脓毒症血液生物标志物研究进展:从常规指标到新兴免疫相关分子
Progress in Research on Blood Biomarkers of Sepsis: From Conventional Indicators to Emerging Immune-Related Molecules
摘要: 脓毒症是一种由感染引发的危及生命的综合征,因其复杂的免疫失调和多器官功能障碍,导致患者死亡率居高不下。血液生物标志物的研究为脓毒症的早期诊断、病情动态监测及预后评估提供了重要的临床依据。当前,常规生物标志物如C反应蛋白和降钙素原等虽广泛应用,但其特异性和敏感性仍存在不足。随着免疫学和分子生物学的发展,细胞因子、免疫细胞标志物以及新兴的免疫相关分子逐渐成为研究热点,特别是在揭示炎症因子风暴和免疫抑制状态对病理过程的影响方面取得了显著进展。同时,多组学技术结合机器学习方法,为血液复合标志物的筛选和临床应用提供了新的思路。本文系统综述了脓毒症血液生物标志物的最新研究进展,分析了其在精准诊疗中的应用潜力,并展望了未来相关领域的发展方向,旨在推动脓毒症的早期识别和个体化治疗策略的优化。
Abstract: Sepsis is a life-threatening syndrome triggered by infection, characterized by complex immune dysregulation and multiple organ dysfunction, leading to a persistently high mortality rate among patients. The study of blood biomarkers provides important clinical evidence for the early diagnosis, dynamic monitoring, and prognostic assessment of sepsis. Currently, conventional biomarkers such as C-reactive protein and procalcitonin are widely used, but their specificity and sensitivity still have limitations. With advancements in immunology and molecular biology, cytokines, immune cell markers, and emerging immune-related molecules have gradually become research hotspots, particularly in revealing the impact of inflammatory factor storms and immunosuppressive states on the pathological process. At the same time, multi-omics technologies combined with machine learning methods offer new ideas for the screening and clinical application of blood composite biomarkers. This paper systematically reviews the latest research progress on blood biomarkers in sepsis, analyzes their application potential in precision diagnosis and treatment, and looks forward to future development directions in related fields, aiming to promote the early identification and optimization of personalized treatment strategies for sepsis.
文章引用:张静, 廖烯希, 肖琳琳, 张丹. 脓毒症血液生物标志物研究进展:从常规指标到新兴免疫相关分子[J]. 临床医学进展, 2026, 16(2): 556-575. https://doi.org/10.12677/acm.2026.162425

1. 引言

脓毒症是一种因宿主对感染的反应失调而导致的器官功能障碍。根据2016年提出的脓毒症3.0定义(Sepsis-3.0),患者若符合“感染加SOFA评分 ≥ 2分”的标准,即可被诊断为脓毒症[1]。脓毒症是住院患者死亡的主要原因之一。2017年,全球报告了4890万例脓毒症病例以及1100万例相关死亡,约占全球总死亡人数的19.7% [2]。在脓毒症的诊断与管理过程中面临着巨大的挑战,早期的准确诊断对于改善患者的预后至关重要。由于血液生物标志物在取样便捷性及动态反映病理状态方面的优势,因而成为了研究与临床应用的热点。

传统生物标志物如C反应蛋白(CRP)和降钙素原(PCT)广泛用于脓毒症的诊断与监测,但存在灵敏度和特异性不足的问题。CRP作为炎症的敏感指标,在脓毒症患者中常见升高,但其升高并非特异于感染,而受多种因素影响,限制了其单独诊断价值[3] [4]

近年来,随着免疫学和分子生物学技术的发展,研究者发现多种新兴免疫相关分子和细胞表型在脓毒症的发生发展中发挥重要作用,为分型诊断和免疫状态评估提供了新的视角。研究表明,细胞因子如白介素-6 (IL-6)、白介素-8 (IL-8)、肿瘤坏死因子-α (TNF-α)等在脓毒症患者血液中明显升高,其水平与疾病严重程度和预后密切相关[5] [6]。此外,脓毒症患者外周血中CD4+ T细胞、B细胞及其亚群比例发生显著改变,免疫细胞功能障碍和免疫耗竭表型的出现与免疫抑制状态及病死率升高有关[7] [8]。同时,免疫细胞的代谢重编程和细胞程序性死亡途径的激活也被认为是脓毒症免疫失调的重要机制,这些过程中的关键分子如p38蛋白激酶、NLRP3炎症小体等,既是病理机制的核心,也具有潜在的生物标志物价值[9] [10]。此外,血液中多种新型分子血浆前体肽(presepsin)、单核细胞分布宽度(MDW)等因其在脓毒症中的特异性变化,被认为是有前景的早期诊断和预后评估指标[11] [12]

由此可见,脓毒症血液生物标志物的研究正从传统的急性炎症指标向多维度、多层次的免疫分子和细胞表型转变,体现了对脓毒症复杂免疫病理机制的深刻认识。未来,基于多标志物联合检测的高灵敏度、高特异性的诊断平台,以及结合临床评分的个体化精准诊疗,将成为脓毒症管理的重要方向[13] [14]。同时,免疫治疗靶点的发现和相关分子药物的开发,也为脓毒症的治疗开辟了新途径[9] [15]。因此,系统总结脓毒症血液生物标志物的研究进展,对于推动其临床应用和改善患者预后具有重要意义。

2. 常规生物标志物在脓毒症中的应用

2.1. 传统炎症指标:CRP与降钙素原

C反应蛋白(CRP)与降钙素原(PCT)作为传统的炎症生物标志物,在脓毒症的早期诊断和疗效监测中具有广泛的应用价值。CRP是一种急性期蛋白,主要由肝脏合成,其血液浓度在感染或组织损伤后迅速升高[16]。研究表明,CRP在新生儿脓毒症中的动态变化与临床状况密切相关,CRP增加速度(CRP velocity, CRPv)可作为早期感染指标,但其水平也受多种非感染因素如胎龄、分娩方式和性别等影响,特异性不足[17]。PCT作为一种由甲状腺外C细胞及多种组织在细菌感染时分泌的前激素,能够更特异性地反映细菌感染的存在。多项研究显示,PCT在脓毒症诊断中的敏感性和特异性均优于CRP,且PCT水平与感染严重程度、预后密切相关[18] [19]

然而,CRP和PCT的单独使用均存在局限,CRP受非感染性炎症状态影响大,特异性较低,而PCT虽敏感但在某些临床情况(如部分病毒感染、免疫抑制患者)表现不佳[3] [20]。因此,联合检测CRP和PCT能够提高脓毒症的诊断准确率。例如,有研究发现将CRP与PCT及其他指标如白细胞计数联合应用,可显著提升新生儿脓毒症的诊断效能[21] [22]。此外,CRP/白蛋白比值在预测革兰阴性菌血症中表现出较好的诊断价值,进一步提示结合多种指标的综合评估策略[23]

近年来,CRP的非血液样本检测如唾液CRP的研究逐渐增多,唾液CRP检测因其无创性和便利性被认为是新生儿脓毒症筛查的潜在替代方法,研究显示唾液CRP水平与血清CRP呈正相关,具有临床应用前景[19] [24] [25]。但仍需进一步验证其敏感性和特异性。CRP和PCT是脓毒症的炎症指标,虽受非感染因素影响特异性不足,但联合检测可提高诊断准确性,仍需结合临床表现和其他指标综合评估[18] [26]。未来结合新兴生物标志物和机器学习可能提升诊断效能。

2.2. 其他常规指标:白细胞计数及其比值

白细胞计数(white blood cell count, WBC)及其相关比值,作为反映机体免疫状态的常规血液指标,在脓毒症的诊断和预后评估中具有重要价值。

在脓毒症患者中白细胞水平升高,尤其是在感染初期,机体通过动员白细胞参与免疫应答,以抵抗病原体入侵。新生儿早发型脓毒症诊断中,白细胞计数的特定临界值(如≥25 × 109/L)具有较高的特异性和诊断价值[27]。成人及老年脓毒症患者中,白细胞计数的异常(无论是升高还是降低)均提示更差的预后[28] [29]。然而,白细胞计数的变异性较大,且受多种因素影响,包括药物治疗、器官移植、代谢性疾病,严重感染或免疫抑制状态下,白细胞减少可能危及生命,需迅速诊断和治疗[30]

中性粒细胞与淋巴细胞比值(NLR)作为一种简便且敏感的免疫状态指标,近年来被广泛用于脓毒症的诊断和预后评估。脓毒症患者通常表现为NLR升高,提示炎症反应增强。新生儿中CRP和WBC联合NLR的组合指标提升了早期诊断的敏感性和特异性[31]。NLR结合其他评分系统(如MEWS、SOFA、APACHE II)亦能够提高脓毒症死亡风险的预测准确性[32] [33]。血液学指标与传统评分系统(如SOFA、APACHE II)联合使用,能够提高脓毒症死亡风险的预测准确性[32] [33]。白细胞及其亚群比例的变化不仅限于数量的升降,还体现在细胞活化状态和功能表型的改变。脓毒症患者外周血单核细胞及中性粒细胞的表面标志物如CD64、CD11b和HLA-DR表达存在异常,反映了免疫激活与抑制的复杂状态,且其诊断价值优于单纯的白细胞计数[34] [35]。血液学指标的延伸参数(extended inflammatory parameters, EIPs)亦被证明对脓毒症的诊断和预后评估具有辅助价值[36] [37]

白细胞计数及其比值是脓毒症早期诊断和预后评估的重要指标,结合其他标志物可提高诊断准确率,未来需探讨其在不同人群中的应用。

3. 细胞因子与免疫细胞标志物的研究进展

3.1. 促炎因子与局部器官损伤的关联

脓毒症是一种由感染引发的全身炎症反应综合征,促炎细胞因子在其炎症反应中起着关键作用。主要的促炎细胞因子包括肿瘤坏死因子α (TNF-α)、白细胞介素1β (IL-1β)、IL-6和IL-3等,这些因子通过调节免疫细胞活性和炎症信号通路,特别是靶向NF-κB、JAK/STAT3、NLRP3等促进局部及系统性的炎症反应,最终导致多器官功能障碍。此外,免疫调节因子如IL-7的作用提示,平衡促炎与抗炎反应对维持免疫稳态和减少组织损伤至关重要[38]-[41]

TNF-α作为经典的促炎细胞因子,是炎症反应启动的关键介质。TNF-α不仅促进炎症细胞浸润和细胞因子的释放,还通过激活NF-κB信号通路,诱导更多促炎因子的表达,加重组织损伤。研究表明,肺脏移植排斥反应中TNF-α的升高加剧了肺组织的炎症和损伤[42]。骶髓损伤(SCI)模型中,促炎因子TNF-α、IL-6和IL-1β的表达增加,与微胶质细胞的M1极化密切相关,抑制这些促炎因子有助于减轻神经炎症和组织损伤[43]

IL-6作为多功能的促炎细胞因子,在脓毒症的发展中同样扮演重要角色。IL-6不仅促进急性期蛋白的合成,还能诱导淋巴细胞凋亡,导致免疫抑制。新冠肺炎(COVID-19)重症患者中,IL-6水平升高与炎症性肺损伤和多器官功能障碍相关[44]。此外,IL-6通过JAK/STAT3信号通路介导炎症反应,糖皮质激素通过抑制该通路发挥抗炎作用,减少脓毒症小鼠的器官损伤和死亡率[45]

