SGLT2抑制剂在肺动脉高压中的研究进展
Research Progress of SGLT2 Inhibitors in Pulmonary Hypertension
DOI: 10.12677/acm.2026.162423, PDF, HTML, XML,    科研立项经费支持
作者: 沈 跃, 杨 华, 彭 田, 刘朝丰, 初钰洁, 彭 维, 王小琴:大理大学临床医学院,云南 大理;杨 瑛*:大理大学第一附属医院心内科,云南 大理
关键词: SGLT2抑制剂肺动脉高压研究进展心力衰竭机制SGLT2 Inhibitors Pulmonary Hypertension Research Progress Heart Failure Mechanism
摘要: 肺动脉高压(PH)是一种以肺血管阻力进行性升高、肺血管重塑、右心室肥厚和最终导致右心衰竭为特征的致命性疾病。肺动脉高压的发病机制复杂,目前治疗方案虽能降低肺动脉高压但无心脏保护作用,也尚不能逆转肺动脉高压,需要新的治疗药物。近年来,钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂是一类新型口服降糖药物,其具有独立于降糖的心血管和肾脏保护作用。越来越多的研究发现,SGLT2抑制剂在肺动脉高压中可能发挥有益作用。本综述旨在系统阐述SGLT2抑制剂治疗肺动脉高压的研究进展,为SGLT2抑制剂治疗肺动脉高压提供依据及选择。
Abstract: Pulmonary hypertension (PH) is a fatal disease characterized by progressive elevation of pulmonary vascular resistance, pulmonary vascular remodeling, right ventricular hypertrophy, and ultimately right heart failure. The pathogenesis of pulmonary hypertension is complex. Although current treatment regimens can reduce pulmonary hypertension, they lack cardioprotective effects and cannot reverse pulmonary hypertension, thus requiring new therapeutic drugs. In recent years, sodium-glucose cotransporter 2 (SGLT2) inhibitors have been a new class of oral antidiabetic drugs with cardiovascular and renal protective effects independent of their glucose-lowering action. Increasing research has found that SGLT2 inhibitors may exert beneficial effects in pulmonary hypertension. This review aims to systematically elaborate on the research progress of SGLT2 inhibitors in the treatment of pulmonary hypertension, providing a basis and selection for the use of SGLT2 inhibitors in pulmonary hypertension.
文章引用:沈跃, 杨华, 彭田, 刘朝丰, 初钰洁, 彭维, 王小琴, 杨瑛. SGLT2抑制剂在肺动脉高压中的研究进展[J]. 临床医学进展, 2026, 16(2): 538-547. https://doi.org/10.12677/acm.2026.162423

1. 引言

1.1. 肺动脉高压定义及分类

肺动脉高压(PH)是一种进行性的肺血管疾病,其特征是肺动脉顺应性下降和肺血管阻力增加,可导致右心室肥厚、衰竭[1]。过去PH血流动力学诊断标准为:在海平面、静息状态下,通过右心导管测量的平均肺动脉压(mPAP) ≥ 25 mmHg [2]。最近,由于数据显示轻度升高的肺动脉压可能与死亡率增加有关[3],PH的血流动力学诊断标准已发生变化。最新的国际指南(2022年ESC/ERS指南)建议[4]将mPAP的阈值下调至>20 mmHg,以利于早期识别和干预。但该提案引发了广泛的争议,由于相关研究基础不足,目前中国尚未采纳这些诊断标准[5] [6]。PH被分为5组:1) 动脉相关的PH (PAH);2) 左心疾病相关的PH (PH-LHD);3) 肺部疾病和/或缺氧相关的PH;4) 慢性血栓栓塞和/或其他肺动脉阻塞相关的PH;5) 未明和/或多因素机制相关的PH。

1.2. 肺动脉高压流行病学

肺动脉高压的存在普遍加重症状并增加死亡率,独立于基础疾病。目前的估计表明,PH在全球人口中的患病率约为1%,而在65岁以上人群中,这一比例可高达10%。在全球范围内,左心疾病和肺部疾病已成为PH的最常见原因[7]。发展中国家占PH患者的80%,病因以先天性心脏病和感染性疾病(如血吸虫病、HIV、风湿性心脏病)为主,多发于65岁以下人群[8] [9]。发达国家PH主要与左心疾病(心衰、瓣膜病)和肺部疾病(慢阻肺、间质性肺病)为主,常见于老年群体[10] [11]。全球疾病负担研究(GBD 2021)数据表明[12],1990~2021年全球PAH死亡病例增加的主要原因是人口老龄化和人口增长,预计2050年全球PAH病例将达300,484例(较2021年翻倍),老年患者占比显著上升将加剧PH负担。PH是一个重大的全球健康问题,病因和人群分布呈现显著地域差异,亟需制定针对性的防治策略。

