|
[1]
|
Li, X., Fang, C., Li, Y., Xiong, X., Xu, X. and Gu, L. (2025) Glycolytic Reprogramming during Microglial Polarization in Neurological Diseases. Frontiers in Immunology, 16, Article 1648887. [Google Scholar] [CrossRef]
|
|
[2]
|
Czopka, T., Monk, K. and Peri, F. (2024) Glial Cell Development and Function in the Zebrafish Central Nervous System. Cold Spring Harbor Perspectives in Biology, 16, a041350. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Preeti, K., Sood, A. and Fernandes, V. (2022) Metabolic Regulation of Glia and Their Neuroinflammatory Role in Alzheimer’s Disease. Cellular and Molecular Neurobiology, 42, 2527-2551. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sun, Y., Wei, K., Liao, X., Wang, J., Gao, L. and Pang, B. (2025) Lipid Metabolism in Microglia: Emerging Mechanisms and Therapeutic Opportunities for Neurodegenerative Diseases (Review). International Journal of Molecular Medicine, 56, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hsu, C.H., Pan, Y.J., Zheng, Y.T., et al. (2023). Ultrasound Reduces Inflammation by Modulating M1/M2 Polarization of Microglia Through STAT1/STAT6/PPARγ Signaling Pathways. CNS Neuroscience & Therapeutics, 29, 4113-4123.[CrossRef] [PubMed]
|
|
[6]
|
Wu, A., Lee, D. and Xiong, W. (2023) Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases. International Journal of Molecular Sciences, 24, Article 13398. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Han, Q. and Cheng, J. (2025) An Overview of Oligodendrocyte Metabolism. In: Advances in Neurobiology, Springer, 155-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kong, E., Li, Y., Deng, M., Hua, T., Yang, M., Li, J., et al. (2022) Glycometabolism Reprogramming of Glial Cells in Central Nervous System: Novel Target for Neuropathic Pain. Frontiers in Immunology, 13, Article 861290. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
白凌云, 抗晶晶, 曹翔. 小胶质细胞糖代谢重编程在中枢神经系统疾病中的研究进展[J]. 中风与神经疾病杂志, 2025, 42(1): 65-69.
|
|
[10]
|
Huang, Q., Wang, Y., Chen, S. and Liang, F. (2024) Glycometabolic Reprogramming of Microglia in Neurodegenerative Diseases: Insights from Neuroinflammation. Aging and Disease, 15, 1155-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, A., Liu, Q., Li, Q., Liu, B., Yang, Y. and Zhang, N. (2018) Berberine Reduces Pyruvate-Driven Hepatic Glucose Production by Limiting Mitochondrial Import of Pyruvate through Mitochondrial Pyruvate Carrier 1. EBioMedicine, 34, 243-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Raimondi, V., Ciccarese, F. and Ciminale, V. (2020) Oncogenic Pathways and the Electron Transport Chain: A DangeROS Liaison. British Journal of Cancer, 122, 168-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yin, M. and O’Neill, L.A.J. (2021) The Role of the Electron Transport Chain in Immunity. The FASEB Journal, 35, e21974. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Khan, A.W., Farooq, M., Hwang, M., Haseeb, M. and Choi, S. (2023) Autoimmune Neuroinflammatory Diseases: Role of Interleukins. International Journal of Molecular Sciences, 24, Article 7960. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mannan, A. and Singh, T.G. (2025) Mechanistic Correlation of Potassium Channel Sensing and Nitric Oxide Activity in Neuroinflammation. Molecular Biology Reports, 52, Article No. 874. [Google Scholar] [CrossRef]
|
|
[16]
|
