|
[1]
|
Zelt, J.G.E., Chaudhary, K.R., Cadete, V.J., Mielniczuk, L.M. and Stewart, D.J. (2019) Medical Therapy for Heart Failure Associated with Pulmonary Hypertension. Circulation Research, 124, 1551-1567. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Galiè, N., Humbert, M., Vachiery, J., Gibbs, S., Lang, I., Torbicki, A., et al. (2015) 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 37, 67-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Strange, G., Stewart, S., Celermajer, D.S., Prior, D., Scalia, G.M., Marwick, T.H., et al. (2019) Threshold of Pulmonary Hypertension Associated with Increased Mortality. Journal of the American College of Cardiology, 73, 2660-2672. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Humbert, M., Kovacs, G., Hoeper, M.M., Badagliacca, R., Berger, R.M.F., Brida, M., et al. (2022) 2022 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. European Heart Journal, 43, 3618-3731. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xiong, C.M., Zhai, Z.G. and Wang, C. (2020) [The Controversy and Influence Brought by the Modification of the Diagnostic Standard of Pulmonary Hypertension]. Chinese Medical Journal, 100, 1684-1687.
|
|
[6]
|
Xiong, C. and Yang, B. (2023) Revising the Hemodynamic Criteria for Pulmonary Hypertension: A Perspective from China. Journal of Translational Internal Medicine, 11, 1-3. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hoeper, M.M., Humbert, M., Souza, R., Idrees, M., Kawut, S.M., Sliwa-Hahnle, K., et al. (2016) A Global View of Pulmonary Hypertension. The Lancet Respiratory Medicine, 4, 306-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dinarti, L.K., Hartopo, A.B., Kusuma, A.D., Satwiko, M.G., Hadwiono, M.R., Pradana, A.D., et al. (2020) The Congenital Heart Disease in Adult and Pulmonary Hypertension (COHARD-PH) Registry: A Descriptive Study from Single-Center Hospital Registry of Adult Congenital Heart Disease and Pulmonary Hypertension in Indonesia. BMC Cardiovascular Disorders, 20, Article No. 163. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Butrous, G. (2025) Global Landscape of Infection-Induced Pulmonary Hypertension. Infectious Disease Reports, 17, Article 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zeder, K., Brown, C.H., Santi, A., Cvirn, L., Ulrich, S., Rosenkranz, S., et al. (2025) The Prevalence of Pulmonary Hypertension Associated with Left Heart Disease: A Systematic Review and Meta-Analysis. Cardiovascular Research, 121, 2632-2643. [Google Scholar] [CrossRef]
|
|
[11]
|
Farishta, M. and Sankari, A. (2025) Pulmonary Hypertension Due to Lung Disease or Hypoxia. StatPearls.
|
|
[12]
|
Yang, Y., Zeng, Z., Yang, Q., Wang, H., Zhang, H., Yan, W., et al. (2025) The Challenge in Burden of Pulmonary Arterial Hypertension: A Perspective from the Global Burden of Disease Study. MedComm, 6, e70175. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Maron, B.A., Brittain, E.L., Hess, E., Waldo, S.W., Barón, A.E., Huang, S., et al. (2020) Pulmonary Vascular Resistance and Clinical Outcomes in Patients with Pulmonary Hypertension: A Retrospective Cohort Study. The Lancet Respiratory Medicine, 8, 873-884. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Savarese, G., Musella, F., D’Amore, C., Losco, T., Marciano, C., Gargiulo, P., et al. (2012) Haemodynamics, Exercise Capacity and Clinical Events in Pulmonary Arterial Hypertension. European Respiratory Journal, 42, 414-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fares, W.H. (2016) Pushing the Envelope on the Indications and Doses of Pulmonary Arterial Hypertension Medications: What Is Reasonable? Journal of Cardiovascular Pharmacology, 67, 319-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ghofrani, H., D’Armini, A.M., Grimminger, F., Hoeper, M.M., Jansa, P., Kim, N.H., et al. (2013) Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension. New England Journal of Medicine, 369, 319-329. