the disruption of the function and structure of neurons or myelin sheaths, including Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, multiple sclerosis, and others. As immune cells in the central nervous system (CNS), neuroglial cells are far more numerous than neurons themselves, including microglia, astrocytes, and oligodendrocytes. Each of them plays an irreplaceable role in the CNS, mainly including protecting neurons from damage, mediating immune responses as immune cells, and supplying energy to neurons. The occurrence and progression of neurodegenerative diseases are closely associated with changes in various neuroglial cells; however, the role of changes in neuroglial glucose metabolism in this process remains unclear. This article will focus on introducing the changes of glucose metabolism in different neuroglial cells under physiological and pathological conditions, as well as the relationship between these changes and neurodegenerative diseases, so as to provide new insights for the development of potential therapies for neurodegenerative diseases.
文章引用:王书浩, 张振. 神经退行性疾病与神经胶质细胞糖代谢[J]. 临床医学进展, 2026, 16(2): 493-502. https://doi.org/10.12677/acm.2026.162418

1. 引言

神经退行性疾病以神经元进行性损伤、功能丧失为核心特征,包括帕金森病(Parkinson’s disease, PD)、阿尔茨海默病(Alzheimer’s disease, AD)、亨廷顿病(Huntington’s disease, HD)、多发性硬化(Multiple sclerosis, MS)等多种疾病,发病机制复杂且相互交织,现有的方法多局限于对症状缓解,难以从根本上阻断病程进展[1]。神经胶质细胞作为中枢神经系统(central nervous system, CNS)中数量占比最高的细胞群体,承担支持、营养、免疫防御等功能[2]。最近研究证实,神经胶质细胞具有功能可塑性,通过代谢重编程对疾病的调控的作用逐渐被重视,糖代谢重编程作为神经胶质细胞功能表型转换的核心驱动因素,表现为代谢途径转换、关键酶、分子异常调控等特征,已成为神经退行性疾病研究的关键靶点[3] [4]。小胶质细胞在病理刺激下的糖酵解激活与促炎表型转换密切相关,星形胶质细胞的乳酸代谢紊乱直接影响神经元能量供应,少突胶质细胞的糖代谢异常与髓鞘的完整性密切关联[5]-[7]。了解三类胶质细胞不同条件下糖代谢变化,对揭示神经退行性疾病病理本质、开发新型治疗策略具有重要意义。

2. 小胶质细胞糖代谢

2.1. 生理状态下的小胶质细胞糖代谢

葡萄糖作为体内的主要供能物质,在生理条件下,细胞通过糖酵解、三羧酸(tricarboxylic acid, TCA)循环和氧化磷酸(oxidative phosphorylation, OXPHOS)等过程产生三磷酸腺苷(adenosine triphosphate, ATP) [8]。小胶质细胞在生理状态下对葡萄糖的运用首先通过糖有氧酵解生成丙酮酸,丙酮酸通过丙酮酸脱氢酶转化为乙酰辅酶A,后者进入TCA循环,在线粒体内进行OXPHOS产生ATP,此过程中糖酵解的关键酶的活性对代谢途径的速度和方向具有直接调控作用[9]

2.2. 病理状态下的小胶质细胞糖代谢

在CNS中当小胶质细胞受到伤害性刺激时,其生理环境遭受破坏,此时细胞优先通过糖酵解而非OXPHOS代谢葡萄糖,原因是在缺氧条件下,3-磷酸甘油醛脱氢酶反应生成的NADH + H+,不能经电子传递链氧化,当丙酮酸转化成为乳酸后才能够重新生成NAD+ [10] [11]。此过程中活性氧(reactive oxygen species, ROS)表达增加,而ROS的增加会进一步使炎症介质以及细胞凋亡的相关基因表达增多,致使神经炎症发生以及神经元凋亡,OXPHOS会进一步减少,形成恶性循环[12] [13]。此外,丙酮酸在病理条件下不能直接进入TCA循环,会造成白细胞介素-1β (IL-1β)和一氧化氮(NO)的积累。IL-1β作为促炎因子可介导炎症介质释放,造成神经炎症[14]。通常,低浓度的NO在CNS中具有神经保护作用而高浓度的NO存在毒性作用[15]。NO不仅抑制丙酮酸脱氢酶活性,使丙酮酸无法转化为乙酰辅酶A进入TCA,还与O2反应阻碍电子传递链[16]。小胶质细胞的极化与糖代谢重编程联系密切,病理刺激下极化为M1促炎型和M2抗炎修复型,M1型小胶质细胞通过释放促炎因子IL-1β、IL-6、肿瘤坏死因子(TNF-α)等诱导神经元损伤或神经炎症,M2型小胶质细胞则通过清除细胞碎片,促进组织修复,还可分泌IL-10、糖皮质激素等抗炎因子从而发挥抗炎与神经保护作用[17]。此过程中小胶质细胞代谢方式也会发生转变,M1型小胶质细胞出现糖酵解代谢增强而OXPHOS减弱。在糖代谢途径中,相关酶的活性也至关重要,糖酵解的关键酶己糖激酶2型(HK2)在小胶质细胞与神经炎症中也起了重要作用,HK2通过上调小胶质细胞糖酵解通量驱动神经炎症进展;而抑制HK2可增强小胶质细胞的吞噬功能,改善神经病理损伤并减轻炎症反应[18] [19]。糖酵解代谢的另一个关键酶丙酮酸激酶2型(PKM2),可以与中枢调节因子核因子κB (NF-κB)结合,增加IL-1β和TNF-α的转录;此外PKM2与激活转录因子2 (ATF2)的结合可协同加速小胶质细胞焦亡并直接重编程糖酵解代谢,从而加剧神经炎症级联反应[20] [21]。大量乳酸经PKM2介导的糖酵解产生后,可触发核蛋白的乳酸化修饰,进而增强PKM2、乳酸脱氢酶(LDH)和低氧诱导因子-1α (HIF-1α)的表达,形成正反馈级联[22]。磷酸戊糖途径(Pentose Phosphate Pathway, PPP)对于小胶质细胞糖代谢重编也至关重要,葡萄糖-6-磷酸脱氢酶(G6PD)作为该途径的限速酶,激活后会使NADPH生成增加并激活NF-κB信号通路,导致相关的炎症因子的释放,加剧细胞内氧化应激,共同推动小胶质细胞向M1型极化[23]