1.3. 肺动脉高压分型

仅凭mPAP > 20 mmHg还不足以明确PH病因,还需结合肺动脉楔压(PAWP)和肺血管阻力(PVR)血流动力学参数进行精确分型。根据2022年ESC/ERS指南中分为两型[4]:1) 毛细血管前PH:mPAP > 20 mmHg,PAWP ≤ 15 mmHg,PVR > 2 WU;2) 毛细血管后PH:mPAP > 20 mmHg,PAWP > 15 mmHg,进一步根据PVR分为孤立性毛细血管后PH (PVR ≤ 2 WU)和混合性毛细血管后和毛细血管前PH (PVR > 2 WU)。需要特别指出的是,PVR升高程度从3个Wood单位减少到2个Wood单位,做出这一改变是因为认识到PVR大于约2个Wood单位与不良预后相关[13]。临床和血流动力学分类的目标是更好地指导肺动脉压的治疗,不同的分类决定了不同的治疗措施(使用靶向药物或优化左心衰治疗)。

1.4. 肺动脉高压目前治疗措施

目前,用于PAH的治疗主要是血管扩张药,这些药物已被证明可以改善患者的生存率、症状和生活质量,但未被证实其能逆转持续性血管损害和血管重塑,疾病常常进展至右心室衰竭并最终导致死亡[14]。目前,美国食品和药物管理局(FDA)批准了13种PAH特异性药物,可以改善患者的治疗效果。在这13中药物中,仅有一种被获批用于治疗第4组慢性血栓栓塞性肺动脉高压(CTEPH),即Riociguat,其属于一类新型化合物(可溶性鸟苷酸环化酶刺激剂),但仅限于不适合手术患者或手术后仍存在PH患者[15] [16]。这些药物依赖于3个特定途径的差异作用:1) 前列环素途径、2) 一氧化氮途径和3) 内皮素途径[17]。这些药物主要针对的是PAH,对于第2和3组PH不适用,而这两组共同构成了PH患者中的绝大多数。

对于特定类型PH,如慢性血栓栓塞性肺动脉高压(CTEPH),肺动脉内膜切除术(PEA)和球囊肺动脉成形术(BPA)是其重要的治疗选择[18]。近年来,随着外科及介入技术的快速发展,越来越多的PAH患者接受手术治疗。自20世纪90年代末以来,房间隔造口术已被用作患有严重右心室衰竭的严重PAH患者的可选姑息疗法,这些患者的症状对最大程度的药物治疗无效[19]。目前的治疗方法都没有真正治愈PAH,而且长期预后仍然很差。因此,需要开发新疗法来治疗肺动脉高压。

1.5. 肺动脉高压与心力衰竭

肺动脉高压与心力衰竭(HF)之间存在着密切且动态的双向恶性循环关系,这一病理过程的核心机制是右心室–肺动脉耦联的失衡[20]。从肺动脉高压到心力衰竭:当各种原因导致肺动脉压力进行性升高,右心室后负荷持续加重,引起右心室代偿性肥厚和扩张,最终失代偿而导致右心衰竭。这种肺动脉高压属于毛细血管前PH [21]。从心力衰竭到肺动脉高压:由左心衰竭引起的肺动脉高压(第2组)是最常见原因。左心衰(无论是射血分数降低还是保留)导致左心室充盈压升高,并逆向传递至肺静脉及肺毛细血管,形成毛细血管后PH。长期的压力负荷会诱发肺血管收缩和结构重塑,导致肺血管阻力进一步增加,使其发展为混合性PH。这种主动的血管重塑会显著加重疾病严重程度[22]。因此,在临床实践中,准确评估肺动脉高压是左心疾病的被动结果,还是肺血管本身病变,对于治疗方案的选择至关重要。

1.6. 新型抗心衰药物

钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂是一种新型的口服降糖药物。钠–葡萄糖协同转运蛋白介导肾脏中的葡萄糖重吸收,约90%的肾脏葡萄糖重吸收发生在近端小管S1/S2段,由低亲和力高容量转运蛋白SGLT2介导,剩余10%通过高亲和力低容量转运蛋白SGLT1在近端小管S3段被完成[23]。抑制SGLT2可减少肾脏葡萄糖重吸收,促进尿液中葡萄糖的排泄(尿糖),产生渗透性利尿作用。这一直接作用不依赖于胰岛素,通过“排糖”和“利钠排水”实现降低血浆葡萄糖浓度、减轻体重和适度降低血压的效果[24]

SGLT2抑制剂最初用于治疗2型糖尿病,现已被证明其具有独立于降糖作用的心血管及肾脏获益[25] [26]。在一些常见的心血管结局试验(CVOTs)中,如恩格列净对2型糖尿病患者心血管结局事件的影响(EMPA-REG OUTCOME)、卡格列净对2型糖尿病患者心血管评估研究(CANVAS)以及“心肌梗死中的溶栓”研究组(DECLARE-TIMI 58)关于达格列净对心血管事件试验,SGLT2抑制剂在心力衰竭、慢性肾病及存在心血管风险因素的糖尿病患者中显示出对心脏和肾脏的保护作用[27]-[29]。此外,大型临床研究证实,SGLT2抑制剂能为心衰患者带来一致的临床预后改善。对于射血分数降低的心衰患者,DAPA-HF [30]和EMPEROR-Reduced [31]试验证实达格列净和恩格列净能显著降低心血管死亡和心衰住院的复合风险。重要的是,其益处同样延伸至射血分数保留的患者(EMPEROR-Preserved和DELIVER研究) [32] [33],并且不依赖于患者是否患有糖尿病。在2024年中国心力衰竭指南中[34]强烈推荐其用于射血分数降低的心衰患者,并建议用于射血分数保留或轻度降低的患者,SGLT2抑制剂已成为心衰标准治疗的药物之一。