Jin, S., Chen, X., Yang, J. and Ding, J. (2023) Lactate Dehydrogenase D Is a General Dehydrogenase for D-2-Hydroxyacids and Is Associated with D-Lactic Acidosis. Nature Communications, 14, Article No. 6638. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xue, Y., Nie, D., Wang, L., Qiu, H., Ma, L., Dong, M., et al. (2021) Microglial Polarization: Novel Therapeutic Strategy against Ischemic Stroke. Aging and Disease, 12, 466-479. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Fairley, L.H., Lai, K.O., Wong, J.H., Chong, W.J., Vincent, A.S., D’Agostino, G., et al. (2023) Mitochondrial Control of Microglial Phagocytosis by the Translocator Protein and Hexokinase 2 in Alzheimer’s Disease. Proceedings of the National Academy of Sciences, 120, e2209177120. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cheng, J., Zhang, R., Xu, Z., Ke, Y., Sun, R., Yang, H., et al. (2021) Early Glycolytic Reprogramming Controls Microglial Inflammatory Activation. Journal of Neuroinflammation, 18, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, M., Lu, H., Wang, X., Duan, C., Zhu, X., Zhang, Y., et al. (2021) Pyruvate Kinase M2 (PKM2) Interacts with Activating Transcription Factor 2 (ATF2) to Bridge Glycolysis and Pyroptosis in Microglia. Molecular Immunology, 140, 250-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, X., Zhou, R., Peng, H., Peng, J., Li, Q. and Mei, M. (2023) Microglia PKM2 Mediates Neuroinflammation and Neuron Loss in Mice Epilepsy through the Astrocyte C3-Neuron C3R Signaling Pathway. Brain Sciences, 13, Article 262. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pan, R., He, L., Zhang, J., Liu, X., Liao, Y., Gao, J., et al. (2022) Positive Feedback Regulation of Microglial Glucose Metabolism by Histone H4 Lysine 12 Lactylation in Alzheimer’s Disease. Cell Metabolism, 34, 634-648.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tu, D., Gao, Y., Yang, R., Guan, T., Hong, J. and Gao, H. (2019) The Pentose Phosphate Pathway Regulates Chronic Neuroinflammation and Dopaminergic Neurodegeneration. Journal of Neuroinflammation, 16, Article No. 255. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Su, S., Huang, K., Cai, H., Wei, D., Ding, H., Lin, L., et al. (2025) Exploring the Mechanism by Which Zexie Tang Regulates Alzheimer’s Disease: Insights from Multi-Omics Analysis. Phytomedicine, 139, Article 156453. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lu, J., Zhou, W., Dou, F., Wang, C. and Yu, Z. (2021) TRPV1 Sustains Microglial Metabolic Reprogramming in Alzheimer’s Disease. EMBO Reports, 22, e52013. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Leng, L., Yuan, Z., Pan, R., Su, X., Wang, H., Xue, J., et al. (2022) Microglial Hexokinase 2 Deficiency Increases ATP Generation through Lipid Metabolism Leading to β-Amyloid Clearance. Nature Metabolism, 4, 1287-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Stykel, M.G., Siripala, S.V., Soubeyrand, E., Coackley, C.L., Lu, P., Camargo, S., et al. (2025) G6PD Deficiency Triggers Dopamine Loss and the Initiation of Parkinson’s Disease Pathogenesis. Cell Reports, 44, Article 115178. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lian, B., Zhang, J., Yin, X., Wang, J., Li, L., Ju, Q., et al. (2024) SIRT1 Improves Lactate Homeostasis in the Brain to Alleviate Parkinsonism via Deacetylation and Inhibition of PKM2. Cell Reports Medicine, 5, Article 101684. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gu, R., Zhang, F., Chen, G., Han, C., Liu, J., Ren, Z., et al. (2017) Clk1 Deficiency Promotes Neuroinflammation and Subsequent Dopaminergic Cell Death through Regulation of Microglial Metabolic Reprogramming. Brain, Behavior, and Immunity, 60, 206-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Suhail, H., Nematullah, M., Rashid, F., Sajad, M., Fatma, M., Singh, J., et al. (2023) An Early Glycolysis Burst in Microglia Regulates Mitochondrial Dysfunction in Oligodendrocytes under Neuroinflammation. iScience, 26, Article 107921. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, S., Qin, C., Hu, Z., Zhou, L., Yu, H., Chen, M., et al. (2021) Microglia Reprogram Metabolic Profiles for Phenotype and Function Changes in Central Nervous System. Neurobiology of Disease, 152, Article 105290. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
王亚鑫, 赵丽. 星形胶质细胞有氧糖酵解及其产物乳酸在阿尔茨海默病突触可塑性中的作用[J]. 生命科学, 2022, 34(9): 1126-1134.