2.3. 小胶质细胞糖代谢与神经退行性疾病

在AD中,小胶质细胞吞噬功能受损是脑内β-淀粉样蛋白(Aβ)积累的关键因素,AD发生时小胶质细胞伴随显著的代谢重编程。研究发现,Aβ诱导小胶质细胞急性活化可上调糖酵解水平,并激活 mTOR/HIF-1α信号通路[24]。此外,APP/PS1小鼠的小胶质细胞呈现出向糖酵解代谢的转变,提示小胶质细胞的糖代谢紊乱或许是AD发病进程中的关键机制之一,进一步研究显示,通过促进小胶质细胞的OXPHOS过程同时抑制糖酵解代谢,能有效增强对Aβ的吞噬能力,进而减缓AD相关的认知障碍的发展[25]。糖酵解终产物乳酸通过诱导小胶质细胞发生组蛋白H4第12位赖氨酸乳酸化修饰(H4K12la),激活糖酵解相关基因的转录,形成糖酵解-H4K12la-PKM2正反馈循环,加剧AD中小胶质细胞的炎症反应[22]。糖酵解中的关键酶HK2被抑制时,引发小胶质细胞代谢重编程与吞噬能力增强,一方面小胶质细胞脂代谢激活,脂肪酸氧化增加,使ATP快速积累、促进Aβ吞噬;另一方面,果糖-6-磷酸和葡萄糖-6-磷酸作为HK2下游的两种代谢产物,通过PPP的介入调节NADPH水平增加小胶质细胞吞噬功能[26]。在PD中,α-突触核蛋白(α-syn)与糖酵解和PPP的增强有着紧密联系,在PD模型中小胶质细胞内G6PD表达显著升高,PPP增强导致NADPH代谢水平上升,这一过程中会激活NADPH氧化酶2 (NOX2),导致 ROS过量生成,诱导多巴胺能神经元变性[27]。此外,PD患者中,α-syn与PKM2在小胶质细胞内也可互相作用,使PKM2磷酸化,增加糖酵解通量,促进M1型极化及炎症反应[28]。Clk1作为OXPHOS电子传递链的关键组分,其缺失可促进小胶质细胞有氧糖酵解,通过AMPK/mTOR/HIF-1α信号通路触发炎症级联反应,加剧多巴胺能神经元损伤[29]。在MS急性炎症期或脱髓鞘早期病灶中,小胶质细胞会极化为M1表型,伴随显著的糖代谢重编程,该过程可通过PDPK1/Akt信号通路介导,其代谢产物NO和衣康酸会进一步抑制少突胶质细胞的线粒体呼吸功能,减少髓鞘蛋白合成,加重脱髓鞘损伤[30]。此外,在MS患者的灰质中观察到丙酮酸脱氢酶活性被抑制而丙酮酸脱氢酶激酶的活性增加,使小胶质细胞正常的糖代谢受阻,同时产生了大量的ROS进一步加重病程[31]。而靶向调控糖代谢重编程可能是治疗上述疾病的潜在治疗策略。

3. 星形胶质细胞糖代谢

3.1. 星形胶质细胞生理态下的糖代谢

生理状态下,星形胶质细胞对葡萄糖的代谢主要通过有氧糖酵解进行,即使在氧气充足的条件下也倾向于将葡萄糖分解为乳酸,这一过程由葡萄糖转运体1 (GLUT1)摄取葡萄糖,并通过糖酵解的关键酶催化生成丙酮酸,在LDH作用下生成乳酸并释放到细胞外[32]。星形胶质细胞作为CNS中的能量代谢的枢纽,在神经元活动期间,葡萄糖优先被星形胶质细胞摄取,经有氧糖酵解转化为乳酸后,通过单羧酸转运蛋白(MCT)转运至神经元,最终在线粒体TCA循环中氧化供能,该过程称为星形胶质细胞–神经元乳酸穿梭(Astrocyte-Neuron Lactate Shuttle, ANLS) [33]