SGLT1和SGLT2是钠–葡萄糖协同转运蛋白的两个主要成员,其主要区别在于组织分布。SGLT1表达更广泛,存在于肠道、肾脏、心脏、肺、肝脏、胰腺α细胞、大脑和肌肉骨骼系统中,而SGLT2主要在肾脏中表达[35]。SGLT2在正常成年人的心肌细胞和肺组织中表达量极低或无法检测到,SGLT2抑制剂的经典靶点(肾脏SGLT2)在心、肺组织中几乎不存在,而是通过一系列“脱靶效应”和全身性的多器官保护作用来发挥治疗效益[36]。Di Franco等人在使用人类心脏组织(健康、缺血/肥厚心脏)实验研究中发现,SGLT1在正常心脏基础表达,在病理心脏(缺血和肥厚心脏)中表达显著上调,其与AMPK、ERK1/2和mTOR通路磷酸化增强有关,提示其可能通过钠/钙稳态及能量代谢影响心脏功能[37]。在缺血/再灌注损伤中作为适应性反应被激活的葡萄糖摄取通道中,高亲和力低容量通道SGLT1能够以2:1的比例共同转运钠和葡萄糖,导致细胞内钠负荷增加,进而通过钠/钙交换体引起钙超载,从而增加心律失常的风险[38]。抑制SGLT1可能有助于恢复离子稳态。因此,在心肌细胞中过度表达的SGLTI或可成为SGLT2抑制剂的潜在作用靶点。近年来的研究不断揭示,SGLT2抑制剂不仅在心、肾及代谢领域具有明确获益,其保护作用更可能延伸至肺动脉高压的治疗。这种效应本质上是全身性、多靶点的,通过调节血管功能,抑制炎症反应,改善代谢状态,以及对心脏的正向作用,间接而深入地干预肺动脉高压的核心病理机制[39] [40]

2. SGLT2抑制剂在肺动脉高压中的核心作用机制

2.1. 内皮功能保护机制

一氧化氮(NO)主要由血管内皮细胞(EC)合成,其重要功能是舒张血管和作为生物信号分子。在PH的病理生理中,内皮功能障碍导致NO合成减少,进一步加剧血管重塑并增加肺动脉压力[41]。一项早期研究表明,天然的SGLT2抑制剂根皮素通过激活PI3K/AKT/eNOS信号通路,增加NO水平,从而对抗棕榈酸诱导的人脐静脉EC功能障碍,但根皮素如何刺激PI3K升高NO水平的机制尚不清楚[42]。同样,SGLT2抑制剂恩格列净和达格列净可阻断肿瘤坏死因子-α (TNF-α)介导的人冠状动脉EC中的NO生物利用度的损失。但值得注意的是,SGLT2抑制剂不依赖于内皮一氧化氮合酶(eNOS)的表达、活性或定位,其通过消除TNF-α引起的活性氧(ROS)增加,表明SGLT2抑制剂通过减少ROS对NO的清除来提高NO水平[43]。人心脏微血管EC (CMEC)和大鼠心室肌细胞的共培养研究表明,CMEC主要通过释放NO改善心脏舒张和收缩功能。其保护机制是恩格列净通过抑制尿毒症血清刺激线粒体ROS的产生,从而保留NO生物利用度,而与eNOS表达或活性无关[44]

以上研究发现SGLT2抑制剂可以改善内皮细胞功能和一氧化氮生物利用度,表明SGLT2抑制剂对PH的治疗潜力,但其确切的机制,仍值得进一步深入研究。

2.2. 肺血管重构调节机制

PAH的发生与肺动脉平滑肌细胞(PASMC)过度增殖、肺血管重塑密切相关。SGLT2抑制剂也被证明可以抑制血管平滑肌增殖。例如,Lai等人缺氧诱导PAH小鼠模型的研究,恩格列净(Empa)被证实能通过激活过氧化物酶体增殖物激活受体γ (PPAR-γ),抑制γ-分泌酶复合物关键亚基PEN2,进而下调Notch3信号通路,从而缓解肺动脉重塑[45]。Chen等人在野百合碱(MCT)诱导PAH大鼠模型中,发现卡格列净通过抑制SGLT1 (而非SGLT2)表达,激活AMPK信号通路,从而抑制PASMC的异常增殖[46]。此外,有研究证据表明,恩格列净通过抑制分离的动物(兔和大鼠)心室心肌细胞中的心肌Na+/H+交换体1 (NHE1)来发挥心脏保护作用[47]。在人PASMC模型结合缺氧刺激研究中,揭示抑制NHE1可降低转录因子E2F1水平,从而减少PASMC异常活动(增殖、肥大和迁移)改善PH [48]。这些研究发现SGLT2抑制剂是一种具有潜力的PAH治疗药物,为其临床转化提供实验依据。