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, Z., Zhu, S., Wang, M., Wang, X., Tong, X., Wan, J., et al. (2022) New Progress in Diagnosis and Treatment of Pulmonary Arterial Hypertension. Journal of Cardiothoracic Surgery, 17, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Chang, S., Yang, J.H., Jung, D.S. and Kim, N.H. (2025) Recent Advances in Chronic Thromboembolic Pulmonary Hypertension: Expanding the Disease Concept and Treatment Options. Korean Circulation Journal, 55, 365-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zolty, R. (2020) Pulmonary Arterial Hypertension Specific Therapy: The Old and the New. Pharmacology & Therapeutics, 214, Article ID: 107576. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Spruijt, O.A., de Man, F.S., Groepenhoff, H., Oosterveer, F., Westerhof, N., Vonk-Noordegraaf, A., et al. (2015) The Effects of Exercise on Right Ventricular Contractility and Right Ventricular-Arterial Coupling in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 191, 1050-1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vonk Noordegraaf, A., Chin, K.M., Haddad, F., Hassoun, P.M., Hemnes, A.R., Hopkins, S.R., et al. (2019) Pathophysiology of the Right Ventricle and of the Pulmonary Circulation in Pulmonary Hypertension: An Update. European Respiratory Journal, 53, Article ID: 1801900. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Frantz, R.P. (2023) Group 2 Pulmonary Hypertension: From Diagnosis to Treatment. Current Opinion in Pulmonary Medicine, 29, 391-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gyimesi, G., Pujol-Giménez, J., Kanai, Y. and Hediger, M.A. (2020) Sodium-Coupled Glucose Transport, the SLC5 Family, and Therapeutically Relevant Inhibitors: From Molecular Discovery to Clinical Application. Pflügers Archiv—European Journal of Physiology, 472, 1177-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Demirkiran, C., Demiryurek, S. and Demiryurek, A.T. (2025) Recent Progress and Perspectives in Sodium-Glucose Co-Transporter 1/2 Inhibitors. Mini-Reviews in Medicinal Chemistry, 25, 354-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cowie, M.R. and Fisher, M. (2020) SGLT2 Inhibitors: Mechanisms of Cardiovascular Benefit Beyond Glycaemic Control. Nature Reviews Cardiology, 17, 761-772. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Aristizábal-Colorado, D., Ocampo-Posada, M., Rivera-Martínez, W.A., Corredor-Rengifo, D., Rico-Fontalvo, J., Gómez-Mesa, J.E., et al. (2024) SGLT2 Inhibitors and How They Work Beyond the Glucosuric Effect. State of the Art. American Journal of Cardiovascular Drugs, 24, 707-718. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al. (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
McMurray, J.J.V., DeMets, D.L., Inzucchi, S.E., Køber, L., Kosiborod, M.N., Langkilde, A.M., et al. (2019) The Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure (DAPA-HF) Trial: Baseline Characteristics. European Journal of Heart Failure, 21, 1402-1411. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Packer, M., Anker, S.D., Butler, J., Filippatos, G., Pocock, S.J., Carson, P., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. New England Journal of Medicine, 383, 1413-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Solomon, S.D., McMurray, J.J.V., Claggett, B., de Boer, R.A., DeMets, D., Hernandez, A.F., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. New England Journal of Medicine, 387, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
中华医学会心血管病学分会, 中国医师协会心血管内科医师分会, 中国医师协会心力衰竭专业委员会, 等. 中国心力衰竭诊断和治疗指南2024 [J]. 中华心血管病杂志, 2024, 52(3): 235-275.