3.2. 星形胶质细胞病理态下的糖代谢

病理条件下,星形胶质细胞有氧糖酵解受到破坏。脑缺血、脑损伤等低糖低氧条件下,糖有氧酵解受抑制,会生成大量的乳酸,适度浓度的乳酸可作为神经元能量底物,维持突触功能,而乳酸积聚不仅会引起乳酸酸中毒,还会造成ANLS功能失调,神经元因能量底物匮乏出现功能损伤,最终导致空间记忆障碍与突触可塑性受损[6] [34]。此外,当葡萄糖代谢通路受损时,星形胶质细胞会启动底物转换以维持能量供应。Aβ诱导的星形胶质细胞中,会出现过氧化物酶体介导的脂肪酸β氧化增强,与糖酵解共同构成代偿性能量代谢[35]。星形胶质细胞的糖原储备功能在病理状态下也会出现异常,在脑缺血早期,糖原快速分解以补充能量不足,但持续缺血会导致糖原耗竭,同时糖酵解产生的乳酸无法有效清除,反而加重组织酸中毒[36]。和小胶质细胞类似,星形胶质细胞面对病理刺激时,会重塑为反应性星形胶质细胞A1型和A2型[37]。在CNS受损后A1型会迅速形成并与神经退行性疾病高度关联,诱导促炎因子IL-1β、TNF-α和NO释放,最终导致神经损伤;A2型则分泌IL-4、IL-10、IL-13和转化生长因子-β (Transforming Growth Factor-β, TGF-β)等抗炎因子,从而降低炎症水平保护神经[38]。研究证实,NDRG2基因的表达水平随着反应性星形胶质细胞增多而上调,星形胶质细胞的稳定性可由乳酸通过抑制NDRG2的泛素化来实现,而糖代谢紊乱会使乳酸减少导致NDRG2泛素化,加剧炎症程度,并促进以TNF-α为核心的信号通路迅速激活,导致神经元损伤,由此可见乳酸平衡对星形胶质细胞的稳态至关重要[39]。此外,Sorting nexin 27 (SNX27)是一种富集于大脑内的蛋白,与智力障碍相关,在SNX27敲低的小鼠中,星形胶质细胞通过GLUT1摄取的葡萄糖减少,从稳态星形胶质细胞转变为反应性星形胶质细胞,加重了小鼠的认知障碍[40]

3.3. 星形胶质细胞糖代谢与神经退行性疾病

在AD中,星形胶质细胞表现为显著的代谢功能障碍,与静息态相比,葡萄糖摄取能力显著降低,乳酸的生成也会减少,导致对神经元的能量支持减弱,星形胶质细胞–神经元间代谢偶联失调,会进一步加剧认知功能衰退[39]。星形胶质细胞还参与了血脑屏障(Blood-Brain Barrier, BBB)的形成,GLUT1在其细胞膜中高度富集,BBB中GLUT1减少,可引起血管通透性增加,Aβ进入脑内增多从而诱发或加重AD的病理进程[41]。星形胶质细胞通过高亲和力谷氨酸转运蛋白EAAT1和EAAT2摄取胞外谷氨酸以此维持谷氨酸稳态、突触可塑性及神经元存活;该转运功能缺失会导致谷氨酸蓄积并诱发神经元死亡。在AD模型中,EAAT2敲除可显著加重认知障碍,谷氨酸转运蛋白耗能巨大,生理状态下,星形胶质细胞通过ANLS产生ATP为其供能,维持谷氨酸代谢稳态;而AD中ANLS功能异常会使谷氨酸蓄积,加剧神经元凋亡[42]。在HD患者中大脑皮层和纹状体中还检测到脑能量代谢受损,研究表明,功能失调的星形胶质细胞–神经元代谢相互作用会导致HD中的神经变性,抗坏血酸作为大脑中重要的抗氧化剂分子,神经元摄取后可以抑制葡萄糖转运并刺激乳酸摄取,而在HD的小鼠细胞模型中发现,纹状体神经元中突变型亨廷顿蛋白(mHTT)的积累会导致抗坏血酸转运蛋白2 (SVCT2)的移位,抗坏血酸摄取障碍会促进HD发生,提示乳酸可作为HD的诊断标志物和治疗靶点[43]。此外,HD小鼠模型中,葡萄糖水平显著降低而脂肪酸代谢物蓄积,此代谢压力促使星形胶质细胞从糖酵解主导模式转向脂肪酸氧化供能路径,而脂质的蓄积会导致ROS产生以及神经元毒性,通过线粒体靶向的电子清除剂XJB-5-131减弱了这一现象,关注葡萄糖利用率和星形胶质细胞代谢之间的联系可能为HD提供新的治疗方法[44]。在PD中,大脑中星形胶质细胞产生过量的乳酸可能与之进展有关,SIRT1是一种组蛋白去乙酰化酶,在PD模型小鼠中,SIRT1可改善帕金森症状,而SIRT1敲低则进一步加重PD症状,从机制上讲,SIRT1与PKM2相互作用使其去乙酰化,从而降低PKM2活性和乳酸生成,最终改善PD [28]。还有研究表明,迟发性帕金森病患者脑脊液中乳酸水平异常升高,上调HK2促进了多巴胺能神经元的凋亡,而抑制HK2的表达则通过降低帕金森病患者的乳酸生成来减弱神经元的凋亡[45]。可见乳酸稳态可能成为开发治疗PD神经退行性变药物的靶点。