IL-3在炎症过程中主要通过促进髓系细胞的扩增和活化,增强促炎细胞因子的产生,进而加重组织损伤。研究表明,IL-3的过度表达会促进脓毒症中的细胞损伤和炎症反应,增加死亡风险[46]。相较之下,IL-7主要参与免疫调节,促进淋巴细胞的存活和活化,增强抗感染能力,具有一定的保护作用。

值得注意的是,促炎因子的表达具有时空特异性和剂量依赖性。低剂量的IFN-β和IL-1β治疗能够恢复免疫细胞功能,减少炎症损伤,起到保护作用;但其过量表达则可能导致炎症反应失控,加重组织损伤和死亡风险[47]。此外,心肌缺血再灌注诱导的细胞外囊泡携带促炎miRNA (如miR-155-5p),可促进巨噬细胞M1极化,诱发局部及系统性炎症,进一步加剧心肌损伤,提示促炎因子在多器官损伤中的复杂作用[48]。未来研究需解析促炎因子在不同组织和疾病阶段的动态变化及互作网络,为脓毒症精准治疗提供理论依据。

3.2. 免疫抑制相关细胞因子与细胞表型

脓毒症是由感染引起的全身炎症反应,免疫抑制状态影响患者预后。免疫抑制阶段通常伴随着抗炎细胞因子如白细胞介素-10 (IL-10)的升高,以及调节性T细胞(Tregs)数量的增加,导致免疫效应细胞功能受损,免疫防御能力下降[49]

IL-10作为一种典型的抗炎细胞因子,α-半乳糖神经节苷脂(α-GalCer)诱导的iNKT细胞通过促进IL-10的产生,能有效减轻脓毒症模型中的炎症反应和致死率,提示IL-10在调节脓毒症免疫状态中的保护作用[50]。在脓毒症及其他免疫疾病中,IL-35作为一种新型抗炎细胞因子,由调节性T细胞(Treg)分泌,抑制NK细胞功能,提示其在调节免疫反应和改善预后方面的重要作用[51]。随着病情的进展,代偿性抗炎反应综合征(CARS)常常导致免疫抑制,并被视为脓毒症后期死亡的主要原因[52]。IL-35的水平与SOFA评分呈正相关(r = 0.38),被认为是脓毒症短期死亡的独立危险因素[53]。这一发现强调了IL-35在脓毒症及其他免疫疾病中的潜在临床意义,可能为未来的治疗策略提供新的方向。

脓毒症后期的免疫抑制由IL-10升高和CD39+ Tregs增加驱动,导致T细胞等免疫细胞功能障碍。特定免疫细胞表型变化反映免疫状态并具预后价值,为免疫调节治疗提供理论依据。未来研究将助力免疫恢复策略的开发。

3.3. 免疫细胞亚群

免疫细胞亚群的数量和功能变化在脓毒症中至关重要,且其失衡影响疾病进展与预后。

绝对嗜酸性粒细胞计数(AEC)是反映免疫应答强度的关键指标。临床研究发现,脓毒症患者中AEC显著下降与免疫抑制密切相关。Deepti等的研究指出,入院时AEC < 50/μL的患者28天死亡率高达42%,明显高于AEC ≥ 50/μL组的15% (P < 0.05),且AEC与SOFA评分呈负相关(r = −0.38, P < 0.05),这表明AEC的降低不仅反映了免疫功能的减退,也与器官功能衰竭程度相关[54]。此外,免疫抑制状态下,调节性T细胞(Treg)比例的升高同样具有重要意义。周浩等的研究显示,脓毒性休克组中Treg比例(8.7% ± 2.3%)显著高于普通脓毒症组(4.2% ± 1.5%, P < 0.001),且当Treg比例超过7.5%时,28天死亡率显著升高(HR = 2.31, P < 0.05),提示Treg的增加可能加剧免疫抑制,影响患者生存[55]

免疫细胞的表型和功能重塑贯穿脓毒症的整个过程。单细胞RNA测序揭示,脓毒症中T细胞、B细胞、自然杀伤细胞(NK)以及树突状细胞(DC)等多种细胞类型均发生了功能重组和亚群比例变化[56] [57]。CD39+ Tregs作为一个重要的免疫调节细胞亚群,其比例在脓毒症患者中升高,与疾病严重程度和预后密切相关[58]。浆细胞样树突状细胞(pDCs)也表现出功能障碍,导致抗原呈递能力下降,进一步削弱了免疫应答[59]。此外,免疫抑制状态还伴随着淋巴细胞的数量减少及功能耗竭,如CD4+ T细胞和CD8+ T细胞的凋亡和表达抑制标志物Tim-3的增加,均预示着免疫功能的进一步受损[7] [60]。此外,髓系抑制性细胞(MDSCs)在脓毒症中的扩增被认为是免疫抑制机制的重要组成部分。MDSCs通过抑制T细胞功能,促进免疫耐受,导致免疫功能低下[61]。巨核细胞(MKs)也显示出类似免疫细胞的行为,参与脓毒症的免疫反应,提示免疫细胞亚群的功能多样性[62]

脓毒症免疫细胞亚群数量和功能显著变化,包括免疫活性细胞减少和免疫抑制性细胞扩增。解析这些变化有助于理解脓毒症免疫紊乱,为精准治疗提供理论依据和靶点。结合单细胞技术和多组学手段可推动个体化诊疗策略的发展。

4. 新兴免疫相关分子及其临床意义

4.1. 微小RNA (miRNA)与非编码RNA

微小RNA (miRNA)和非编码RNA在脓毒症中关键调控炎症和免疫。研究显示,miR-186等miRNA在患者中上调,通过调节炎症因子参与免疫网络,优于传统生物标志物[63]。miRNA直接靶向脓毒症相关信号通路,如NF-κB,影响炎症介质和免疫活性。长链非编码RNA (lncRNA)如MALAT1、GAS5与miRNA交互,调控免疫反应和器官功能。这些发现揭示miRNA及其与lncRNA相互作用是脓毒症的潜在标志物和治疗策略[64]

miRNA在调控内皮细胞的炎症反应中扮演着重要角色,影响血管通透性和免疫细胞的迁移,从而参与脓毒症的病理进程。研究发现,脓毒症患者外泌体中的miR-483-3p和let-7d-3p水平升高,与疾病严重程度正相关,提示其可作为早期诊断标志物[65]。此外,miR-27a与氧化应激指标显著相关,其升高与脓毒症患者的死亡率增加相关,体现了miRNA在疾病预后中的潜在价值[66]。在新生儿脓毒症中,多种miRNA如miR-16a、miR-451、miR-23b等表达异常,且与疾病严重程度及预后密切相关,显示出良好的诊断和预测潜能[67]-[69]

miRNA及其他非编码RNA在脓毒症中通过调控炎症因子和免疫细胞功能发挥核心作用,具备优于传统生物标志物的诊断性能,并成为潜在治疗靶点。

4.2. 肝素结合蛋白(HBP)

中性粒细胞释放的肝素结合蛋白(heparin-binding protein, HBP)作为一种多功能炎症介质,能通过结合转化生长因子-β受体2 (TGFBR2)激活TGF-β信号通路,诱导血管内皮细胞功能障碍,促进血管通透性增加和急性肺损伤的发生[70] [71]。多个临床研究证实,HBP水平在感染及脓毒症患者中显著升高,且其升高程度与疾病严重度密切相关[72]。一项多中心观察队列研究中,HBP结合IL-6、IL-8及白蛋白的复合指标在诊断脓毒症及脓毒性休克方面的表现优于传统生物标志物,AUC分别达到0.911和0.902,提示HBP联合其他指标能进一步提升诊断准确性[73]。Taha等人通过纳入28项涵盖5508例患者的研究,系统性地评估了HBP在脓毒症诊断中的表现,结果显示HBP的汇总灵敏度为77.6%,特异度为81.2%,明显优于传统炎症指标如C反应蛋白(CRP,灵敏度68.3%)和降钙素原(PCT,灵敏度72.5%),表明HBP在脓毒症早期识别中具有显著优势[74]。一项前瞻性研究提示,脓毒症患者HBP水平升高与器官功能障碍评分(SOFA)高度相关,且HBP的动态变化优于PCT和CRP在预测30天死亡率方面的准确性,动态监测HBP有助于临床早期识别病情恶化[75] [76]。另外,在动物模型中,降低HBP水平可以显著缓解由脂多糖诱导的肺损伤及炎症反应,且其效果可与经典抗生素治疗相媲美,提示HBP是潜在的治疗靶点[77]

近年来,化学发光和DNA适配体的新型HBP检测方法被开发,具备快速、灵敏和特异性强的优势,满足临床急诊需求[78] [79],促进HBP在脓毒症早期诊断中的应用。HBP作为中性粒细胞释放的炎症介质,具有高灵敏度和特异性,适合脓毒症早期识别,未来结合多指标检测有望提升诊断和预后能力。

4.3. 细胞焦亡(Pyroptosis)相关基因与免疫微环境

细胞焦亡(Pyroptosis)是一种伴随炎症因子释放的程序性细胞死亡形式,近年来被证实在脓毒症的免疫调节中扮演着极为重要且复杂的双重角色。一方面,适度的细胞焦亡有助于清除感染源并促进免疫防御机制的激活,从而控制感染发展;另一方面,过度或失控的焦亡反应则可能引发免疫系统的紊乱,加重炎症反应,导致多器官功能障碍乃至死亡,这种免疫失衡正是脓毒症病理的核心[80]

针对脓毒症中焦亡相关基因的表达特征,近年来的研究通过基因表达数据库如GEO的生物信息学分析及机器学习技术,鉴定出一系列与脓毒症发生发展密切相关的焦亡基因,如CASP4和PLCG1被证实为关键的诊断标志物。CASP4与中性粒细胞浸润正相关,负相关于Tregs和记忆性CD4+ T细胞,显示其在炎症调控中的重要性。PLCG1在脓毒症中显著下降,并与T细胞受体信号及相关免疫基因富集相关,提示其在免疫功能调节中的关键作用[80]。此外,基于CASP4和PLCG1构建的预测模型显示出极高的诊断准确率(AUC值达到0.998),为临床早期诊断脓毒症提供了有效分子工具[80]

进一步的免疫微环境分析揭示,脓毒症患者可根据焦亡相关基因表达模式被划分为不同亚型,这些亚型在免疫细胞组成和炎症因子水平上存在显著差异。一类焦亡相关亚型表现为较低的Th17细胞比例及较低的炎症因子表达,提示焦亡状态与免疫失衡之间存在内在联系,并可能影响病程及治疗反应[81]。此外,全球多中心研究结合机器学习算法也发现,焦亡相关基因如NLRC4在新生儿脓毒症中的预测能力最佳,其表达正相关于中性粒细胞而负相关于CD8+ T细胞,进一步支持焦亡基因在不同年龄层脓毒症免疫调节中的关键角色[82]

细胞焦亡基因是脓毒症诊断的潜在生物标志物,其表达与免疫微环境密切相关。这些发现深化了对脓毒症免疫失衡的理解,并为新治疗策略提供理论基础,具有临床价值。未来结合多组学与人工智能将推动个体化诊疗。

4.4. 分化群64 (CD64)