|
|
[33]
|
Kim, Y., Dube, S.E. and Park, C.B. (2025) Brain Energy Homeostasis: The Evolution of the Astrocyte-Neuron Lactate Shuttle Hypothesis. The Korean Journal of Physiology & Pharmacology, 29, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Xiong, X.Y., Pan, X.R., Luo, X.X., et al. (2024) Astrocyte-Derived Lactate Aggravates Brain Injury of Ischemic Stroke in Mice by Promoting the Formation of Protein Lactylation. Theranostics, 14, 4297-4317. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zyśk, M., Beretta, C., Naia, L., Dakhel, A., Påvénius, L., Brismar, H., et al. (2023) Amyloid-β Accumulation in Human Astrocytes Induces Mitochondrial Disruption and Changed Energy Metabolism. Journal of Neuroinflammation, 20, Article No. 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Beltran-Velasco, A.I. (2025) Brain Glycogen—Its Metabolic Role in Neuronal Health and Neurological Disorders—An Extensive Narrative Review. Metabolites, 15, Article 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Giovannoni, F. and Quintana, F.J. (2020) The Role of Astrocytes in CNS Inflammation. Trends in Immunology, 41, 805-819. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
刘艳, 董新刚. 星形胶质细胞在神经退行性疾病中的炎症机制探析[J]. 中山大学学报(医学科学版), 2024, 45(5): 764-776.
|
|
[39]
|
Alberini, C.M., Cruz, E., Descalzi, G., Bessières, B. and Gao, V. (2018) Astrocyte Glycogen and Lactate: New Insights into Learning and Memory Mechanisms. Glia, 66, 1244-1262. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, H., Zheng, Q., Guo, T., Zhang, S., Zheng, S., Wang, R., et al. (2024) Metabolic Reprogramming in Astrocytes Results in Neuronal Dysfunction in Intellectual Disability. Molecular Psychiatry, 29, 1569-1582. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lu, Y., Wang, Y., Wang, Z., Ren, S., Gong, X., Hu, J., et al. (2024) Ginsenoside Rg2 Alleviates Astrocyte Inflammation and Ameliorates the Permeability of the Alzheimer’s Disease Related Blood-Brain Barrier. Phytomedicine, 135, Article 156063. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Brandebura, A.N., Paumier, A., Onur, T.S. and Allen, N.J. (2023) Astrocyte Contribution to Dysfunction, Risk and Progression in Neurodegenerative Disorders. Nature Reviews Neuroscience, 24, 23-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Polyzos, A.A., Lee, D.Y., Datta, R., Hauser, M., Budworth, H., Holt, A., et al. (2019) Metabolic Reprogramming in Astrocytes Distinguishes Region-Specific Neuronal Susceptibility in Huntington Mice. Cell Metabolism, 29, 1258-1273.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Polyzos, A., Holt, A., Brown, C., Cosme, C., Wipf, P., Gomez-Marin, A., et al. (2016) Mitochondrial Targeting of XJB-5-131 Attenuates or Improves Pathophysiology in HdhQ150 Animals with Well-Developed Disease Phenotypes. Human Molecular Genetics, 25, 1792-1802. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yang, C., Pan, R.Y., Guan, F., et al. (2024) Lactate Metabolism in Neurodegenerative Diseases. Neural Regeneration Research, 19, 69-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Narine, M. and Colognato, H. (2022) Current Insights into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Frontiers in Cellular Neuroscience, 16, Article 892968. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hu, X., Zhu, Q., Lou, T., Hu, Q., Li, H., Xu, Y., et al. (2024) Pan-ErbB Inhibition Impairs Cognition via Disrupting Myelination and Aerobic Glycolysis in Oligodendrocytes. Proceedings of the National Academy of Sciences, 121, e2405152121. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Saab, A.S., Tzvetavona, I.D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., et al. (2016) Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron, 91, 119-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Zhang, S., Lachance, B.B., Mattson, M.P. and Jia, X. (2021) Glucose Metabolic Crosstalk and Regulation in Brain Function and Diseases. Progress in Neurobiology, 204, Article 102089. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Chen, W., Zhao, H. and Li, Y. (2023) Mitochondrial Dynamics in Health and Disease: Mechanisms and Potential Targets. Signal Transduction and Targeted Therapy, 8, Article No. 333. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Simon, M.C. and Keith, B. (2008) The Role of Oxygen Availability in Embryonic Development and Stem Cell Function. Nature Reviews Molecular Cell Biology, 9, 285-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Akundi, R.S. and Rivkees, S.A. (2009) Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells. PLOS ONE, 4, e4739. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
López-Muguruza, E. and Matute, C. (2023) Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. International Journal of Molecular Sciences, 24, Article 12912. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ziar, R., Tesar, P.J. and Clayton, B.L.L. (2025) Astrocyte and Oligodendrocyte Pathology in Alzheimer’s Disease. Neurotherapeutics, 22, e00540. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Tepavčević, V. and Lubetzki, C. (2022) Oligodendrocyte Progenitor Cell Recruitment and Remyelination in Multiple Sclerosis: The More, the Merrier? Brain, 145, 4178-4192. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Molina-Gonzalez, I., Miron, V.E. and Antel, J.P. (2022) Chronic Oligodendrocyte Injury in Central Nervous System Pathologies. Communications Biology, 5, Article No. 1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rone, M.B., Cui, Q., Fang, J., Wang, L., Zhang, J., Khan, D., et al. (2016) Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. The Journal of Neuroscience, 36, 4698-4707. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Emery, B. (2010) Regulation of Oligodendrocyte Differentiation and Myelination. Science, 330, 779-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Frühbeis, C., Fröhlich, D., Kuo, W.P., Amphornrat, J., Thilemann, S., Saab, A.S., et al. (2013) Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication. PLOS Biology, 11, e1001604. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Haney, M.S., Pálovics, R., Munson, C.N., Long, C., Johansson, P.K., Yip, O., et al. (2024) APOE4/4 Is Linked to Damaging Lipid Droplets in Alzheimer’s Disease Microglia. Nature, 628, 154-161. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Qiu, J., Chen, Y., Zhuo, J., Zhang, L., Liu, J., Wang, B., et al. (2022) Urolithin a Promotes Mitophagy and Suppresses NLRP3 Inflammasome Activation in Lipopolysaccharide-Induced BV2 Microglial Cells and MPTP-Induced Parkinson’s Disease Model. Neuropharmacology, 207, Article 108963. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Li, L., Jiang, W., Yu, B., Liang, H., Mao, S., Hu, X., et al. (2023) Quercetin Improves Cerebral Ischemia/Reperfusion Injury by Promoting Microglia/Macrophages M2 Polarization via Regulating PI3K/Akt/NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 168, Article 115653. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Dienel, G.A. (2017) The Metabolic Trinity, Glucose-Glycogen-Lactate, Links Astrocytes and Neurons in Brain Energetics, Signaling, Memory, and Gene Expression. Neuroscience Letters, 637, 18-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Sun, Y., Zhang, W., Men, L., Wu, J., Yao, L., Huang, X., et al. (2025) Oligodendrocyte Precursor Cell-Specific Blocking of Low-Glucose-Induced Activation of AMPK Ensures Myelination and Remyelination. Nature Metabolism, 7, 2324-2345. [Google Scholar] [CrossRef]
|
|
[65]
|
Psenicka, M.W., Smith, B.C., Tinkey, R.A. and Williams, J.L. (2021) Connecting Neuroinflammation and Neurodegeneration in Multiple Sclerosis: Are Oligodendrocyte Precursor Cells a Nexus of Disease? Frontiers in Cellular Neuroscience, 15, Article 654284. [Google Scholar] [CrossRef] [PubMed]
|