2.3. 抗炎机制

炎症在PH的发展中起着至关重要的作用[49]。NOD样受体热蛋白结构域相关蛋白3 (NLRP3)属于NOD样受体(NLR)家族的一种多蛋白复合物。它在炎症反应的启动和调控中起核心作用,并与多种炎症性疾病密切相关,如糖尿病、心血管疾病、动脉粥样硬化等。当NLRP3炎症小体被激活时,促使促炎因子释放,包括白细胞介素-1β (IL-1β)、白细胞介素-18 (IL-18),从而加剧局部或全身性炎症反应[50]。SuHx模型(缺氧 + SU5416)的研究表明,IL-1β的产生促进肺动脉高压[51]。Tang等人使用野百合碱(MCT)诱导的PAH大鼠模型的研究,表明达格列净可以抑制NLRP3炎症小体的激活,降低血清IL-1β、IL-18水平。进一步强调SGLT2抑制剂治疗PAH的潜力,并为其治疗PH的抗炎机制提供有力的实验证据[52]

巨噬细胞是先天免疫系统的核心效应细胞,具有高度可塑性,参与炎症调控、组织修复及免疫稳态维持。其可分化为两种主要亚型:M1型(促炎型)分泌促炎因子(IL-1β、IL-6、TNF-α等),加剧炎症和血管损伤。M2型(抗炎型)促进组织修复,但过度活化会驱动血管重塑。巨噬细胞极化失衡(M1/M2表型转换)在PAH中起关键作用[53]。SGLT2抑制剂通过抑制TLR4/NF-κB等通路,减少促炎性M1型巨噬细胞,同时促进抗炎性M2型极化,改善组织炎症微环境[54] [55]

SGLT2抑制剂还可对EC产生直接抗炎作用。例如,将培养的人EC与临床相关浓度的卡格列净一起孵育,卡格列净可抑制IL-1刺激的原单核细胞U937粘附,同时减少IL-6和单核细胞趋化蛋白1 (MCP-1)的表达和分泌[56]。这些研究结果表明SGLT2抑制剂能够通过多种抗炎途径发挥保护作用。

2.4. 代谢调节与能量重构机制

代谢功能障碍是右心室(RV)和肺脉管系统损害的重要原因之一。在第2组PH-LHD (尤其是混合性毛细血管前后PH)和PAH中肺血管功能障碍的风险增加及严重程度与肥胖、胰岛素抵抗和葡萄糖耐受不良密切相关[57]。代谢异常促进了PASMC增殖、肺血管重塑及右心衰竭[58]。在心力衰竭时,心肌细胞能量代谢会从高效的脂肪酸氧化向低效的葡萄糖酵解转变,类似于“Warburg效应”,导致能量供应不足。SGLT2抑制剂可以促进酮体的生成和利用。酮体作为一种更高效的能量底物,能够为衰竭的右心室提供更有效的能量,改善心脏功能[59] [60]。SGLT2抑制剂可能通过改善导致PH的潜在代谢紊乱,从而对肺血管系统产生保护作用[61]。SGLT2抑制剂通过纠正代谢功能障碍来改变PAH和PH-LHD疾病的潜力作用,未来需要进一步探索。

2.5. 血流动力学调节机制

患有心力衰竭或其他心血管疾病的个体,其神经激素和肾素–血管紧张素–醛固酮系统(RASS)激活有助于全身或肺血管硬化,以及肺动脉高压和肺动脉高压相关的右心衰竭,SGLT2抑制剂可能在缓解这些病症方面发挥作用[62] [63]。SGLT2抑制剂通过渗透性利尿和尿钠排泄降低血浆容量、减轻充血。总的来说,这些作用可以有效且安全地缓解充血,并可能有助于改善全身动脉和肺动脉硬化[64]。SGLT2抑制剂对肺血管系统的影响可以作为预防肺动脉高压的保障措施。如上所述,SGLT-2抑制剂为控制PAH液体潴留提供了传统利尿剂的有前景替代方案。与传统利尿剂相比,SGLT-2抑制剂可能具有更少的副作用,例如电解质紊乱和肾功能障碍,同时有效减少液体容量。虽然这两种疗法均旨在缓解液体超负荷,但SGLT-2抑制剂可能为患有右心衰竭的PAH患者提供更好的安全性,并改善心血管结局[65]。总之,SGLT2抑制剂为PAH的治疗带来了新的希望,但其对肺循环及右心的疗效仍有待未来研究进一步证实。