分化群64 (CD64),又称为高亲和力Fcγ受体I,是中性粒细胞表面的一种受体,能够特异性结合免疫球蛋白G (IgG)的Fc段,其表达水平在感染和炎症过程中明显上调。近年来,CD64作为脓毒症的免疫相关生物标志物,因其在早期诊断和预后评估中的潜在价值而受到广泛关注[83]

CD64在脓毒症早期诊断中的表现优异。多项研究显示,感染患者中中性粒细胞CD64 (nCD64)表达显著高于健康对照组,且其受体表达水平优于传统的诊断指标如C反应蛋白(CRP)、降钙素原(PCT)和白细胞计数(WBC),且nCD64与SOFA评分联合使用时诊断准确性最高[84]。另一项纳入107例ICU脓毒症患者的前瞻性研究发现,nCD64指数的敏感性和特异性分别达到83.6%和88.7%,明显优于CRP和PCT [85]

流式细胞术检测nCD64表达已成为临床上较为成熟的检测方法,具有快速、灵敏、定量的特点。新颖的微流控芯片技术结合多种标志物(如CD64、CD69、CD25)检测,提高了脓毒症的诊断准确率,且检测时间明显缩短,有望实现床旁快速检测[86] [87]。此外,nCD64还在特定人群中展现出临床应用价值。糖尿病合并脓毒症患者中,CD64表达的变化与免疫功能紊乱及患者结局相关[88];肿瘤患者发热性中性粒细胞减少症期间,nCD64的表达水平有助于早期感染识别[89]

值得注意的是,不同研究中关于nCD64在接受抗菌治疗患者中的表现存在一定差异。一项研究指出,抗菌治疗后的脓毒症患者中,nCD64的诊断价值不优于CRP,而PCT在预后评估中优于nCD64 [90]。此外,对于早产儿晚发性脓毒症,CD64表达并无显著升高,提示早产儿免疫细胞激活机制的特殊性可能限制了其诊断价值[91]

CD64是免疫细胞表面的Fc受体,其在脓毒症中的表达与感染、病情严重程度及预后相关,适用于早期诊断和评估。未来结合多标志物检测,可提升其临床应用价值。

4.5. Presepsin (sCD14-ST)

Presepsin是CD14分子的可溶性片段(sCD14-ST),CD14是一种主要表达于巨噬细胞和单核细胞表面的糖蛋白,隶属于Toll样受体(TLR)家族,能够识别细菌的脂多糖(LPS)等配体,参与机体先天免疫反应。Presepsin的产生机制主要与单核细胞和巨噬细胞吞噬细菌及其释放的中性粒细胞外陷阱(NETs)密切相关[92]。研究发现,单核细胞介导的NETs吞噬过程能显著提升Presepsin水平,因此Presepsin水平不仅反映细菌感染的存在,还可能反映免疫细胞的活跃状态[93]。Presepsin作为一种免疫生物标志物,能够在感染的早期阶段迅速升高,通常在感染后2小时内血浆浓度即显著增加,这使其在脓毒症的早期诊断中具有重要价值[92]。多项临床研究表明,Presepsin对细菌性脓毒症的诊断表现优异,受试者工作特征曲线下面积(AUC)范围通常在0.78至0.92之间,显示出较高的诊断准确性[92] [94]。特别是在革兰氏阴性菌感染的检测中,Presepsin显示出比传统的降钙素原(PCT)更优的灵敏度和特异性,这为其在临床上弥补PCT和C反应蛋白(CRP)不足提供了可能[95] [96]。有研究表明,在免疫功能受损的患者中,Presepsin的动态变化与院内死亡率密切相关,是重要的预后指标[97] [98]。而且,Presepsin在鉴别细菌感染与非感染性炎症状态中也显示出较好的特异性,尤其在系统性红斑狼疮等自身免疫疾病患者中具有辅助诊断价值[99]。新兴的机器学习技术已被用于结合Presepsin及其他实验室参数建立脓毒症的诊断和预后模型,显著提高了临床诊断的准确率和风险预测能力[100]。临床研究中,Presepsin的联合检测策略,如与单核细胞分布宽度(MDW)的顺序检测,能够有效减少漏诊,提高早期脓毒症识别率[101]

尽管Presepsin的临床应用潜力巨大,但其血浆浓度受肾功能影响较大,但在严重肾功能不全患者中,Presepsin水平会显著升高,因此需要根据肾功能状态进行校正或采用调整后的临界值以避免误诊研究建议,肾功能不同阶段应采用不同的Presepsin阈值进行判定,例如肾小球滤过率(eGFR) ≥ 60 mL/min时,Presepsin阈值约为500~600 pg/mL,而严重肾功能不全时阈值可调整至约2000 pg/mL以上[102]-[104]

在脓毒症生物标志物的临床转化中,Presepsin的应用面临着不同检测平台间诊断阈值(cut-off值)存在显著差异的挑战。一项基于CLSI指南的研究建立的脓毒症患者参考区间为24.2~872.2 pg/mL,并指出该值受年龄与性别影响[105];而另一项针对急诊科的研究,在使用AIA-360平台时,得出的最佳诊断阈值则为890 pg/mL。这种差异主要源于检测方法学、试剂抗体特性及研究人群的异质性,因此,建立平台特异性的标准化参考区间是实现其准确临床应用的前提[106]。与此同时,床旁检测技术为以Presepsin为代表的新兴免疫标志物(如suPAR、MxA等)的快速应用带来了机遇。基于化学发光免疫分析的POCT系统(如PATHFAST®)已能实现对Presepsin的快速准确定量[107]。然而,POCT的广泛推广仍面临诸多瓶颈:包括部分检测方法的诊断性能(如假阳性/阴性率)仍需优化,成本效益比有待证实,以及操作标准化与质量管理体系亟待完善[108]。未来的发展方向在于推进多标志物(如宿主反应标志物与病原体核酸)联合POCT检测的研发,并通过前瞻性研究验证其引导临床决策、改善患者预后的实际价值[109] (表1)。

Table 1. Comprehensive comparative analysis of clinical characteristics of major sepsis blood biomarkers

1. 主要脓毒症血液生物标志物临床特征综合对比

生物标志物

敏感度(%)

特异度(%)

典型临界值/ 参考范围

动力学

(感染后)

核心优势

主要局限性

检测成本与 可及性

C反应蛋白(CRP)

中等 (约68.3)

较低; 易受非感染性炎症影响

无统一诊断阈值;CRP变化速率更具参考意义

4~6小时内开始升高,24~48小时达峰

检测普及、快速、成本低;适用于疗效动态监测;唾液CRP等无创检测前景好

特异性低;升高较慢,不利于超早期诊断

低(常规 项目, 可及性高)

降钙素原(PCT)

较高 (约72.5)

中等;对系统性细菌感染优于CRP

>0.5 ng/mL提示感染;>2.0 ng/mL提示脓毒症风险高

2~4小时内开始升高,12~24小时达峰

与细菌感染严重程度相关性好;指导抗生素合理使用;具有预后价值

慢性炎症、部分非细菌感染(如真菌)时也可升高;肾功能影响清除

中–高(普及度高但成本高于CRP)

Presepsin (sCD14-ST)

高(AUC 0.78~0.92)

高;鉴别细菌感染与非感染性炎症可能优于PCT

平台依赖性大:如AIA-360平台约890 pg/mL [105];需根据肾功能(如eGFR)校正[102] [103]

极快,2小时内即可显著升高

早期诊断价值突出;反映单核/巨噬细胞吞噬活性[93];对革兰阴性菌血症可能更优

受肾功能影响显著;不同检测平台间临界值未标准化

高(新兴 标志物, 平台特异性 试剂)

肝素结合 蛋白(HBP)

约77.6

约81.2

研究间有差异;与IL-6等联合可提高准确性

快速升高,可更早预警器官功能障碍(如休克)

与内皮功能障碍及疾病严重程度(如休克、急性肺损伤)直接相关;动态变化具有预后价值

临床普及度待提高;最佳临界值需进一步验证

高(新兴 标志物, 多需POCT或专用平台)

中性粒细胞CD64 (nCD64)

高(83.6~93.33)

高(76.19~88.7)

以MFI比值表示;需建立实验室自身参考范围

4~6小时内表达上调

感染特异性高;诊断性能常优于CRP/PCT;流式细胞术可准确定量

依赖流式细胞仪及专业操作;抗菌治疗后诊断价值可能下降;对早产儿价值有限

中–高 (需专业 设备与分析)

5. 血液复合标志物与多组学整合分析

5.1. 多标志物联合诊断模型

在脓毒症的早期诊断中,单一生物标志物常因个体差异、病理阶段等因素而表现出灵敏度和特异性的局限性。为了克服这一缺陷,研究者们逐渐转向多标志物联合诊断模型,通过整合多个指标的信息,提高诊断的准确性和可靠性。多标志物模型能够综合反映脓毒症复杂的病理生理过程,涵盖免疫反应、炎症状态、器官功能等多个维度,弥补单一指标的不足,最终提升临床诊断的灵敏度和特异性。

常规血液细胞计数衍生的比例指标因其简便、低成本且快速获得等优势,成为脓毒症早期诊断和预后评估的重要辅助指标。中性粒细胞与淋巴细胞的比值(NLR)是最广泛研究的指标之一。NLR反映了机体炎症反应与免疫状态的平衡,临床研究表明,NLR在脓毒症患者中显著升高,且与病情严重程度及预后密切相关[110]。此外,血小板与淋巴细胞的比值(PLR)和血小板与中性粒细胞的比值(PNR)也被用于反映炎症及凝血功能状态,研究表明PLR的升高提示炎症活跃及免疫抑制状态,PNR则结合了血小板和中性粒细胞的变化,帮助识别脓毒症的不同病理阶段[110]。血小板与白蛋白的比值(PAR)作为一种新兴指标,结合了血小板的炎症反应和白蛋白的营养及炎症状态,能更全面地反映患者的全身状态。研究显示,PAR在脓毒症患者中升高,且与病情加重和死亡风险相关,提示其在临床评估中的潜在应用价值[110]。这些比例指标通过反映不同细胞系的动态变化,弥补了传统单一血液指标的不足,提升了脓毒症的早期识别能力。因此,结合NLR、PLR、PNR和PAR等多种血液细胞比例指标,有助于构建更为全面和敏感的脓毒症诊断模型,支持临床及时识别和干预。

5.2. 全身炎症反应指数(SIRI)

全身炎症反应指数(SIRI)是一种新兴的综合炎症指标,通常基于白细胞计数及其亚群比例,如嗜中性粒细胞与淋巴细胞的比值,结合单核细胞计数等,反映炎症细胞的动态平衡[111]。研究发现,SIRI在脓毒症早期诊断中表现出较高的敏感性和特异性,且其升高与患者的死亡率及不良预后显著相关[110]。这一指标能够捕捉炎症反应的复杂性,比单纯依赖某一细胞计数更能反映机体免疫状态的变化,为临床医生提供重要的决策参考。并且SIRI的计算基于常规血常规数据,便于临床广泛应用。