4. 少突胶质细胞糖代谢

4.1. 少突胶质细胞生理态下的糖代谢

生理状态下,少突胶质细胞以糖酵解为主要供能方式,而仅有少量葡萄糖进入线粒体进行OXPHOS,由于髓鞘的合成高度耗能,糖酵解虽然单位葡萄糖的ATP产量低但能快速响应细胞对能量的需求,并且糖酵解的中间产物可作为髓鞘合成的关键前体物质,参与髓鞘的形成和维持[46]。最新研究发现,ErbB信号通路可调控成熟少突胶质细胞的有氧糖酵解,进而影响轴突传导与认知功能,证实少突胶质细胞糖代谢与脑功能的紧密关联[47]。有氧糖酵解生成的乳酸对于髓鞘形成也密不可分,少突胶质细胞在低能量的情况下髓鞘的形成会受损,乳酸可以在能量剥夺的条件下支持轴突功能[48]。少突胶质细胞通过MCT1和神经元中的MCT2共同作用,将乳酸从少突胶质细胞转运到神经元,从而为神经元传送能量,当MCT1的表达下调时神经元的轴突会出现损伤[49]。尽管如此,在少突胶质细胞中线粒体参与能量产生、脂质代谢、细胞凋亡信号转导等多种生理过程,其OXPHOS仍具有不可替代的作用[50]

4.2. 少突胶质细胞病理态下的糖代谢

缺血、缺氧是少突胶质细胞重要的病理因素,由于氧供减少,脯氨酸羟化酶活性受抑,HIF-1α稳定并激活下游靶基因包括葡萄糖转运体(GLUT1/GLUT3)、糖酵解酶(HK2、PFKFB3、LDHA)等,共同促进无氧糖酵解,研究表明,HIF-1α可以促进少突胶质前体细胞(OPCs)的存活和向成熟少突胶质细胞的分化,但在严重或持续缺氧条件下,HIF-1α过度激活可抑制线粒体生物合成,减少OXPHOS能力,同时促进乳酸过度积累,导致细胞内酸中毒[51] [52]。研究发现,促炎条件可以诱导少突胶质细胞向更高糖酵解活性的状态转变以维持ATP生成,但这种改变不足以弥补线粒体功能障碍造成的能量缺口,还会牺牲PPP为代价,导致抗氧化能力下降[53]

4.3. 少突胶质细胞糖代谢与神经退行性疾病

在AD中,Aβ的增多可损害少突胶质细胞功能及髓鞘结构完整性,并抑制损伤区域的髓鞘再生,髓鞘含量的变化也与AD进展密切关联,髓鞘丢失及髓鞘碱性蛋白含量下降会加速Aβ沉积;而增加少突胶质细胞中的葡萄糖代谢,可以改善髓鞘形成与功能,从而缓解认知障碍[54]。中枢神经系统中MCT1主要表达于少突胶质细胞,其功能破坏可导致轴突损伤及神经元丢失,在肌萎缩侧索硬化(Amyotrophic Lateral Sclerosis, ALS)中,MCT1蛋白表达显著下调,阻碍乳酸转运功能,使能量代谢失衡,导致轴突损伤及神经退行性病变[55]

在MS中也发现,少突胶质细胞由于暴露于缺氧和能量不足的环境中,髓鞘再生的能力会减弱以及结构遭到破坏,OPCs的突起也会变细且数量减少[56]。少突胶质细胞在低能量、低代谢状态下可以短期存活,然而在长时间缺糖缺氧条件下,其为了维持存活会减少突触数量,进一步引起轴突损伤,可见糖代谢途径可能是维持髓鞘正常结构与功能以及MS的潜在治疗途径[57]

4.4. 神经胶质细胞之间糖代谢的交互作用

神经胶质细胞之间的糖代谢也存在交互作用。在生理状态下,星形胶质细胞有氧糖酵解生成的乳酸通过单羧酸转运蛋白释放到细胞外间隙,该乳酸可被周围的小胶质细胞摄取,作为能量底物或信号分子,激活其线粒体生物合成以及促进OXPHOS过程,使小胶质细胞向M2型转化发挥抗炎作用[32]。研究表明,在AD模型中,星形胶质细胞功能障碍导致乳酸生成减少,对小胶质细胞的能量支持也会减弱,使其向M1型转化,加剧神经炎症反应[39]。星形胶质细胞与少突胶质细胞之间的交互主要是能量底物的供应,星形胶质细胞通过MCT释放的乳酸可被少突胶质细胞摄取并用于TCA循环,支持其髓鞘形成过程中所需的脂质合成[48]。此外,星形胶质细胞分泌的表皮生长因子(EGF)和血小板源性生长因子(PDGF)可激活OPCs的糖酵解通路,使其增殖与迁移能力增强[58]。在MS脱髓鞘病灶周围,反应性星形胶质细胞分泌的神经营养因子可促进OPCs分化,但糖代谢紊乱会导致能量供应不足,阻碍髓鞘再生[56]。星形胶质细胞还可通过外泌体传递miRNA调控少突胶质细胞代谢基因表达,间接影响其线粒体功能与OXPHOS效率[59]。小胶质细胞与少突胶质细胞之间也存在交互作用,研究发现,脂多糖诱导的小胶质细胞会释放大量NO和ROS,邻近的少突胶质细胞接触后,其线粒体呼吸链复合体的活性会受到抑制,导致OXPHOS能力下降[30]。还有研究发现,小胶质细胞在吞噬髓鞘碎片后会发生代谢重编程,增加脂肪酸氧化能力以处理摄入的脂质成分,此过程释放的代谢信号可影响OPCs的增殖和迁移活性[60]。糖代谢在神经元与胶质细胞间也存在直接的交互。在生理状态下,小胶质细胞对功能异常的突触和细胞碎片进行吞噬从而维持神经网络的稳态,这种吞噬功能依赖于线粒体OXPHOS产生的ATP,在糖酵解增强的炎症状态下,小胶质细胞的吞噬能力会显著下降导致神经网络稳态破坏[61]。在神经损伤后,小胶质细胞会迅速迁移到损伤部位,通过增加糖酵解代谢满足迁移和吞噬的高能量需求,并且还会释放抗炎因子如IL-10和TGF-β促进组织修复[62]。星形胶质细胞与神经元之间通过ANLS这一机制进行交互实现能量的快速供应[33]。星形胶质细胞来源的乳酸还参与调节神经元的氧化还原状态,通过提供NADH维持细胞内的氧化还原平衡,保护神经元免受氧化应激损伤[63]。少突胶质细胞与神经元之间的代谢耦合主要为轴突的能量供应,通过MCT1将乳酸转运至轴突间隙,神经元轴突通过MCT2摄取乳酸并将其氧化供能[49]