3. 临床应用挑战与未来展望

虽然SGLT2抑制剂在PAH治疗中展现出潜在价值,但在获得明确的人体试验证据前,应用于PAH患者需要谨慎。SGLT2抑制剂的渗透性利尿作用机制明确,然而PAH患者常合并右心衰竭导致液体潴留,同时又可能因心输出量严重受限而处于“低心排量”状态。因此,不恰当的利尿,反而可能加剧器官灌注不足的风险[66]。目前,关于SGLT2抑制剂治疗PAH患者的有效性和安全性尚缺乏直接证据,这是临床应用的主要挑战之一,但两项正在进行的临床试验有望取得突破,提供宝贵的临床数据。第一项研究(达格列净治疗肺动脉高压,ClinicalTrials.gov ID:NCT05179356)旨在评估达格列净对肺动脉高压患者的治疗效果与安全性,这些患者在三个月内每日口服10毫克达格列净或相应的安慰剂。第二项研究是IIa期试验(恩格列净治疗肺动脉高压,ClinicalTrials.gov ID:NCT05493371,设计为单臂研究,没有对照组),旨在观察恩格列净对特发性PAH患者的治疗效果与安全性,参与者每日口服10毫克恩格列净,持续12周。目前这两项研究均在进行中,其结果尚未公布,期待其成果能为SGLT2抑制剂在PAH管理中的作用提供关键依据。该类药物独特的作用机制及潜在的临床获益,有望成为对抗这一难治性疾病的重要治疗补充。

在等待两项正在进行的临床试验结果同时,需要在PAH模型中进一步系统评估SGLT2抑制剂的综合效应,以进一步明确其潜在机制。这不仅有助于阐明该类药物治疗PAH的潜在作用,也可以为未来的临床应用及靶向治疗策略的开发提供理论依据。

4. 总结

综上所述,SGLT2抑制剂通过内皮保护、改善肺血管重构、抗炎、代谢调节及血流动力学变化等多重机制,在肺动脉高压治疗中表现出巨大的潜力作用。其作用超越了传统的单一靶点药物,表现出多靶点作用的优势,同时还具有心脏保护作用。随着未来研究的不断深入,SGLT2抑制剂有望成为一种全新的、以改善右心室功能为目标的PAH附加治疗策略,为患者带来新的希望。