综上,多标志物联合诊断模型不仅能够克服单一生物标志物的局限,还能捕捉脓毒症的多维病理信息,为临床提供更为准确的诊断依据,推动精准医学在脓毒症管理中的应用。

6. 多组学数据与机器学习应用

多组学数据与机器学习在脓毒症研究中显现重要潜力,尤其在生物标志物筛选、精准分型和个体化治疗方面。研究整合多组学和单细胞测序数据,发现线粒体基因在脓毒症及脓毒症相关脑病(SAE)中利用机器学习算法筛选出核心生物标志物如ALDH7A1、HOGA1,揭示免疫炎症与线粒体功能障碍的联系[112]。此外,应用转录组和单细胞RNA测序数据结合机器学习,识别出VDAC2等与胆固醇代谢紊乱相关的关键基因,构建了高效的诊断模型,并揭示了免疫抑制与代谢重编程对脓毒症预后的影响[113]。具体到免疫相关基因的应用,研究发现CD177、IRAK3等基因在脓毒症的诊断和分型中具有重要价值。CD177作为中性粒细胞特异性标志物,其表达水平与脓毒症免疫状态密切相关,能够辅助区分不同免疫表型[114] [115]。IRAK3参与调节免疫信号转导,影响炎症反应的强度和持续时间,是评估脓毒症免疫功能失调的重要指标[116]。这些基因的识别和验证得益于多组学数据的深度挖掘和机器学习模型的高效筛选。

机器学习技术如LASSO回归、随机森林、支持向量机等被广泛用于筛选差异表达基因和关键蛋白,构建诊断和预后预测模型。一项研究通过多组学分析发现了与乳酸酸化相关的核心基因(如ALDH1A1)及其与免疫细胞浸润的关联,推动了对脓毒症诱发急性呼吸窘迫综合征(ARDS)病理机制的理解[117]。针对免疫细胞亚群的分析显示,中性粒细胞在脓毒症相关的急性肾损伤中表现出异质性,并筛选出多种驱动基因,为精准的免疫调控提供了潜在靶点[114]。结合多组学技术的优势,机器学习不仅提高了生物标志物筛选的效率和准确性,也促进了脓毒症的分型研究。通过非负矩阵分解(NMF)等算法,揭示了多种脓毒症分子亚型,这些亚型表现出不同的免疫状态和代谢特征,具有不同的临床预后和治疗反应[113] [118]。此外,集成多组学数据的机器学习模型能够预测患者的生存率和治疗获益,推动脓毒症治疗从经验治疗向精准医疗转型[118]

多组学数据与机器学习结合为脓毒症生物标志物的发现提供了有效工具。整合基因表达、蛋白质组、代谢组和免疫细胞信息,机器学习算法筛选出如CD177、IRAK3等关键免疫基因,促进个体化诊疗,提高脓毒症的诊断和治疗效果,推动临床向精准医疗发展。

7. 免疫细胞表型与功能状态的综合评估

流式细胞术结合多参数分析技术,通过多色标记和高通量检测,揭示了脓毒症患者免疫系统的异质性特征。研究表明,脓毒症期间,免疫细胞的数量、表型和功能均发生显著变化,外周血中自然杀伤细胞(NK细胞)和浆细胞样树突状细胞(pDCs)的比例显著降低,伴随免疫抑制状态的出现[119]。此外,结合免疫细胞表型与血液标志物,可以构建综合免疫评分系统,提升脓毒症管理的科学性。现有研究表明,将免疫细胞的数量、表型特征(如HLA-DR、PD-1表达)、功能指标(如细胞因子分泌能力)与经典血液生物标志物(如C反应蛋白CRP、降钙素原PCT)相结合,有助于更准确地反映患者免疫状态和病情严重程度[119]。一项研究通过结合NK细胞比例、特定菌群(Bacteroides salyersiae)丰度和CRP水平,建立了用于脓毒症诊断的联合模型,表现出较高的诊断准确性(AUC = 0.95) [119]。此外,将免疫细胞亚群与临床评分系统如APACHE II、SOFA结合,能够实现对脓毒症患者预后的更精准预测[119] [120]。基于免疫表型的综合评分系统还可用于指导免疫调节治疗,识别适合接受免疫激活或免疫抑制治疗的患者。PD-1/PD-L1通路的表达水平与免疫抑制状态相关,针对该通路的免疫检查点抑制剂治疗前,综合评分系统可帮助筛选潜在受益患者[121]。此外,结合代谢相关标志物和免疫细胞功能状态的综合评分,有望更全面地反映脓毒症患者免疫代谢状态,为个体化治疗提供依据[122]。随着多组学数据和机器学习技术的发展,未来综合免疫评分系统将更加精准和动态,能够实时监测免疫状态变化,辅助临床决策,提升脓毒症患者的管理水平和预后效果[123] [124]。综上所述,免疫细胞表型与功能状态的综合评估结合血液标志物构建的免疫评分系统,是推动脓毒症精准治疗和个体化管理的重要方向。

8. 脓毒症血液生物标志物的临床应用与未来展望

个体化治疗与免疫调节策略

脓毒症治疗中,免疫状态的多样性为个体化治疗提供了基础。通过免疫相关标志物的分型,可以识别患者的免疫激活或抑制状态,从而指导相应的治疗方案。近期研究显示,脓毒症患者的免疫反应经历了从免疫激活到免疫抑制的动态变化,这种分型有助于优化治疗策略和预测患者预后。基于免疫相关基因的分型研究发现两种主要分型:一类表现出高炎症反应和较差的生存率,另一类则表现为免疫调节活跃且预后较好[125]。此外,circadian rhythm-related genes (CRDRGs)等分子标志物的表达差异,也为脓毒症的免疫分型和诊断模型构建提供了支持[126]。这些分型研究为个体化免疫干预奠定了基础,提示临床应根据患者的免疫表型选择适宜的免疫调节策略,避免一刀切的治疗模式。

免疫检查点抑制剂、细胞因子拮抗剂及纳米药物等新兴疗法的开发,依赖于精准的生物标志物的支持。免疫检查点分子如PD-1/PD-L1和TIGIT在脓毒症中的表达异常与免疫抑制密切相关,抗PD-L1抗体和抗TIGIT抗体的应用已在动物模型中显示出改善免疫功能和提高存活率的潜力[127]。Shikonin通过调控PKM2介导的PD-L1表达,降低脓毒症动物模型中的炎症因子水平,改善免疫细胞功能[128]。细胞因子拮抗剂如IL-1拮抗剂和TNF-α抑制剂的应用,虽在临床试验中效果有限,但通过精准免疫分型筛选患者,有望提高其治疗效果[129]。此外,纳米技术的发展促进了多功能纳米药物的设计,如功能化的纳米水凝胶和纳米酶,能够选择性清除过量的炎症介质,调节免疫微环境,从而在减少炎症的同时恢复免疫稳态[130]-[132]

新兴的免疫调节策略还包括血液净化技术和神经调节治疗。血液净化如多聚赖氨酸B血液吸附器(PMX-HA)被用于去除内毒素和炎症介质,改善免疫功能,但其疗效依赖于患者的内毒素水平和器官功能评分,强调了患者分层和个体化治疗的重要性[133] [134]。神经调节技术如无创迷走神经电刺激通过激活胆碱能抗炎途径调控免疫反应,展示了非药物免疫调节的新方向[135] [136]。此外,基于外泌体和微小RNA的生物标志物,不仅有助于脓毒症的早期诊断,也为靶向治疗提供了新靶点[137] [138]

总体而言,脓毒症的个体化治疗与免疫调节策略正朝着基于生物标志物的精准医疗方向发展。通过多维度的免疫分型,结合分子标志物、细胞功能和临床参数,能够更精准地指导免疫增强或抑制治疗方案。新兴的免疫检查点抑制剂、细胞因子拮抗剂、纳米药物及神经调节技术等为脓毒症的免疫调节提供了丰富的手段,但需进一步开展大规模临床试验验证其安全性和有效性,推动个体化精准治疗的临床转化。这不仅有望提高脓毒症患者的生存率,也为复杂免疫疾病的管理提供了宝贵经验和借鉴。

9. 未来研究方向

随着脓毒症发病机制研究的不断深入,血液生物标志物的研究也进入了一个多维度、跨学科发展的新阶段。未来的研究方向主要包括以下几个方面。

首先,进一步挖掘新型免疫相关分子,结合多组学和人工智能技术,构建更全面的脓毒症生物标志物体系。近年来,除了传统的炎症因子和急性期反应蛋白外,越来越多的研究聚焦于免疫细胞表面分子、细胞因子谱、代谢物以及非编码RNA等新兴标志物。血液中的CD177、IRAK3、RNASE2及S100A12已被证实与脓毒症相关[139]。单细胞RNA测序技术的应用揭示了脓毒症患者外周血单核细胞中CTSB、ATP6V0D1等基因的表达变化,这些基因与患者的28天死亡率显著相关[140]。此外,基于多组学数据的整合分析能够揭示免疫细胞与代谢物之间的复杂交互作用,如中性粒细胞亚群与多种细胞因子和脂质的关联[141]。人工智能和机器学习技术的引入,为从海量数据中筛选关键生物标志物、构建高效预测模型提供了有力工具,已有研究成功构建了基于血液生物标志物的脓毒症死亡率和恢复轨迹预测模型[14] [142]。未来,结合单细胞组学、代谢组学和蛋白质组学数据,利用先进的机器学习算法,全面描绘脓毒症患者的免疫状态与疾病进展,将有助于建立多参数联合的精准诊断和预后评估体系。

其次,加强标志物的临床验证和转化研究,推动其在临床诊疗中的广泛应用。尽管大量候选生物标志物已被报道,但多数仍停留在基础研究阶段,缺乏大规模、多中心的临床验证。另一方面,便捷、快速、准确的检测平台的开发同样重要。目前,电化学生物传感器、纳米颗粒基移动生物传感器等技术已被用于多重生物标志物的快速检测,显示出良好的诊断性能和临床适用潜力[143] [144]。未来研究应着力于优化检测方法的灵敏度和特异性,降低成本,实现床旁检测(POCT)的普及,促进生物标志物的临床转化应用。

最后,探索血液生物标志物在脓毒症亚型划分、疗效监测及长期预后中的作用,促进精准医疗发展。脓毒症的临床表现和免疫状态高度一致,传统单一生物标志物难以满足精准诊疗需求。通过多标志物联合分析,结合临床参数和患者个体特征,可实现对不同脓毒症亚型的有效识别。另一方面,动态监测血液中的炎症因子、免疫细胞功能及特定分子,如预后相关的IL-6、PCT、乳酸和中性粒细胞相关标志物,能有效反映治疗效果和病情变化[14] [145]。同时,针对脓毒症相关脑病、肝损伤等器官特异性损伤的血液标志物研究也在不断深入,为评估长期预后提供依据[146] [147]。未来,构建涵盖免疫、代谢及器官功能多维度的生物标志物面板,并结合临床大数据和人工智能技术,实现脓毒症的精准分类、疗效动态监测及预后预测,将极大推动脓毒症精准医疗的发展。

综上所述,未来脓毒症血液生物标志物的研究需聚焦于新型免疫相关分子的发现与机制阐释,强化临床验证及检测平台的开发,推动标志物在临床诊疗中的实际应用,同时注重标志物在疾病亚型划分、疗效评估及长期预后中的综合作用,借助多组学和人工智能技术,构建系统化、精准化的脓毒症生物标志物体系,为提升脓毒症诊疗水平和患者预后提供坚实的科学支持。