4.5. 糖代谢干预治疗潜在副作用

神经胶质细胞糖代谢可作为治疗神经退行性疾病的新观点,然而长期或者非特异性干预糖代谢可能带来一定的副作用。例如,持续促进小胶质细胞OXPHOS有助于缓解AD中的Aβ沉积,然而过度激活线粒体代谢可能会导致ROS过量产生,诱发DNA损伤与细胞衰老[13] [25]。同样,长期使用糖酵解抑制剂或乳酸脱氢酶抑制剂,会使星形胶质细胞与神经元之间的乳酸稳态失衡,影响神经元能量供应以及突触可塑性[34]。少突胶质细胞在生理状态下高度依赖糖酵解供能,相关研究表明,抑制糖酵解关键酶会削弱OPCs的增殖与分化能力,延缓脱髓鞘后的髓鞘再生进程[64]。在MS模型中,使用糖酵解抑制剂可减轻神经炎症,但是也会抑制OPCs的迁移与成熟,导致白质损伤恢复延迟[65]

5. 小结

神经退行性疾病的发病机制复杂多样,在医学界仍然是一个难题,神经胶质细胞作为中枢神经系统中占比最多的细胞,与神经退行性疾病的发生发展有密切联系,本文分别对三种神经胶质细胞从糖代谢的角度阐述对各自的影响以及与神经退行性疾病的联系,这些发现为神经退行性疾病的治疗提供了新的观点及潜在靶点,未来可针对糖代谢过程相关的酶或其他分子研发新型神经保护药物。然而,神经胶质细胞在神经退行性疾病治疗研究领域仍面临许多问题,细胞在疾病不同阶段的动态功能转换仍未完全明确,实现精准时序性调控仍具挑战性,不同胶质细胞在生理和病理状态下的交互作用还需进一步研究,糖代谢干预治疗方式后续仍需深入探究从而降低非特异性干预所带来的其他副作用,为预防或治疗神经退行性疾病提供更加有价值的观点。