基金项目

云南省教育厅科学研究基金项目(编号:2025Y1139)。

NOTES

*通讯作者。

参考文献

[1] Zelt, J.G.E., Chaudhary, K.R., Cadete, V.J., Mielniczuk, L.M. and Stewart, D.J. (2019) Medical Therapy for Heart Failure Associated with Pulmonary Hypertension. Circulation Research, 124, 1551-1567. [Google Scholar] [CrossRef] [PubMed]
[2] Galiè, N., Humbert, M., Vachiery, J., Gibbs, S., Lang, I., Torbicki, A., et al. (2015) 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 37, 67-119. [Google Scholar] [CrossRef] [PubMed]
[3] Strange, G., Stewart, S., Celermajer, D.S., Prior, D., Scalia, G.M., Marwick, T.H., et al. (2019) Threshold of Pulmonary Hypertension Associated with Increased Mortality. Journal of the American College of Cardiology, 73, 2660-2672. [Google Scholar] [CrossRef] [PubMed]
[4] Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., Brida, M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731. [Google Scholar] [CrossRef] [PubMed]
[5] Xiong, C.M., Zhai, Z.G. and Wang, C. (2020) [The Controversy and Influence Brought by the Modification of the Diagnostic Standard of Pulmonary Hypertension]. Chinese Medical Journal, 100, 1684-1687.
[6] Xiong, C. and Yang, B. (2023) Revising the Hemodynamic Criteria for Pulmonary Hypertension: A Perspective from China. Journal of Translational Internal Medicine, 11, 1-3. [Google Scholar] [CrossRef] [PubMed]
[7] Hoeper, M.M., Humbert, M., Souza, R., Idrees, M., Kawut, S.M., Sliwa-Hahnle, K., et al. (2016) A Global View of Pulmonary Hypertension. The Lancet Respiratory Medicine, 4, 306-322. [Google Scholar] [CrossRef] [PubMed]
[8] Dinarti, L.K., Hartopo, A.B., Kusuma, A.D., Satwiko, M.G., Hadwiono, M.R., Pradana, A.D., et al. (2020) The Congenital Heart Disease in Adult and Pulmonary Hypertension (COHARD-PH) Registry: A Descriptive Study from Single-Center Hospital Registry of Adult Congenital Heart Disease and Pulmonary Hypertension in Indonesia. BMC Cardiovascular Disorders, 20, Article No. 163. [Google Scholar] [CrossRef] [PubMed]
[9] Butrous, G. (2025) Global Landscape of Infection-Induced Pulmonary Hypertension. Infectious Disease Reports, 17, Article 35. [Google Scholar] [CrossRef] [PubMed]
[10] Zeder, K., Brown, C.H., Santi, A., Cvirn, L., Ulrich, S., Rosenkranz, S., et al. (2025) The Prevalence of Pulmonary Hypertension Associated with Left Heart Disease: A Systematic Review and Meta-Analysis. Cardiovascular Research, 121, 2632-2643. [Google Scholar] [CrossRef
[11] Farishta, M. and Sankari, A. (2025) Pulmonary Hypertension Due to Lung Disease or Hypoxia. StatPearls.
[12] Yang, Y., Zeng, Z., Yang, Q., Wang, H., Zhang, H., Yan, W., et al. (2025) The Challenge in Burden of Pulmonary Arterial Hypertension: A Perspective from the Global Burden of Disease Study. MedComm, 6, e70175. [Google Scholar] [CrossRef] [PubMed]
[13] Maron, B.A., Brittain, E.L., Hess, E., Waldo, S.W., Barón, A.E., Huang, S., et al. (2020) Pulmonary Vascular Resistance and Clinical Outcomes in Patients with Pulmonary Hypertension: A Retrospective Cohort Study. The Lancet Respiratory Medicine, 8, 873-884. [Google Scholar] [CrossRef] [PubMed]
[14] Savarese, G., Musella, F., D’Amore, C., Losco, T., Marciano, C., Gargiulo, P., et al. (2012) Haemodynamics, Exercise Capacity and Clinical Events in Pulmonary Arterial Hypertension. European Respiratory Journal, 42, 414-424. [Google Scholar] [CrossRef] [PubMed]
[15] Fares, W.H. (2016) Pushing the Envelope on the Indications and Doses of Pulmonary Arterial Hypertension Medications: What Is Reasonable? Journal of Cardiovascular Pharmacology, 67, 319-321. [Google Scholar] [CrossRef] [PubMed]
[16] Ghofrani, H., D’Armini, A.M., Grimminger, F., Hoeper, M.M., Jansa, P., Kim, N.H., et al. (2013) Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension. New England Journal of Medicine, 369, 319-329. [Google Scholar] [CrossRef] [PubMed]
[17] Zhang, Z., Zhu, S., Wang, M., Wang, X., Tong, X., Wan, J., et al. (2022) New Progress in Diagnosis and Treatment of Pulmonary Arterial Hypertension. Journal of Cardiothoracic Surgery, 17, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
[18] Chang, S., Yang, J.H., Jung, D.S. and Kim, N.H. (2025) Recent Advances in Chronic Thromboembolic Pulmonary Hypertension: Expanding the Disease Concept and Treatment Options. Korean Circulation Journal, 55, 365-381. [Google Scholar] [CrossRef] [PubMed]
[19] Zolty, R. (2020) Pulmonary Arterial Hypertension Specific Therapy: The Old and the New. Pharmacology & Therapeutics, 214, Article ID: 107576. [Google Scholar] [CrossRef] [PubMed]
[20] Spruijt, O.A., de Man, F.S., Groepenhoff, H., Oosterveer, F., Westerhof, N., Vonk-Noordegraaf, A., et al. (2015) The Effects of Exercise on Right Ventricular Contractility and Right Ventricular-Arterial Coupling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 191, 1050-1057. [Google Scholar] [CrossRef] [PubMed]
[21] Vonk Noordegraaf, A., Chin, K.M., Haddad, F., Hassoun, P.M., Hemnes, A.R., Hopkins, S.R., et al. (2019) Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update. European Respiratory Journal, 53, Article ID: 1801900. [Google Scholar] [CrossRef] [PubMed]