10. 结论

脓毒症作为一种复杂的系统性炎症反应综合征,其病理机制涉及多层次、多途径的免疫失衡与炎症反应。通过对血液生物标志物的系统性综述,我们能够更全面地理解脓毒症的发病机制及其动态变化。传统炎症指标如C反应蛋白(CRP)、降钙素原(PCT)等,尽管在临床中广泛应用,但其特异性和敏感性仍存在局限,难以全面反映脓毒症的复杂病理状态。细胞因子及免疫细胞表型的研究则进一步揭示了免疫系统在脓毒症发展过程中的多样性和动态变化,为疾病的免疫学分型提供了重要依据。

近年来,新兴的免疫相关分子如miRNA、CMKLR1及焦亡相关基因的发现,极大地丰富了脓毒症血液生物标志物的研究领域。这些分子不仅揭示了脓毒症中细胞程序性死亡及免疫调控的新机制,也为早期诊断和预后评估提供了更精准的工具。不同研究在这些新兴标志物的表达模式及其临床意义上存在一定差异,这主要源于患者异质性、检测技术和研究设计的差别。作为研究者,我们应当理性看待这些差异,强调多中心、大样本量研究的必要性,以期筛选出具有广泛适用性的可靠标志物。

当前,复合标志物策略及多组学数据整合分析结合机器学习技术的应用,代表了脓毒症生物标志物研究的前沿趋势。通过整合基因组学、转录组学、蛋白质组学等多层次数据,结合先进的算法模型,能够实现脓毒症的精准分型和个体化风险预测。这不仅提升了诊断的准确性,也为临床制定个性化治疗方案提供了数据支持,推动了治疗策略的转变。然而,机器学习模型的构建和验证仍需规范化流程和临床验证,避免过拟合和模型偏差,确保其在实际临床环境中的可行性和鲁棒性。

展望未来,脓毒症血液生物标志物的研究应更加注重临床转化,强调标志物从发现到临床应用的全链条优化。跨学科合作、多中心联合研究及标准化的样本收集和分析流程,将是推动该领域发展的关键。同时,随着精准医疗理念的深入,结合患者个体遗传背景、病原体特性及免疫状态的综合评估,将为脓毒症的早期诊断、风险分层及疗效监测提供更加科学和有效的工具。我们期望通过持续的基础研究与临床实践的紧密结合,推动脓毒症诊疗水平的整体提升,最终实现对该疾病的精准管理和更优的患者预后。