基金项目

湖北医药学院研究生科技创新项目(YC2024058)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Li, X., Fang, C., Li, Y., Xiong, X., Xu, X. and Gu, L. (2025) Glycolytic Reprogramming during Microglial Polarization in Neurological Diseases. Frontiers in Immunology, 16, Article 1648887. [Google Scholar] [CrossRef
[2] Czopka, T., Monk, K. and Peri, F. (2024) Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harbor Perspectives in Biology, 16, a041350. [Google Scholar] [CrossRef] [PubMed]
[3] Preeti, K., Sood, A. and Fernandes, V. (2022) Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer’s Disease. Cellular and Molecular Neurobiology, 42, 2527-2551. [Google Scholar] [CrossRef] [PubMed]
[4] Sun, Y., Wei, K., Liao, X., Wang, J., Gao, L. and Pang, B. (2025) Lipid Metabolism in Microglia: Emerging Mechanisms and Therapeutic Opportunities for Neurodegenerative Diseases (Review). International Journal of Molecular Medicine, 56, 1-19. [Google Scholar] [CrossRef] [PubMed]
[5] Hsu, C.H., Pan, Y.J., Zheng, Y.T., et al. (2023). Ultrasound Reduces Inflammation by Modulating M1/M2 Polarization of Microglia Through STAT1/STAT6/PPARγ Signaling Pathways. CNS Neuroscience & Therapeutics, 29, 4113-4123.[CrossRef] [PubMed]
[6] Wu, A., Lee, D. and Xiong, W. (2023) Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 24, Article 13398. [Google Scholar] [CrossRef] [PubMed]
[7] Han, Q. and Cheng, J. (2025) An Overview of Oligodendrocyte Metabolism. In: Advances in Neurobiology, Springer, 155-179. [Google Scholar] [CrossRef] [PubMed]
[8] Kong, E., Li, Y., Deng, M., Hua, T., Yang, M., Li, J., et al. (2022) Glycometabolism Reprogramming of Glial Cells in Central Nervous System: Novel Target for Neuropathic Pain. Frontiers in Immunology, 13, Article 861290. [Google Scholar] [CrossRef] [PubMed]
[9] 白凌云, 抗晶晶, 曹翔. 小胶质细胞糖代谢重编程在中枢神经系统疾病中的研究进展[J]. 中风与神经疾病杂志, 2025, 42(1): 65-69.
[10] Huang, Q., Wang, Y., Chen, S. and Liang, F. (2024) Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging and Disease, 15, 1155-1175. [Google Scholar] [CrossRef] [PubMed]
[11] Li, A., Liu, Q., Li, Q., Liu, B., Yang, Y. and Zhang, N. (2018) Berberine Reduces Pyruvate-Driven Hepatic Glucose Production by Limiting Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier 1. EBioMedicine, 34, 243-255. [Google Scholar] [CrossRef] [PubMed]
[12] Raimondi, V., Ciccarese, F. and Ciminale, V. (2020) Oncogenic Pathways and the Electron Transport Chain: A DangeROS Liaison. British Journal of Cancer, 122, 168-181. [Google Scholar] [CrossRef] [PubMed]
[13] Yin, M. and O’Neill, L.A.J. (2021) The Role of the Electron Transport Chain in Immunity. The FASEB Journal, 35, e21974. [Google Scholar] [CrossRef] [PubMed]
[14] Khan, A.W., Farooq, M., Hwang, M., Haseeb, M. and Choi, S. (2023) Autoimmune Neuroinflammatory Diseases: Role of Interleukins. International Journal of Molecular Sciences, 24, Article 7960. [Google Scholar] [CrossRef] [PubMed]
[15] Mannan, A. and Singh, T.G. (2025) Mechanistic Correlation of Potassium Channel Sensing and Nitric Oxide Activity in Neuroinflammation. Molecular Biology Reports, 52, Article No. 874. [Google Scholar] [CrossRef
[16] Jin, S., Chen, X., Yang, J. and Ding, J. (2023) Lactate Dehydrogenase D Is a General Dehydrogenase for D-2-Hydroxyacids and Is Associated with D-Lactic Acidosis. Nature Communications, 14, Article No. 6638. [Google Scholar] [CrossRef] [PubMed]
[17] Xue, Y., Nie, D., Wang, L., Qiu, H., Ma, L., Dong, M., et al. (2021) Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging and Disease, 12, 466-479. [Google Scholar] [CrossRef] [PubMed]
[18] Fairley, L.H., Lai, K.O., Wong, J.H., Chong, W.J., Vincent, A.S., D’Agostino, G., et al. (2023) Mitochondrial Control of Microglial Phagocytosis by the Translocator Protein and Hexokinase 2 in Alzheimer’s Disease. Proceedings of the National Academy of Sciences, 120, e2209177120. [Google Scholar] [CrossRef] [PubMed]
[19] Cheng, J., Zhang, R., Xu, Z., Ke, Y., Sun, R., Yang, H., et al. (2021) Early Glycolytic Reprogramming Controls Microglial Inflammatory Activation. Journal of Neuroinflammation, 18, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
[20] Li, M., Lu, H., Wang, X., Duan, C., Zhu, X., Zhang, Y., et al. (2021) Pyruvate Kinase M2 (PKM2) Interacts with Activating Transcription Factor 2 (ATF2) to Bridge Glycolysis and Pyroptosis in Microglia. Molecular Immunology, 140, 250-266. [Google Scholar] [CrossRef] [PubMed]
[21] Li, X., Zhou, R., Peng, H., Peng, J., Li, Q. and Mei, M. (2023) Microglia PKM2 Mediates Neuroinflammation and Neuron Loss in Mice Epilepsy through the Astrocyte C3-Neuron C3R Signaling Pathway. Brain Sciences, 13, Article 262. [Google Scholar] [CrossRef] [PubMed]
[22] Pan, R., He, L., Zhang, J., Liu, X., Liao, Y., Gao, J., et al. (2022) Positive Feedback Regulation of Microglial Glucose Metabolism by Histone H4 Lysine 12 Lactylation in Alzheimer’s Disease. Cell Metabolism, 34, 634-648.e6. [Google Scholar] [CrossRef] [PubMed]