[22] Frantz, R.P. (2023) Group 2 Pulmonary Hypertension: From Diagnosis to Treatment. Current Opinion in Pulmonary Medicine, 29, 391-398. [Google Scholar] [CrossRef] [PubMed]
[23] Gyimesi, G., Pujol-Giménez, J., Kanai, Y. and Hediger, M.A. (2020) Sodium-Coupled Glucose Transport, the SLC5 Family, and Therapeutically Relevant Inhibitors: From Molecular Discovery to Clinical Application. Pflügers ArchivEuropean Journal of Physiology, 472, 1177-1206. [Google Scholar] [CrossRef] [PubMed]
[24] Demirkiran, C., Demiryurek, S. and Demiryurek, A.T. (2025) Recent Progress and Perspectives in Sodium-Glucose Co-Transporter 1/2 Inhibitors. Mini-Reviews in Medicinal Chemistry, 25, 354-364. [Google Scholar] [CrossRef] [PubMed]
[25] Cowie, M.R. and Fisher, M. (2020) SGLT2 Inhibitors: Mechanisms of Cardiovascular Benefit Beyond Glycaemic Control. Nature Reviews Cardiology, 17, 761-772. [Google Scholar] [CrossRef] [PubMed]
[26] Aristizábal-Colorado, D., Ocampo-Posada, M., Rivera-Martínez, W.A., Corredor-Rengifo, D., Rico-Fontalvo, J., Gómez-Mesa, J.E., et al. (2024) SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. American Journal of Cardiovascular Drugs, 24, 707-718. [Google Scholar] [CrossRef] [PubMed]
[27] Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. [Google Scholar] [CrossRef] [PubMed]
[28] Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. [Google Scholar] [CrossRef] [PubMed]
[29] Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. [Google Scholar] [CrossRef] [PubMed]
[30] McMurray, J.J.V., DeMets, D.L., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Langkilde, A.M., et al. (2019) The Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure (DAPA-HF) Trial: Baseline Characteristics. European Journal of Heart Failure, 21, 1402-1411. [Google Scholar] [CrossRef] [PubMed]
[31] Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 383, 1413-1424. [Google Scholar] [CrossRef] [PubMed]
[32] Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461. [Google Scholar] [CrossRef] [PubMed]
[33] Solomon, S.D., McMurray, J.J.V., Claggett, B., de Boer, R.A., DeMets, D., Hernandez, A.F., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 387, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
[34] 中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024 [J]. 中华心血管病杂志, 2024, 52(3): 235-275.
[35] Sano, R., Shinozaki, Y. and Ohta, T. (2020) Sodium-Glucose Cotransporters: Functional Properties and Pharmaceutical Potential. Journal of Diabetes Investigation, 11, 770-782. [Google Scholar] [CrossRef] [PubMed]
[36] Vallon, V. and Thomson, S.C. (2016) Targeting Renal Glucose Reabsorption to Treat Hyperglycaemia: The Pleiotropic Effects of SGLT2 Inhibition. Diabetologia, 60, 215-225. [Google Scholar] [CrossRef] [PubMed]
[37] Di Franco, A., Cantini, G., Tani, A., Coppini, R., Zecchi-Orlandini, S., Raimondi, L., et al. (2017) Sodium-Dependent Glucose Transporters (SGLT) in Human Ischemic Heart: A New Potential Pharmacological Target. International Journal of Cardiology, 243, 86-90. [Google Scholar] [CrossRef] [PubMed]
[38] Coppini, R., Ferrantini, C., Del Lungo, M., Stillitano, F., Sartiani, L., Tosi, B., et al. (2013) Response to Letter Regarding Article, “Late Sodium Current Inhibition Reverses Electromechanical Dysfunction in Human Hypertrophic Cardiomyopathy”. Circulation, 128, e157. [Google Scholar] [CrossRef] [PubMed]
[39] Luo, T., Wu, H., Zhu, W., Zhang, L., Huang, Y. and Yang, X. (2024) Emerging Therapies: Potential Roles of SGLT2 Inhibitors in the Management of Pulmonary Hypertension. Respiratory Medicine, 227, Article ID: 107631. [Google Scholar] [CrossRef] [PubMed]
[40] Sitbon, O., Boucly, A., Weatherald, J., Antigny, F., Guignabert, C., Jevnikar, M., et al. (2025) Drugs Targeting Novel Pathways in Pulmonary Arterial Hypertension. European Respiratory Journal, 66, Article ID: 2401830. [Google Scholar] [CrossRef] [PubMed]
[41] Sim, J. (2010) Nitric Oxide and Pulmonary Hypertension. Korean Journal of Anesthesiology, 58, 4-14. [Google Scholar] [CrossRef] [PubMed]
[42] Li, C., Wang, L., Dong, S., Hong, Y., Zhou, X., Zheng, W., et al. (2018) Phlorizin Exerts Direct Protective Effects on Palmitic Acid (PA)-Induced Endothelial Dysfunction by Activating the PI3K/AKT/eNOS Signaling Pathway and Increasing the Levels of Nitric Oxide (NO). Medical Science Monitor Basic Research, 24, 1-9. [Google Scholar] [CrossRef] [PubMed]
[43] Uthman, L., et al. (2019) Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cellular Physiology and Biochemistry, 53, 865-886. [Google Scholar] [CrossRef] [PubMed]
[44] Juni, R.P., Al-Shama, R., Kuster, D.W.D., van der Velden, J., Hamer, H.M., Vervloet, M.G., et al. (2021) Empagliflozin Restores Chronic Kidney Disease-Induced Impairment of Endothelial Regulation of Cardiomyocyte Relaxation and Contraction. Kidney International, 99, 1088-1101. [Google Scholar] [CrossRef] [PubMed]