NOTES

*通讯作者。

参考文献

[1] Matics, T.J. and Sanchez-Pinto, L.N. (2017) Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatrics, 171, e172352. [Google Scholar] [CrossRef] [PubMed]
[2] Leisman, D., Huang, V., Zhou, Q., Gribben, J., Bianculli, A., Bernshteyn, M., et al. (2017) Delayed Second Dose Antibiotics for Patients Admitted from the Emergency Department with Sepsis: Prevalence, Risk Factors, and Outcomes. Critical Care Medicine, 45, 956-965. [Google Scholar] [CrossRef] [PubMed]
[3] Juneja, D., Jain, N., Singh, O., Goel, A. and Arora, S. (2023) Comparison between Presepsin, Procalcitonin, and CRP as Biomarkers to Diagnose Sepsis in Critically Ill Patients. Journal of Anaesthesiology Clinical Pharmacology, 39, 458-462. [Google Scholar] [CrossRef] [PubMed]
[4] Sánchez-Iglesias, J.L., Morales-Coma, C., Minig, L., Lago, V., Domingo, S., Mancebo, G., et al. (2024) Procalcitonin and C-Reactive Protein as Early Markers of Anastomotic Leakage in Intestinal Resections for Advanced Ovarian Cancer (EDMOCS). Acta Obstetricia et Gynecologica Scandinavica, 103, 1302-1310. [Google Scholar] [CrossRef] [PubMed]
[5] Leonard, S., Guertin, H., Odoardi, N., Miller, M.R., Patel, M.A., Daley, M., et al. (2024) Pediatric Sepsis Inflammatory Blood Biomarkers That Correlate with Clinical Variables and Severity of Illness Scores. Journal of Inflammation, 21, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
[6] Huang, J., Li, J., Wu, N., Yang, X., Zhang, L., Bian, F., et al. (2025) Microfluidic Magnetic Droplet-Based Chemiluminescence Enzyme Immunoassay for Multiplex Sepsis Biomarker Screening. The Analyst, 150, 1553-1562. [Google Scholar] [CrossRef] [PubMed]
[7] Davies, K. and McLaren, J.E. (2024) Destabilisation of T Cell-Dependent Humoral Immunity in Sepsis. Clinical Science, 138, 65-85. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, Y., Zhang, H. and Miao, C. (2025) Unraveling Immunosenescence in Sepsis: From Cellular Mechanisms to Therapeutics. Cell Death & Disease, 16, Article No. 393. [Google Scholar] [CrossRef] [PubMed]
[9] Miao, S., Zhang, R., Guo, G., Wang, X., Zhang, B., Li, L., et al. (2025) p38 Protein as a Therapeutic Target for Sepsis-Induced Organ Dysfunction. European Journal of Pharmacology, 1002, Article ID: 177833. [Google Scholar] [CrossRef] [PubMed]
[10] Vigneron, C., Py, B.F., Monneret, G. and Venet, F. (2023) The Double Sides of NLRP3 Inflammasome Activation in Sepsis. Clinical Science, 137, 333-351. [Google Scholar] [CrossRef] [PubMed]
[11] Hashem, H.E., El Masry, S.A., Mokhtar, A.M., Ismail, E.A. and Abdelaal, N.M. (2020) Valuable Role of Neutrophil CD64 and Highly Sensitive CRP Biomarkers for Diagnostic, Monitoring, and Prognostic Evaluations of Sepsis Patients in Neonatal ICUs. BioMed Research International, 2020, Article ID: 6214363. [Google Scholar] [CrossRef] [PubMed]
[12] Mubaraki, M.A., Faqihi, A., AlQhtani, F., Hafiz, T.A., Alalhareth, A., Thagfan, F.A., et al. (2023) Blood Biomarkers of Neonatal Sepsis with Special Emphasis on the Monocyte Distribution Width Value as an Early Sepsis Index. Medicina, 59, Article 1425. [Google Scholar] [CrossRef] [PubMed]
[13] Gopal, N., Chauhan, N., Jain, U., Dass, S.K., Sharma, H.S. and Chandra, R. (2023) Advancement in Biomarker Based Effective Diagnosis of Neonatal Sepsis. Artificial Cells, Nanomedicine, and Biotechnology, 51, 476-490. [Google Scholar] [CrossRef] [PubMed]
[14] Xie, Y., Li, B., Lin, Y., Shi, F., Chen, W., Wu, W., et al. (2020) Combining Blood-Based Biomarkers to Predict Mortality of Sepsis at Arrival at the Emergency Department. Medical Science Monitor, 27, e929527. [Google Scholar] [CrossRef] [PubMed]
[15] Luo, Z., Luo, P., Gu, H., Hu, X., Xiao, S., Lu, W., et al. (2025) A Novel Long-Acting C5a-Blocking Cyclic Peptide Prevents Sepsis-Induced Organ Dysfunction via Effective Blockade of the Inflammatory Cascade. Signal Transduction and Targeted Therapy, 10, Article No. 362. [Google Scholar] [CrossRef
[16] Daud, M., Khan, M.B., Qudrat, Q.U., Ullah, I., Khan, S., Khan, M.Z., et al. (2024) Role of C-Reactive Protein and Procalcitonin in Early Diagnostic Accuracy and Their Prognostic Significance in Sepsis. Cureus, 16, e70358. [Google Scholar] [CrossRef] [PubMed]
[17] Herzlich, J., Waksman, Y., Marom, R., Berliner, S., Mandel, D. and Mangel, L. (2025) Determinants of CRP Measurements and CRP Dynamics during Early Neonatal Sepsis Work Up. Scientific Reports, 15, Article No. 18031. [Google Scholar] [CrossRef] [PubMed]
[18] Baxla, V., Sharma, A.K., Seema, K., Kumar, A., Boipai, M., Bhattacharya, P.K., et al. (2025) Sepsis Biomarkers: CRP, Procalcitonin, and Presepsin—Diagnostic and Prognostic Significance in Sepsis. Journal of West African College of Surgeons, 15, 457-462. [Google Scholar] [CrossRef
[19] Datla, S., Kitchanan, S. and Sethuraman, G. (2021) Diagnostic Reliability of Salivary C-Reactive Protein as an Alternative Noninvasive Biomarker of Neonatal Sepsis. Indian Pediatrics, 58, 745-748. [Google Scholar] [CrossRef
[20] Karunasagar, A., DSouza, C., Prasad, M., Akshay, S.D., Irusan, D., Jenifer, A., et al. (2025) Age-Specific Predictive Modelling of Sepsis Mortality: The Diagnostic Utility of CRP and Serum Creatinine. Respiratory Medicine, 250, Article ID: 108530. [Google Scholar] [CrossRef
[21] An, X.H., Zhang, X.H. and Yi, S.G. (2023) Application of PCT, IL-6, CRP, and WBC for Diagnosing Neonatal Sepsis. Clinical Laboratory, 69. [Google Scholar] [CrossRef] [PubMed]
[22] Fouad, N.A., Fouad, M.A., Assar, E.H. and Eltaher, S.M. (2020) Combination of Procalcitonin, CRP and CD11b Biomarkers in Early Detection of Neonatal Sepsis. The Egyptian Journal of Immunology, 27, 77-86.
[23] Güneş, H., Yurttutan, S., Çobanuşağı, M. and Doğaner, A. (2021) CRP/Albumin Ratio: A Promising Marker of Gram-Negative Bacteremia in Late-Onset Neonatal Sepsis. Turkish Archives of Pediatrics, 56, 32-36.
[24] Lin, G.C., Küng, E., Smajlhodzic, M., Domazet, S., Friedl, H.P., Angerer, J., et al. (2021) Directed Transport of CRP across in Vitro Models of the Blood-Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics, 13, Article 256. [Google Scholar] [CrossRef] [PubMed]
[25] Ramavath, C., Katam, S.K., Vardhelli, V., Deshabhotla, S. and Oleti, T.P. (2023) Examining the Utility of Rapid Salivary C-Reactive Protein as a Predictor for Neonatal Sepsis: An Analytical Cross-Sectional Pilot Study. Diagnostics, 13, Article 867. [Google Scholar] [CrossRef] [PubMed]
[26] Prakash, G., Sajan, R., Reshma, G.G., Gutjahr, G., S, V.V., Narmadha, M.P., et al. (2025) Broadening Diagnostic Horizons: Specificity of Serial Negative CRPs in Predicting Blood Culture Negativity in Suspected Neonatal Sepsis. Cureus, 17, e81660. [Google Scholar] [CrossRef] [PubMed]
[27] Hao, Y.X. and Yu, J.L. (2020) Cut-Off Value of White Blood Cell Count in the Diagnosis of Early-Onset Sepsis in Neonates. Chinese Journal of Contemporary Pediatrics, 22, 1159-1163.
https://pubmed.ncbi.nlm.nih.gov/33172548/
[28] Zeng, T., Sun, Y., Chen, S., Pang, J., Wang, H., Cai, X., et al. (2024) The Causal Relationship between Blood Cell Indices and 28-Day Mortality in Sepsis: A Retrospective Study and Bidirectional Mendelian Randomization Analysis. BMC Infectious Diseases, 24, Article No. 619. [Google Scholar] [CrossRef] [PubMed]
[29] Gezahegn, B., Abdella, A., Meseret, F., Mohammed, A., Keneni, M., Asfaw, T., et al. (2025) Treatment Outcomes and Its Associated Factors among Neonates Admitted with Sepsis in Hiwot Fana Comprehensive Specialized University Hospital, Harar, Ethiopia. Frontiers in Pediatrics, 12, Article 1434803. [Google Scholar] [CrossRef] [PubMed]
[30] Pettit, N. (2025) Leukopenia and Neutropenic Fever. Emergency Medicine Clinics of North America, 43, 431-444. [Google Scholar] [CrossRef] [PubMed]
[31] Shil, P.K., Majumder, B.K., Basak, A.K., et al. (2023) Role of White Blood Cell Count, Immature to Total Ratio and C-Reactive Protein in Early Detection of Clinically Suspected Neonatal Sepsis. Mymensingh Medical Journal, 32, 721-726.
https://pubmed.ncbi.nlm.nih.gov/37391965/
[32] Mearelli, F., Nunnari, A., Chitti, F., Rombini, A., Macor, A., Denora, D., et al. (2025) Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis. Journal of Clinical Medicine, 14, Article 3313. [Google Scholar] [CrossRef] [PubMed]
[33] Li, D., Wei, Y., Zhang, C., Yang, Y., Wang, Z., Lu, Y., et al. (2025) Value of SOFA Score, APACHE II Score, and WBC Count for Mortality Risk Assessment in Septic Patients: A Retrospective Study. Medicine, 104, e42464. [Google Scholar] [CrossRef] [PubMed]
[34] Kanungo, R. and Hippargi, S.B. (2024) CD64 Expression on Neutrophils (nCD64) as a Biomarker in Adult Patients with Sepsis: A Cross-Sectional Study. Cureus, 16, e71912. [Google Scholar] [CrossRef] [PubMed]
[35] Rohil, A., Dutta, S., Varma, N., Sachdev, M.S., Bansal, A. and Kumar, P. (2021) Cell-Surface Biomarkers, C-Reactive Protein and Haematological Parameters for Diagnosing Late Onset Sepsis in Pre-Term Neonates. Journal of Tropical Pediatrics, 67, fmad016. [Google Scholar] [CrossRef] [PubMed]
[36] Ho, S.F., Tan, S.J., Mazlan, M.Z., Iberahim, S., Lee, Y.X. and Hassan, R. (2023) Exploring Extended White Blood Cell Parameters for the Evaluation of Sepsis among Patients Admitted to Intensive Care Units. Diagnostics, 13, Article 2445. [Google Scholar] [CrossRef] [PubMed]
[37] Herawati, S., Somia, I.K.A., Kosasih, S., Wande, I.N., Felim, J. and Payana, I.M.D. (2024) Integrating Routine Hematological and Extended Inflammatory Parameters as a Novel Approach for Timely Diagnosis and Prognosis in Sepsis Management. Diagnostics, 14, Article 956. [Google Scholar] [CrossRef] [PubMed]
[38] Verra, C., Paulmann, M.K., Wegener, J., Marzani, E., Ferreira Alves, G., Collino, M., et al. (2024) Spleen Tyrosine Kinase: A Novel Pharmacological Target for Sepsis-Induced Cardiac Dysfunction and Multi-Organ Failure. Frontiers in Immunology, 15, Article 1447901. [Google Scholar] [CrossRef] [PubMed]
[39] Li, H., Yang, W., Li, H., Bai, X., Zhang, H., Fan, W., et al. (2023) PROTAC Targeting Cyclophilin a Controls Virus-Induced Cytokine Storm. iScience, 26, Article ID: 107535. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, L., Wan, H., Zhang, M., Lu, W., Xu, F. and Dong, H. (2023) Estrogen Receptor Subtype Mediated Anti-Inflammation and Vasorelaxation via Genomic and Nongenomic Actions in Septic Mice. Frontiers in Endocrinology, 14, Article 1152634. [Google Scholar] [CrossRef] [PubMed]
[41] Magnani, N.D., Marchini, T., Calabró, V., Alvarez, S. and Evelson, P. (2020) Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Frontiers in Endocrinology, 11, Article 568305. [Google Scholar] [CrossRef] [PubMed]
[42] Edalati, S., Meyer, J.S., Aravot, D. and Barac, Y.D. (2024) Vagal Nerve Stimulation Potential Therapeutic Benefits in Acute Lung Rejection and Transplantation. Transplant Immunology, 86, Article ID: 102105. [Google Scholar] [CrossRef] [PubMed]
[43] Yang, J., Ucakar, B., Vanvarenberg, K., Malfanti, A. and des Rieux, A. (2025) Nanoparticles Loaded with a CSF1R Antagonist Selectively Depletes Microglial Cells and Modulates Inflammation in Spinal Cord Injury. Journal of Controlled Release, 386, Article ID: 114079. [Google Scholar] [CrossRef] [PubMed]
[44] Addeo, A., Obeid, M. and Friedlaender, A. (2020) COVID-19 and Lung Cancer: Risks, Mechanisms and Treatment Interactions. Journal for ImmunoTherapy of Cancer, 8, e000892. [Google Scholar] [CrossRef] [PubMed]