[23] Tu, D., Gao, Y., Yang, R., Guan, T., Hong, J. and Gao, H. (2019) The Pentose Phosphate Pathway Regulates Chronic Neuroinflammation and Dopaminergic Neurodegeneration. Journal of Neuroinflammation, 16, Article No. 255. [Google Scholar] [CrossRef] [PubMed]
[24] Su, S., Huang, K., Cai, H., Wei, D., Ding, H., Lin, L., et al. (2025) Exploring the Mechanism by Which Zexie Tang Regulates Alzheimer’s Disease: Insights from Multi-Omics Analysis. Phytomedicine, 139, Article 156453. [Google Scholar] [CrossRef] [PubMed]
[25] Lu, J., Zhou, W., Dou, F., Wang, C. and Yu, Z. (2021) TRPV1 Sustains Microglial Metabolic Reprogramming in Alzheimer’s Disease. EMBO Reports, 22, e52013. [Google Scholar] [CrossRef] [PubMed]
[26] Leng, L., Yuan, Z., Pan, R., Su, X., Wang, H., Xue, J., et al. (2022) Microglial Hexokinase 2 Deficiency Increases ATP Generation through Lipid Metabolism Leading to β-Amyloid Clearance. Nature Metabolism, 4, 1287-1305. [Google Scholar] [CrossRef] [PubMed]
[27] Stykel, M.G., Siripala, S.V., Soubeyrand, E., Coackley, C.L., Lu, P., Camargo, S., et al. (2025) G6PD Deficiency Triggers Dopamine Loss and the Initiation of Parkinson’s Disease Pathogenesis. Cell Reports, 44, Article 115178. [Google Scholar] [CrossRef] [PubMed]
[28] Lian, B., Zhang, J., Yin, X., Wang, J., Li, L., Ju, Q., et al. (2024) SIRT1 Improves Lactate Homeostasis in the Brain to Alleviate Parkinsonism via Deacetylation and Inhibition of PKM2. Cell Reports Medicine, 5, Article 101684. [Google Scholar] [CrossRef] [PubMed]
[29] Gu, R., Zhang, F., Chen, G., Han, C., Liu, J., Ren, Z., et al. (2017) Clk1 Deficiency Promotes Neuroinflammation and Subsequent Dopaminergic Cell Death through Regulation of Microglial Metabolic Reprogramming. Brain, Behavior, and Immunity, 60, 206-219. [Google Scholar] [CrossRef] [PubMed]
[30] Suhail, H., Nematullah, M., Rashid, F., Sajad, M., Fatma, M., Singh, J., et al. (2023) An Early Glycolysis Burst in Microglia Regulates Mitochondrial Dysfunction in Oligodendrocytes under Neuroinflammation. iScience, 26, Article 107921. [Google Scholar] [CrossRef] [PubMed]
[31] Yang, S., Qin, C., Hu, Z., Zhou, L., Yu, H., Chen, M., et al. (2021) Microglia Reprogram Metabolic Profiles for Phenotype and Function Changes in Central Nervous System. Neurobiology of Disease, 152, Article 105290. [Google Scholar] [CrossRef] [PubMed]
[32] 王亚鑫, 赵丽. 星形胶质细胞有氧糖酵解及其产物乳酸在阿尔茨海默病突触可塑性中的作用[J]. 生命科学, 2022, 34(9): 1126-1134.
[33] Kim, Y., Dube, S.E. and Park, C.B. (2025) Brain Energy Homeostasis: The Evolution of the Astrocyte-Neuron Lactate Shuttle Hypothesis. The Korean Journal of Physiology & Pharmacology, 29, 1-8. [Google Scholar] [CrossRef] [PubMed]
[34] Xiong, X.Y., Pan, X.R., Luo, X.X., et al. (2024) Astrocyte-Derived Lactate Aggravates Brain Injury of Ischemic Stroke in Mice by Promoting the Formation of Protein Lactylation. Theranostics, 14, 4297-4317. [Google Scholar] [CrossRef] [PubMed]
[35] Zyśk, M., Beretta, C., Naia, L., Dakhel, A., Påvénius, L., Brismar, H., et al. (2023) Amyloid-β Accumulation in Human Astrocytes Induces Mitochondrial Disruption and Changed Energy Metabolism. Journal of Neuroinflammation, 20, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
[36] Beltran-Velasco, A.I. (2025) Brain Glycogen—Its Metabolic Role in Neuronal Health and Neurological Disorders—An Extensive Narrative Review. Metabolites, 15, Article 128. [Google Scholar] [CrossRef] [PubMed]
[37] Giovannoni, F. and Quintana, F.J. (2020) The Role of Astrocytes in CNS Inflammation. Trends in Immunology, 41, 805-819. [Google Scholar] [CrossRef] [PubMed]
[38] 刘艳, 董新刚. 星形胶质细胞在神经退行性疾病中的炎症机制探析[J]. 中山大学学报(医学科学版), 2024, 45(5): 764-776.
[39] Alberini, C.M., Cruz, E., Descalzi, G., Bessières, B. and Gao, V. (2018) Astrocyte Glycogen and Lactate: New Insights into Learning and Memory Mechanisms. Glia, 66, 1244-1262. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, H., Zheng, Q., Guo, T., Zhang, S., Zheng, S., Wang, R., et al. (2024) Metabolic Reprogramming in Astrocytes Results in Neuronal Dysfunction in Intellectual Disability. Molecular Psychiatry, 29, 1569-1582. [Google Scholar] [CrossRef] [PubMed]
[41] Lu, Y., Wang, Y., Wang, Z., Ren, S., Gong, X., Hu, J., et al. (2024) Ginsenoside Rg2 Alleviates Astrocyte Inflammation and Ameliorates the Permeability of the Alzheimer’s Disease Related Blood-Brain Barrier. Phytomedicine, 135, Article 156063. [Google Scholar] [CrossRef] [PubMed]
[42] Brandebura, A.N., Paumier, A., Onur, T.S. and Allen, N.J. (2023) Astrocyte Contribution to Dysfunction, Risk and Progression in Neurodegenerative Disorders. Nature Reviews Neuroscience, 24, 23-39. [Google Scholar] [CrossRef] [PubMed]
[43] Polyzos, A.A., Lee, D.Y., Datta, R., Hauser, M., Budworth, H., Holt, A., et al. (2019) Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metabolism, 29, 1258-1273.e11. [Google Scholar] [CrossRef] [PubMed]