[45] Lai, Y., Yeh, Y., Huang, Y., De Almeida, C., Chang, G., Chen, W., et al. (2024) Empagliflozin Attenuates Pulmonary Arterial Remodeling through Peroxisome Proliferator-Activated Receptor Gamma Activation. ACS Pharmacology & Translational Science, 7, 2725-2738. [Google Scholar] [CrossRef] [PubMed]
[46] Chen, X., Yu, X., Lian, G., Tang, H., Yan, Y., Gao, G., et al. (2024) Canagliflozin Inhibits PASMCs Proliferation via Regulating SGLT1/AMPK Signaling and Attenuates Artery Remodeling in MCT-Induced Pulmonary Arterial Hypertension. Biomedicine & Pharmacotherapy, 174, Article ID: 116505. [Google Scholar] [CrossRef] [PubMed]
[47] Uthman, L., Baartscheer, A., Bleijlevens, B., Schumacher, C.A., Fiolet, J.W.T., Koeman, A., et al. (2017) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. [Google Scholar] [CrossRef] [PubMed]
[48] Yu, L. and Hales, C.A. (2011) Silencing of Sodium-Hydrogen Exchanger 1 Attenuates the Proliferation, Hypertrophy, and Migration of Pulmonary Artery Smooth Muscle Cells via E2F1. American Journal of Respiratory Cell and Molecular Biology, 45, 923-930. [Google Scholar] [CrossRef] [PubMed]
[49] Stacher, E., Graham, B.B., Hunt, J.M., Gandjeva, A., Groshong, S.D., McLaughlin, V.V., et al. (2012) Modern Age Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261-272. [Google Scholar] [CrossRef] [PubMed]
[50] Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328. [Google Scholar] [CrossRef] [PubMed]
[51] Rong, W., Liu, C., Li, X., Wan, N., Wei, L., Zhu, W., et al. (2022) Caspase-8 Promotes Pulmonary Hypertension by Activating Macrophage-Associated Inflammation and Il-1β (Interleukin 1β) Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 613-631. [Google Scholar] [CrossRef] [PubMed]
[52] Tang, Y., Tan, S., Li, M., Tang, Y., Xu, X., Zhang, Q., et al. (2022) Dapagliflozin, Sildenafil and Their Combination in Monocrotaline-Induced Pulmonary Arterial Hypertension. BMC Pulmonary Medicine, 22, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
[53] Zhang, M., Wang, C., Pang, X., Shi, J., Li, H., Xie, X., et al. (2023) Role of Macrophages in Pulmonary Arterial Hypertension. Frontiers in Immunology, 14, Article 1152881. [Google Scholar] [CrossRef] [PubMed]
[54] Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article ID: 174715. [Google Scholar] [CrossRef] [PubMed]
[55] Lee, N., Heo, Y.J., Choi, S., Jeon, J.Y., Han, S.J., Kim, D.J., et al. (2021) Anti-Inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. Journal of Immunology Research, 2021, Article ID: 9944880. [Google Scholar] [CrossRef] [PubMed]
[56] Mancini, S.J., Boyd, D., Katwan, O.J., Strembitska, A., Almabrouk, T.A., Kennedy, S., et al. (2018) Canagliflozin Inhibits Interleukin-1β-Stimulated Cytokine and Chemokine Secretion in Vascular Endothelial Cells by AMP-Activated Protein Kinase-Dependent and-Independent Mechanisms. Scientific Reports, 8, Article No. 5276. [Google Scholar] [CrossRef] [PubMed]
[57] King, N.E. and Brittain, E. (2022) Emerging Therapies: The Potential Roles SGLT2 Inhibitors, GLP1 Agonists, and ARNI Therapy for ARNI Pulmonary Hypertension. Pulmonary Circulation, 12, e12028. [Google Scholar] [CrossRef] [PubMed]
[58] Xu, W., Janocha, A.J. and Erzurum, S.C. (2021) Metabolism in Pulmonary Hypertension. Annual Review of Physiology, 83, 551-576. [Google Scholar] [CrossRef] [PubMed]
[59] Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational In-Sights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC: Basic to Translational Science, 3, 575-587. [Google Scholar] [CrossRef] [PubMed]
[60] Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC: Basic to Translational Science, 5, 632-644. [Google Scholar] [CrossRef] [PubMed]
[61] Obeidat, M., Vignarajah, A., Abdel-Razeq, R., Nathir, A., Vigneswaramoorthy, N.A. and Tonelli, A.R. (2025) Effects of Sodium-Glucose Cotransport-2 Inhibitors Treatment in Patients with Pulmonary Hypertension. Therapeutic Advances in Respiratory Disease, 19, 1-12. [Google Scholar] [CrossRef] [PubMed]
[62] Griffin, M., Rao, V.S., Ivey-Miranda, J., Fleming, J., Mahoney, D., Maulion, C., et al. (2020) Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation, 142, 1028-1039. [Google Scholar] [CrossRef] [PubMed]
[63] Wan, N., Rahman, A., Hitomi, H. and Nishiyama, A. (2018) The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Frontiers in Endocrinology, 9, Article 421. [Google Scholar] [CrossRef] [PubMed]
[64] Zhang, K., Kan, C., Han, F., Zhang, J. and Sun, X. (2024) Elucidating the Cardioprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors Beyond Glycemic Control. World Journal of Diabetes, 15, 137-141. [Google Scholar] [CrossRef] [PubMed]
[65] Stickel, S., Gin-Sing, W., Wagenaar, M. and Gibbs, J.S.R. (2019) The Practical Management of Fluid Retention in Adults with Right Heart Failure Due to Pulmonary Arterial Hypertension. European Heart Journal Supplements, 21, K46-K53. [Google Scholar] [CrossRef] [PubMed]
[66] Rosenkranz, S., Howard, L.S., Gomberg-Maitland, M. and Hoeper, M.M. (2020) Systemic Consequences of Pulmonary Hypertension and Right-Sided Heart Failure. Circulation, 141, 678-693. [Google Scholar] [CrossRef] [PubMed]