[45] He, Y., Chen, X., Zhong, J., Lin, C., Situ, J., Liu, B., et al. (2025) Glucocorticoid Reduces Mortality in LPS-Induced Sepsis Mouse Model by Inhibiting JAK1/STAT3-Mediated Inflammatory Response and Restoring Tricarboxylic Acid Cycle. Life Sciences, 375, Article ID: 123744. [Google Scholar] [CrossRef] [PubMed]
[46] Shen, X., Han, Y., Gao, Z., Han, P. and Bi, X. (2023) Pre Exposure to Enriched Environment Alleviates Brain Injury after Ischemia-Reperfusion by Inhibiting p38MAPK/STAT1 Pathway. Molecular Biology Reports, 50, 2243-2255. [Google Scholar] [CrossRef] [PubMed]
[47] Wang, Y., Li, D., Song, L. and Ding, H. (2020) Ophiopogonin D Attenuates PM2.5‑Induced Inflammation via Suppressing the AMPK/NF‑κB Pathway in Mouse Pulmonary Epithelial Cells. Experimental and Therapeutic Medicine, 20, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
[48] Ge, X., Meng, Q., Wei, L., Liu, J., Li, M., Liang, X., et al. (2021) Myocardial Ischemia-Reperfusion Induced Cardiac Extracellular Vesicles Harbour Proinflammatory Features and Aggravate Heart Injury. Journal of Extracellular Vesicles, 10, e12072. [Google Scholar] [CrossRef] [PubMed]
[49] Ostmann, A., Paust, H., Panzer, U., Wegscheid, C., Kapffer, S., Huber, S., et al. (2013) Regulatory T Cell-Derived IL-10 Ameliorates Crescentic GN. Journal of the American Society of Nephrology, 24, 930-942. [Google Scholar] [CrossRef] [PubMed]
[50] Park, Y.H., Lee, S.W., Kim, T., Park, H.J., Van Kaer, L. and Hong, S. (2024) The iNKT Cell Ligand α-GalCer Prevents Murine Septic Shock by Inducing IL10-Producing iNKT and B Cells. Frontiers in Immunology, 15, Article 1457690. [Google Scholar] [CrossRef] [PubMed]
[51] Gu, X., Tian, T., Zhang, B., Liu, Y., Yuan, C., Shao, L., et al. (2014) Elevated Plasma Interleukin-35 Levels Predict Poor Prognosis in Patients with Non-Small Cell Lung Cancer. Tumor Biology, 36, 2651-2656. [Google Scholar] [CrossRef] [PubMed]
[52] Clere-Jehl, R., Mariotte, A., Meziani, F., Bahram, S., Georgel, P. and Helms, J. (2020) JAK-STAT Targeting Offers Novel Therapeutic Opportunities in Sepsis. Trends in Molecular Medicine, 26, 987-1002. [Google Scholar] [CrossRef] [PubMed]
[53] Hannan, E.L., Zhong, Y., Cozzens, K., Tamis-Holland, J., Ling, F.S.K., Berger, P.B., et al. (2023) Short-Term Deaths after Percutaneous Coronary Intervention Discharge: Prevalence, Risk Factors, and Hospital Risk-Adjusted Mortality. Journal of the Society for Cardiovascular Angiography & Interventions, 2, Article ID: 100559. [Google Scholar] [CrossRef] [PubMed]
[54] Reyes, M., Filbin, M.R., Bhattacharyya, R.P., Billman, K., Eisenhaure, T., Hung, D.T., et al. (2020) An Immune-Cell Signature of Bacterial Sepsis. Nature Medicine, 26, 333-340. [Google Scholar] [CrossRef] [PubMed]
[55] Zhou, H. (2024) The Value of Systemic Immune-Inflammation Index and T Cell Subsets in the Severity and Prognosis of Sepsis. Critical Reviews in Immunology, 44, 1-12. [Google Scholar] [CrossRef] [PubMed]
[56] Tu, X., Huang, H., Xu, S., Li, C. and Luo, S. (2023) Single-Cell Transcriptomics Reveals Immune Infiltrate in Sepsis. Frontiers in Pharmacology, 14, Article 1133145. [Google Scholar] [CrossRef] [PubMed]
[57] Murao, A., Jha, A., Aziz, M. and Wang, P. (2024) Transcriptomic Profiling of Immune Cells in Murine Polymicrobial Sepsis. Frontiers in Immunology, 15, Article 1347453. [Google Scholar] [CrossRef] [PubMed]
[58] Qin, Y. and Zhang, J. (2025) The Multifaceted Role of Regulatory T Cells in Sepsis: Mechanisms, Heterogeneity, and Pathogen-Tailored Therapies. International Journal of Molecular Sciences, 26, Article 7436. [Google Scholar] [CrossRef] [PubMed]
[59] Miao, S., Chang, Z., Gu, B., et al. (2024) Generation of Tolerogenic Dendritic Cells under the Persistent Inflammation Stimulation. Shock, 61, 454-464. [Google Scholar] [CrossRef] [PubMed]
[60] Huang, S., Liu, D., Sun, J., Zhang, H., Zhang, J., Wang, Q., et al. (2022) Tim-3 Regulates Sepsis-Induced Immunosuppression by Inhibiting the NF-κB Signaling Pathway in CD4 T Cells. Molecular Therapy, 30, 1227-1238. [Google Scholar] [CrossRef] [PubMed]
[61] Cummings, M.J., Guichard, V., Owor, N., Ochar, T., Kiwubeyi, M., Nankwanga, R., et al. (2024) Heterogeneous Expansion of Polymorphonuclear Myeloid-Derived Suppressor Cells Distinguishes High-Risk Sepsis Immunophenotypes in Uganda. Shock, 62, 336-343. [Google Scholar] [CrossRef] [PubMed]
[62] Frydman, G.H., Ellett, F., Jorgensen, J., Marand, A.L., Zukerberg, L., Selig, M.K., et al. (2023) Megakaryocytes Respond during Sepsis and Display Innate Immune Cell Behaviors. Frontiers in Immunology, 14, Article 1083339. [Google Scholar] [CrossRef] [PubMed]
[63] Schindler, P., Kupcinskas, J., Juzenas, S., Skieceviciene, J., Salteniene, V., Schulz, C., et al. (2018) Expression of MicroRNAs in the Ascites of Patients with Peritoneal Carcinomatosis and Peritonitis. Cancer Cytopathology, 126, 353-363. [Google Scholar] [CrossRef] [PubMed]
[64] Iro, M.A. and Soundara Pandi, S.P. (2020) Clinical Application of Non-Coding RNAs in Sepsis. Current Opinion in Infectious Diseases, 33, 530-539. [Google Scholar] [CrossRef] [PubMed]
[65] Qiu, G., Fan, J., Zheng, G., He, J., Lin, F., Ge, M., et al. (2022) Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Frontiers in Molecular Biosciences, 9, Article 814240. [Google Scholar] [CrossRef] [PubMed]
[66] Ou, Y., An, R., Wang, H., Chen, L., Shen, Y., Cai, W., et al. (2022) Oxidative Stress-Related Circulating miRNA-27a Is a Potential Biomarker for Diagnosis and Prognosis in Patients with Sepsis. BMC Immunology, 23, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
[67] El-Hefnawy, S.M., Mostafa, R.G., El-Zayat, R.S., Elfeshawy, E.M., Abd El-Bari, H.M. and El-Monem Ellaithy, M.A. (2021) Biochemical and Molecular Study on Serum miRNA-16a and miRNA-451 as Neonatal Sepsis Biomarkers. Biochemistry and Biophysics Reports, 25, Article ID: 100915. [Google Scholar] [CrossRef] [PubMed]
[68] Fatmi, A., Rebiahi, S.A., Chabni, N., Zerrouki, H., Azzaoui, H., Elhabiri, Y., et al. (2020) miRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
[69] El-Khazragy, N., Mohamed, N.M., Mostafa, M.F., Elnakib, M., Hemida, E.H.A., Salah, A., et al. (2023) miRNAs: Novel Noninvasive Biomarkers as Diagnostic and Prognostic Tools in Neonatal Sepsis. Diagnostic Microbiology and Infectious Disease, 107, Article ID: 116053. [Google Scholar] [CrossRef] [PubMed]
[70] Liu, P., Chen, D., Lou, J., Lin, J., Huang, C., Zou, Y., et al. (2023) Heparin-Binding Protein as a Biomarker of Severe Sepsis in the Pediatric Intensive Care Unit: A Multicenter, Prospective Study. Clinica Chimica Acta, 539, 26-33. [Google Scholar] [CrossRef] [PubMed]
[71] Liu, Z., Li, X., Chen, M., Sun, Y., Ma, Y., Dong, M., et al. (2024) Heparin-binding Protein and Sepsis-Induced Coagulopathy: Modulation of Coagulation and Fibrinolysis via the TGF-β Signalling Pathway. Thrombosis Research, 244, Article ID: 109176. [Google Scholar] [CrossRef] [PubMed]
[72] Linder, A., Soehnlein, O. and Åkesson, P. (2010) Roles of Heparin-Binding Protein in Bacterial Infections. Journal of Innate Immunity, 2, 431-438. [Google Scholar] [CrossRef] [PubMed]
[73] Feng, L., Liu, S., Wang, J., Gao, Y., Xie, F., Gong, J., et al. (2024) The Performance of a Combination of Heparin-Binding Protein with Other Biomarkers for Sepsis Diagnosis: An Observational Cohort Study. BMC Infectious Diseases, 24, Article No. 755. [Google Scholar] [CrossRef] [PubMed]
[74] Taha, A.M., Najah, Q., Omar, M.M., Abouelmagd, K., Ali, M., Hasan, M.T., et al. (2024) Diagnostic and Prognostic Value of Heparin-Binding Protein in Sepsis: A Systematic Review and Meta-Analysis. Medicine, 103, e38525. [Google Scholar] [CrossRef] [PubMed]
[75] Dou, Q.L., Liu, J., Zhang, W., Wang, C., Gu, Y., Li, N., et al. (2022) Dynamic Changes in Heparin-Binding Protein as a Prognostic Biomarker for 30-Day Mortality in Sepsis Patients in the Intensive Care Unit. Scientific Reports, 12, Article No. 10751. [Google Scholar] [CrossRef] [PubMed]
[76] Zhang, Z., Zhu, Y., Cao, Y., et al. (2021) Predictive Value of Heparin Binding Protein for Sepsis. Chinese Critical Care Medicine, 33, 654-658.
[77] Ye, K., Lin, X., Chen, T., Wang, L. and Liu, S. (2024) Heparin-Binding Protein Promotes Acute Lung Injury in Sepsis Mice by Blocking the Aryl Hydrocarbon Receptor Signaling Pathway. Journal of Inflammation Research, 17, 2927-2938. [Google Scholar] [CrossRef] [PubMed]
[78] Zhou, X., Cao, Y., Huang, X., Qiu, S., Xiang, X., Niu, H., et al. (2024) Screening and Application of DNA Aptamers for Heparin-Binding Protein. Molecules, 29, Article 1717. [Google Scholar] [CrossRef] [PubMed]
[79] Wang, Y.Y., Yu, S.J., Chen, Q., et al. (2025) Performance Evaluation of an Acridinium Ester-Based Chemiluminescence Assay for Heparin-Binding Protein and Its Application in the Diagnosis of Sepsis. Chinese Journal of Preventive Medicine, 59, 1546-1551.
[80] Wang, L., Zhang, J., Zhang, L., Hu, L. and Tian, J. (2022) Significant Difference of Differential Expression Pyroptosis-Related Genes and Their Correlations with Infiltrated Immune Cells in Sepsis. Frontiers in Cellular and Infection Microbiology, 12, Article 1005392. [Google Scholar] [CrossRef] [PubMed]
[81] Ding, W., Huang, L., Wu, Y., Su, J., He, L., Tang, Z., et al. (2023) The Role of Pyroptosis-Related Genes in the Diagnosis and Subclassification of Sepsis. PLOS ONE, 18, e0293537. [Google Scholar] [CrossRef] [PubMed]
[82] Yang, J., Ou, F., Li, B., Zeng, L., Chen, Q., Gan, H., et al. (2025) Machine Learning Based Screening of Biomarkers Associated with Cell Death and Immunosuppression of Multiple Life Stages Sepsis Populations. Scientific Reports, 15, Article No. 30302. [Google Scholar] [CrossRef] [PubMed]
[83] Patnaik, R., Azim, A. and Agarwal, V. (2020) Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian Journal of Critical Care Medicine, 24, 1242-1250. [Google Scholar] [CrossRef] [PubMed]
[84] Yin, W.P., Li, J.B., Zheng, X.F., An, L., et al. (2020) Effect of Neutrophil CD64 for Diagnosing Sepsis in Emergency Department. World Journal of Emergency Medicine, 11, 79-86. [Google Scholar] [CrossRef] [PubMed]
[85] Zou, H., Ye, Z., Liu, S., et al. (2021) The Value of Neutrophil CD64 Index in the Diagnosis of Patients with Sepsis in Intensive Care Unit. Chinese Critical Care Medicine, 33, 676-679.
[86] Griffin, K., Miller, L., Yang, Y., Sharp, E., Young, L., Garcia, L., et al. (2025) Affinity-Based 3D-Printed Microfluidic Chip for Clinical Sepsis Detection with CD69, CD64, and CD25. Journal of Pharmaceutical and Biomedical Analysis, 252, Article ID: 116500. [Google Scholar] [CrossRef] [PubMed]
[87] Yang, Y., Griffin, K., Li, X., Sharp, E., Young, L., Garcia, L., et al. (2023) Combined CD25, CD64, and CD69 Biomarker in 3d-Printed Multizone Millifluidic Device for Sepsis Detection in Clinical Samples. Analytical Chemistry, 95, 12819-12825. [Google Scholar] [CrossRef] [PubMed]
[88] Lekka, K., Marangos, M., Roupas, N., Karakantza, M., Gogos, C. and Velissaris, D. (2020) Evaluation of the Activity of Neutrophils and Monocytes in Diabetic Patients with Sepsis, Can Surface Antigens HLA-DR and CD64 Be Useful as Prognostic Factors? Journal of Clinical Medicine Research, 12, 157-164. [Google Scholar] [CrossRef] [PubMed]