[44] Polyzos, A., Holt, A., Brown, C., Cosme, C., Wipf, P., Gomez-Marin, A., et al. (2016) Mitochondrial Targeting of XJB-5-131 Attenuates or Improves Pathophysiology in HdhQ150 Animals with Well-Developed Disease Phenotypes. Human Molecular Genetics, 25, 1792-1802. [Google Scholar] [CrossRef] [PubMed]
[45] Yang, C., Pan, R.Y., Guan, F., et al. (2024) Lactate Metabolism in Neurodegenerative Diseases. Neural Regeneration Research, 19, 69-74. [Google Scholar] [CrossRef] [PubMed]
[46] Narine, M. and Colognato, H. (2022) Current Insights into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Frontiers in Cellular Neuroscience, 16, Article 892968. [Google Scholar] [CrossRef] [PubMed]
[47] Hu, X., Zhu, Q., Lou, T., Hu, Q., Li, H., Xu, Y., et al. (2024) Pan-ErbB Inhibition Impairs Cognition via Disrupting Myelination and Aerobic Glycolysis in Oligodendrocytes. Proceedings of the National Academy of Sciences, 121, e2405152121. [Google Scholar] [CrossRef] [PubMed]
[48] Saab, A.S., Tzvetavona, I.D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., et al. (2016) Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron, 91, 119-132. [Google Scholar] [CrossRef] [PubMed]
[49] Zhang, S., Lachance, B.B., Mattson, M.P. and Jia, X. (2021) Glucose Metabolic Crosstalk and Regulation in Brain Function and Diseases. Progress in Neurobiology, 204, Article 102089. [Google Scholar] [CrossRef] [PubMed]
[50] Chen, W., Zhao, H. and Li, Y. (2023) Mitochondrial Dynamics in Health and Disease: Mechanisms and Potential Targets. Signal Transduction and Targeted Therapy, 8, Article No. 333. [Google Scholar] [CrossRef] [PubMed]
[51] Simon, M.C. and Keith, B. (2008) The Role of Oxygen Availability in Embryonic Development and Stem Cell Function. Nature Reviews Molecular Cell Biology, 9, 285-296. [Google Scholar] [CrossRef] [PubMed]
[52] Akundi, R.S. and Rivkees, S.A. (2009) Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells. PLOS ONE, 4, e4739. [Google Scholar] [CrossRef] [PubMed]
[53] López-Muguruza, E. and Matute, C. (2023) Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. International Journal of Molecular Sciences, 24, Article 12912. [Google Scholar] [CrossRef] [PubMed]
[54] Ziar, R., Tesar, P.J. and Clayton, B.L.L. (2025) Astrocyte and Oligodendrocyte Pathology in Alzheimer’s Disease. Neurotherapeutics, 22, e00540. [Google Scholar] [CrossRef] [PubMed]
[55] Tepavčević, V. and Lubetzki, C. (2022) Oligodendrocyte Progenitor Cell Recruitment and Remyelination in Multiple Sclerosis: The More, the Merrier? Brain, 145, 4178-4192. [Google Scholar] [CrossRef] [PubMed]
[56] Molina-Gonzalez, I., Miron, V.E. and Antel, J.P. (2022) Chronic Oligodendrocyte Injury in Central Nervous System Pathologies. Communications Biology, 5, Article No. 1274. [Google Scholar] [CrossRef] [PubMed]
[57] Rone, M.B., Cui, Q., Fang, J., Wang, L., Zhang, J., Khan, D., et al. (2016) Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. The Journal of Neuroscience, 36, 4698-4707. [Google Scholar] [CrossRef] [PubMed]
[58] Emery, B. (2010) Regulation of Oligodendrocyte Differentiation and Myelination. Science, 330, 779-782. [Google Scholar] [CrossRef] [PubMed]
[59] Frühbeis, C., Fröhlich, D., Kuo, W.P., Amphornrat, J., Thilemann, S., Saab, A.S., et al. (2013) Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication. PLOS Biology, 11, e1001604. [Google Scholar] [CrossRef] [PubMed]
[60] Haney, M.S., Pálovics, R., Munson, C.N., Long, C., Johansson, P.K., Yip, O., et al. (2024) APOE4/4 Is Linked to Damaging Lipid Droplets in Alzheimer’s Disease Microglia. Nature, 628, 154-161. [Google Scholar] [CrossRef] [PubMed]
[61] Qiu, J., Chen, Y., Zhuo, J., Zhang, L., Liu, J., Wang, B., et al. (2022) Urolithin a Promotes Mitophagy and Suppresses NLRP3 Inflammasome Activation in Lipopolysaccharide-Induced BV2 Microglial Cells and MPTP-Induced Parkinson’s Disease Model. Neuropharmacology, 207, Article 108963. [Google Scholar] [CrossRef] [PubMed]
[62] Li, L., Jiang, W., Yu, B., Liang, H., Mao, S., Hu, X., et al. (2023) Quercetin Improves Cerebral Ischemia/Reperfusion Injury by Promoting Microglia/Macrophages M2 Polarization via Regulating PI3K/Akt/NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 168, Article 115653. [Google Scholar] [CrossRef] [PubMed]
[63] Dienel, G.A. (2017) The Metabolic Trinity, Glucose-Glycogen-Lactate, Links Astrocytes and Neurons in Brain Energetics, Signaling, Memory, and Gene Expression. Neuroscience Letters, 637, 18-25. [Google Scholar] [CrossRef] [PubMed]
[64] Sun, Y., Zhang, W., Men, L., Wu, J., Yao, L., Huang, X., et al. (2025) Oligodendrocyte Precursor Cell-Specific Blocking of Low-Glucose-Induced Activation of AMPK Ensures Myelination and Remyelination. Nature Metabolism, 7, 2324-2345. [Google Scholar] [CrossRef
[65] Psenicka, M.W., Smith, B.C., Tinkey, R.A. and Williams, J.L. (2021) Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Frontiers in Cellular Neuroscience, 15, Article 654284. [Google Scholar] [CrossRef] [PubMed]