|
|
[35]
|
Sano, R., Shinozaki, Y. and Ohta, T. (2020) Sodium-Glucose Cotransporters: Functional Properties and Pharmaceutical Potential. Journal of Diabetes Investigation, 11, 770-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Vallon, V. and Thomson, S.C. (2016) Targeting Renal Glucose Reabsorption to Treat Hyperglycaemia: The Pleiotropic Effects of SGLT2 Inhibition. Diabetologia, 60, 215-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Di Franco, A., Cantini, G., Tani, A., Coppini, R., Zecchi-Orlandini, S., Raimondi, L., et al. (2017) Sodium-Dependent Glucose Transporters (SGLT) in Human Ischemic Heart: A New Potential Pharmacological Target. International Journal of Cardiology, 243, 86-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Coppini, R., Ferrantini, C., Del Lungo, M., Stillitano, F., Sartiani, L., Tosi, B., et al. (2013) Response to Letter Regarding Article, “Late Sodium Current Inhibition Reverses Electromechanical Dysfunction in Human Hypertrophic Cardiomyopathy”. Circulation, 128, e157. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Luo, T., Wu, H., Zhu, W., Zhang, L., Huang, Y. and Yang, X. (2024) Emerging Therapies: Potential Roles of SGLT2 Inhibitors in the Management of Pulmonary Hypertension. Respiratory Medicine, 227, Article ID: 107631. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sitbon, O., Boucly, A., Weatherald, J., Antigny, F., Guignabert, C., Jevnikar, M., et al. (2025) Drugs Targeting Novel Pathways in Pulmonary Arterial Hypertension. European Respiratory Journal, 66, Article ID: 2401830. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sim, J. (2010) Nitric Oxide and Pulmonary Hypertension. Korean Journal of Anesthesiology, 58, 4-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, C., Wang, L., Dong, S., Hong, Y., Zhou, X., Zheng, W., et al. (2018) Phlorizin Exerts Direct Protective Effects on Palmitic Acid (PA)-Induced Endothelial Dysfunction by Activating the PI3K/AKT/eNOS Signaling Pathway and Increasing the Levels of Nitric Oxide (NO). Medical Science Monitor Basic Research, 24, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Uthman, L., et al. (2019) Empagliflozin and Dapagliflozin Reduce ROS Generation and Restore NO Bioavailability in Tumor Necrosis Factor α-Stimulated Human Coronary Arterial Endothelial Cells. Cellular Physiology and Biochemistry, 53, 865-886. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Juni, R.P., Al-Shama, R., Kuster, D.W.D., van der Velden, J., Hamer, H.M., Vervloet, M.G., et al. (2021) Empagliflozin Restores Chronic Kidney Disease-Induced Impairment of Endothelial Regulation of Cardiomyocyte Relaxation and Contraction. Kidney International, 99, 1088-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Lai, Y., Yeh, Y., Huang, Y., De Almeida, C., Chang, G., Chen, W., et al. (2024) Empagliflozin Attenuates Pulmonary Arterial Remodeling through Peroxisome Proliferator-Activated Receptor Gamma Activation. ACS Pharmacology & Translational Science, 7, 2725-2738. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chen, X., Yu, X., Lian, G., Tang, H., Yan, Y., Gao, G., et al. (2024) Canagliflozin Inhibits PASMCs Proliferation via Regulating SGLT1/AMPK Signaling and Attenuates Artery Remodeling in MCT-Induced Pulmonary Arterial Hypertension. Biomedicine & Pharmacotherapy, 174, Article ID: 116505. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Uthman, L., Baartscheer, A., Bleijlevens, B., Schumacher, C.A., Fiolet, J.W.T., Koeman, A., et al. (2017) Class Effects of SGLT2 Inhibitors in Mouse Cardiomyocytes and Hearts: Inhibition of Na+/H+ Exchanger, Lowering of Cytosolic Na+ and Vasodilation. Diabetologia, 61, 722-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yu, L. and Hales, C.A. (2011) Silencing of Sodium-Hydrogen Exchanger 1 Attenuates the Proliferation, Hypertrophy, and Migration of Pulmonary Artery Smooth Muscle Cells via E2F1. American Journal of Respiratory Cell and Molecular Biology, 45, 923-930. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Stacher, E., Graham, B.B., Hunt, J.M., Gandjeva, A., Groshong, S.D., McLaughlin, V.V., et al. (2012) Modern Age Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 186, 261-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Rong, W., Liu, C., Li, X., Wan, N., Wei, L., Zhu, W., et al. (2022) Caspase-8 Promotes Pulmonary Hypertension by Activating Macrophage-Associated Inflammation and Il-1β (Interleukin 1β) Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, 613-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Tang, Y., Tan, S., Li, M., Tang, Y., Xu, X., Zhang, Q., et al. (2022) Dapagliflozin, Sildenafil and Their Combination in Monocrotaline-Induced Pulmonary Arterial Hypertension. BMC Pulmonary Medicine, 22, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, M., Wang, C., Pang, X., Shi, J., Li, H., Xie, X., et al. (2023) Role of Macrophages in Pulmonary Arterial Hypertension. Frontiers in Immunology, 14, Article 1152881. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article ID: 174715. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lee, N., Heo, Y.J., Choi, S., Jeon, J.Y., Han, S.J., Kim, D.J., et al. (2021) Anti-Inflammatory Effects of Empagliflozin and Gemigliptin on LPS-Stimulated Macrophage via the IKK/NF-κB, MKK7/JNK, and JAK2/STAT1 Signalling Pathways. Journal of Immunology Research, 2021, Article ID: 9944880. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Mancini, S.J., Boyd, D., Katwan, O.J., Strembitska, A., Almabrouk, T.A., Kennedy, S., et al. (2018) Canagliflozin Inhibits Interleukin-1β-Stimulated Cytokine and Chemokine Secretion in Vascular Endothelial Cells by AMP-Activated Protein Kinase-Dependent and-Independent Mechanisms. Scientific Reports, 8, Article No. 5276. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
King, N.E. and Brittain, E. (2022) Emerging Therapies: The Potential Roles SGLT2 Inhibitors, GLP1 Agonists, and ARNI Therapy for ARNI Pulmonary Hypertension. Pulmonary Circulation, 12, e12028. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Xu, W., Janocha, A.J. and Erzurum, S.C. (2021) Metabolism in Pulmonary Hypertension. Annual Review of Physiology, 83, 551-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational In-Sights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC: Basic to Translational Science, 3, 575-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC: Basic to Translational Science, 5, 632-644. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Obeidat, M., Vignarajah, A., Abdel-Razeq, R., Nathir, A., Vigneswaramoorthy, N.A. and Tonelli, A.R. (2025) Effects of Sodium-Glucose Cotransport-2 Inhibitors Treatment in Patients with Pulmonary Hypertension. Therapeutic Advances in Respiratory Disease, 19, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Griffin, M., Rao, V.S., Ivey-Miranda, J., Fleming, J., Mahoney, D., Maulion, C., et al. (2020) Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation, 142, 1028-1039. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wan, N., Rahman, A., Hitomi, H. and Nishiyama, A. (2018) The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Frontiers in Endocrinology, 9, Article 421. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Zhang, K., Kan, C., Han, F., Zhang, J. and Sun, X. (2024) Elucidating the Cardioprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors Beyond Glycemic Control. World Journal of Diabetes, 15, 137-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Stickel, S., Gin-Sing, W., Wagenaar, M. and Gibbs, J.S.R. (2019) The Practical Management of Fluid Retention in Adults with Right Heart Failure Due to Pulmonary Arterial Hypertension. European Heart Journal Supplements, 21, K46-K53. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Rosenkranz, S., Howard, L.S., Gomberg-Maitland, M. and Hoeper, M.M. (2020) Systemic Consequences of Pulmonary Hypertension and Right-Sided Heart Failure. Circulation, 141, 678-693. [Google Scholar] [CrossRef] [PubMed]
|