[89] Zakaria, M., Karam, N., Hassan, T., Zidan, N., Abdelsalam, A., Ramadan, R.A., et al. (2025) Neutrophil CD64 Can Be an Early Predictor for Sepsis during Febrile Neutropenic Episodes in Children with Cancer: A Case Control Study. Italian Journal of Pediatrics, 51, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
[90] Zhu, Q., Wang, H., Chen, L., Yu, Y. and Chen, M. (2025) Comparison of the Accuracy of Procalcitonin, Neutrophil CD64, and C-Reactive Protein for the Diagnosis and Prognosis of Septic Patients after Antibiotic Therapy. Practical Laboratory Medicine, 43, e00444. [Google Scholar] [CrossRef] [PubMed]
[91] Ramírez-Ramírez, A., Mancilla-Herrera, I., Figueroa-Damián, R., Soriano-Becerril, D.M. and Villeda-Gabriel, G. (2025) Expression of CD64 and CD69 as Biomarkers for Late-Onset Sepsis Diagnosis in Infants Born Prematurely. The Brazilian Journal of Infectious Diseases, 29, Article ID: 104511. [Google Scholar] [CrossRef] [PubMed]
[92] Morino, G., Takahashi, G., Kan, S., Inoue, Y., Sato, K. and Shirakawa, K. (2021) Antibody-Mediated Soluble CD14 Stabilization Prevents Agitation-Induced Increases in Presepsin Levels in Blood Component Specimens. BioTechniques, 70, 160-166. [Google Scholar] [CrossRef] [PubMed]
[93] Ikegame, A., Kondo, A., Kitaguchi, K., Sasa, K. and Miyoshi, M. (2022) Presepsin Production in Monocyte/Macrophage-Mediated Phagocytosis of Neutrophil Extracellular Traps. Scientific Reports, 12, Article No. 5978. [Google Scholar] [CrossRef] [PubMed]
[94] Mabrey, F.L., Martin, T.R., Calfee, C.S., Liu, K.D., LaCombe, B., Brown-Swigart, L., et al. (2025) Anti-CD14 Treatment in Patients with Severe COVID-19 Clinical and Biological Effects in a Phase 2 Randomized Open-Label Adaptive Platform Clinical Trial. Chest Critical Care, 3, Article ID: 100117. [Google Scholar] [CrossRef] [PubMed]
[95] Lee, B., Park, J.E., Yoon, S.J., Park, C., Lee, N.Y., Shin, T.G., et al. (2024) No Significant Differences in Presepsin Levels According to the Causative Microorganism of Bloodstream Infection. Infection & Chemotherapy, 56, 47-56. [Google Scholar] [CrossRef] [PubMed]
[96] Koizumi, Y., Sakanashi, D., Mohri, T., Watanabe, H., Shiota, A., Asai, N., et al. (2020) Can Presepsin Uniformly Respond to Various Pathogens? An in Vitro Assay of New Sepsis Marker. BMC Immunology, 21, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
[97] Lee, J., Kim, S., Kim, K.H., Jeong, N.R., Kim, S.C. and Oh, E. (2021) The Association between Dynamic Changes in Serum Presepsin Levels and Mortality in Immunocompromised Patients with Sepsis: A Prospective Cohort Study. Diagnostics, 11, Article 60. [Google Scholar] [CrossRef] [PubMed]
[98] Aliu-Bejta, A., Kurshumliu, M., Namani, S., Dreshaj, S. and Baršić, B. (2023) Ability of Presepsin Concentrations to Predict Mortality in Adult Patients with Sepsis. Journal of Clinical and Translational Science, 7, e121. [Google Scholar] [CrossRef] [PubMed]
[99] AlJarhi, U.M., Sadek, K.M., Darwish, E.M., Elmessiery, R.M., Salem, K., Khalil, S.A., et al. (2020) Evaluation of Serum Presepsin, Procalcitonin, Copeptin, and High-Sensitivity C-Reactive Protein for Differentiating Bacterial Infection from Disease Activity in Egyptian Patients with Systemic Lupus Erythematosus. Clinical Rheumatology, 40, 1861-1869. [Google Scholar] [CrossRef] [PubMed]
[100] Wu, J., Zhan, X., Wang, S., Liao, X., Li, L. and Luo, J. (2023) The Value of Plasma Presepsin as a Diagnostic and Prognostic Biomarker for Sepsis in Southern China. Inflammation Research, 72, 1829-1837. [Google Scholar] [CrossRef] [PubMed]
[101] Kim, H., Hur, M., Lee, H., Lee, G., Lee, K.R. and Mannello, F. (2025) Early Sepsis Detection in Adult Patients with Suspected Sepsis in an Emergency Setting: A Sequential Strategy of Monocyte Distribution Width and Presepsin. Diagnostics, 15, Article 2574. [Google Scholar] [CrossRef
[102] Igna, R., Gîrleanu, I., Cojocariu, C., Huiban, L., Muzîca, C., Sîngeap, A., et al. (2022) The Role of Presepsin and Procalcitonin in Early Diagnosis of Bacterial Infections in Cirrhotic Patients with Acute-on-Chronic Liver Failure. Journal of Clinical Medicine, 11, Article 5410. [Google Scholar] [CrossRef] [PubMed]
[103] Dragoş, D., Ghenu, M.I., Timofte, D., Balcangiu-Stroescu, A., Ionescu, D. and Manea, M.M. (2023) The Cutoff Value of Presepsin for Diagnosing Sepsis Increases with Kidney Dysfunction, a Cross-Sectional Observational Study. Medicine, 102, e32620. [Google Scholar] [CrossRef] [PubMed]
[104] Fujieda, K., Tanaka, A., Ozeki, T., Furuhashi, K., Sano, Y., Ishida, S., et al. (2025) Acute T-Cell Rejection after Living-Donor Kidney Transplantation: Monitoring with Urinary Presepsin. Cureus, 17, e95462. [Google Scholar] [CrossRef
[105] Figueras Aloy, J., Vilanova Juanola, J.M., Molina González, J. and Jiménez González, R. (1991) Pathogenic Factors in Bronchopulmonary Dysplasia. Anales de Pediatría, 35, 36-40.
https://pubmed.ncbi.nlm.nih.gov/1772170/
[106] Jang, W., Fujii, N., Fujii, T. and Choi, J.W. (2025) The Effect of Malnutrition, Inflammatory Biomarkers, and Stress-Induced Hyperglycemia on the Glomerular Filtration Rate in Renal Dysfunction. International Journal of General Medicine, 18, 4481-4494. [Google Scholar] [CrossRef] [PubMed]
[107] Shozushima, T., Takahashi, G., Matsumoto, N., Kojika, M., Endo, S. and Okamura, Y. (2011) Usefulness of Presepsin (sCD14-ST) Measurements as a Marker for the Diagnosis and Severity of Sepsis That Satisfied Diagnostic Criteria of Systemic Inflammatory Response Syndrome. Journal of Infection and Chemotherapy, 17, 764-769. [Google Scholar] [CrossRef] [PubMed]
[108] Adami, M., Giamarellos-Bourboulis, E.J. and Polyzogopoulou, E. (2024) Towards Improved Point-of-Care (POC) Testing for Patients with Suspected Sepsis: POC Tests for Host Biomarkers and Possible Microbial Pathogens. Expert Review of Molecular Diagnostics, 24, 829-839. [Google Scholar] [CrossRef] [PubMed]
[109] Patel, K. and Suh-Lailam, B.B. (2019) Implementation of Point-of-Care Testing in a Pediatric Healthcare Setting. Critical Reviews in Clinical Laboratory Sciences, 56, 239-246. [Google Scholar] [CrossRef] [PubMed]
[110] Hou, S.K., Lin, H.A., Chen, S.C., Lin, C.F. and Lin, S.F. (2021) Monocyte Distribution Width, Neutrophil-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio Improves Early Prediction for Sepsis at the Emergency. Journal of Personalized Medicine, 11, Article 732. [Google Scholar] [CrossRef] [PubMed]
[111] Akyel, S., Korkmaz, A. and Yıldız, A. (2025) Assessment of the Severity of Intermediate Coronary Artery Stenosis Using the Systemic Inflammatory Response Index. Diagnostics, 15, Article 162. [Google Scholar] [CrossRef] [PubMed]
[112] Zhang, Z., Qiu, X., Zeng, X., Liu, X., Lu, J., Xu, C., et al. (2025) Integrated Multi Omics and Machine Learning Reveal Mitochondrial Immunometabolic Networks in Sepsis Associated Encephalopathy. Scientific Reports, 15, Article No. 33572. [Google Scholar] [CrossRef
[113] Yao, T., Guan, C., Chen, Q., Wang, P., Xing, N., Liu, Z., et al. (2025) Multi-Omics Nominates VDAC2 as a Candidate Protective Locus in Sepsis-Associated Cholesterol Dysregulation. Apoptosis, 30, 3190-3206. [Google Scholar] [CrossRef
[114] Cheng, T., Xu, Y., Liu, Z., Wang, Y., Zhang, Z. and Huang, W. (2025) Multi-Omics Analysis Reveals Neutrophil Heterogeneity and Key Molecular Drivers in Sepsis-Associated Acute Kidney Injury. Frontiers in Immunology, 16, Article 1637692. [Google Scholar] [CrossRef
[115] Lin, Z., Chen, D., Zhang, P., Luo, J., Chen, S., Gu, S., et al. (2025) MultiOmics Reveal Neutrophil Heterogeneity in Sepsis (Review). International Journal of Molecular Medicine, 56, 1-15. [Google Scholar] [CrossRef
[116] Lin, S., Cai, K., Feng, S. and Lin, Z. (2024) Identification of m5C-Related Gene Diagnostic Biomarkers for Sepsis: A Machine Learning Study. Frontiers in Genetics, 15, Article 1444003. [Google Scholar] [CrossRef] [PubMed]
[117] Suo, T., Xu, M. and Fang, J. (2025) Lactylation Modulates Immune Infiltration in Sepsis-Induced Acute Respiratory Distress Syndrome: A Multi-Omics and Machine Learning Study with Experimental Confirmation. European Journal of Medical Research, 30, Article No. 1100. [Google Scholar] [CrossRef
[118] Zhang, Z., Chen, L., Shen, H., Wang, J., Yang, J., Yang, S., et al. (2025) Deriving Consensus Sepsis Clusters via Goal-Directed Subgroup Identification in Multi-Omics Study. Nature Communications, 16, Article No. 10328. [Google Scholar] [CrossRef
[119] Luo, Y., Gao, J., Su, X., Li, H., Li, Y., Qi, W., et al. (2025) Unraveling the Immunological Landscape and Gut Microbiome in Sepsis: A Comprehensive Approach to Diagnosis and Prognosis. eBioMedicine, 113, Article ID: 105586. [Google Scholar] [CrossRef] [PubMed]
[120] Chen, Y., Huang, X., Liu, X., et al. (2023) Effect of Continuous Blood Purification on Immunity and Endothelial Cell Function in Patients with Sepsis. Chinese Critical Care Medicine, 35, 146-151.
[121] Wang, Z., Xie, Z., Zhao, Y., Bu, T., et al. (2021) Effect of Dendritic Cells on Immune Function Regulated by Programmed Cell Death-1/Programmed Cell Death-Ligand 1 in Sepsis. Chinese Critical Care Medicine, 33, 1032-1039.
[122] Liu, J., Zhou, G., Wang, X. and Liu, D. (2022) Metabolic Reprogramming Consequences of Sepsis: Adaptations and Contradictions. Cellular and Molecular Life Sciences, 79, Article No. 456. [Google Scholar] [CrossRef] [PubMed]
[123] Langston, J.C., Yang, Q., Kiani, M.F. and Kilpatrick, L.E. (2023) Leukocyte Phenotyping in Sepsis Using Omics, Functional Analysis, and In Silico Modeling. Shock, 59, 224-231. [Google Scholar] [CrossRef] [PubMed]
[124] Tang, J., Shang, C., Chang, Y., Jiang, W., Xu, J., Zhang, L., et al. (2024) Peripheral PD-1+NK Cells Could Predict the 28-Day Mortality in Sepsis Patients. Frontiers in Immunology, 15, Article 1426064. [Google Scholar] [CrossRef] [PubMed]
[125] Li, Z., Wang, L., Yang, S., Luo, B., Liu, Y., Chen, M., et al. (2025) Immune-associated Molecular Classification and Prognosis Signature of Sepsis. PLOS ONE, 20, e0326083. [Google Scholar] [CrossRef] [PubMed]
[126] Wang, X., Guo, Z., Wang, Z., Wang, X., Xia, Y., Wu, D., et al. (2025) Exploring the Role of Circadian Rhythm-Related Genes in the Identification of Sepsis Subtypes and the Construction of Diagnostic Models Based on RNA-Seq and scRNA-Seq. International Journal of Molecular Sciences, 26, Article 3993. [Google Scholar] [CrossRef] [PubMed]
[127] Zhang, W., Anyalebechi, J.C., Ramonell, K.M., Chen, C., Xie, J., Liang, Z., et al. (2021) TIGIT Modulates Sepsis-Induced Immune Dysregulation in Mice with Preexisting Malignancy. JCI Insight, 6, e139823. [Google Scholar] [CrossRef] [PubMed]
[128] Yuan, L., Wang, Y., Chen, Y., Chen, X., Li, S. and Liu, X. (2023) Shikonin Inhibits Immune Checkpoint PD-L1 Expression on Macrophage in Sepsis by Modulating PKM2. International Immunopharmacology, 121, Article ID: 110401. [Google Scholar] [CrossRef] [PubMed]
[129] Zhou, Y., Yu, Z. and Lu, Y. (2025) To Explore the Influencing Factors of Clinical Failure of Anti-Tumor Necrosis Factor-α (TNF-α) Therapy in Sepsis. Life Sciences, 369, Article ID: 123556. [Google Scholar] [CrossRef] [PubMed]
[130] Ji, X., Yang, X., Shi, C., Guo, D., Wang, X., Messina, J.M., et al. (2022) Functionalized Core-Shell Nanogel Scavenger for Immune Modulation Therapy in Sepsis. Advanced Therapeutics, 5, Article ID: 2200127. [Google Scholar] [CrossRef] [PubMed]
[131] Ji, X., Shi, C., Yuan, D., Luo, M., Suo, L., Yang, X., et al. (2025) Harnessing Telodendrimer Nanotraps in Nanogels for Systemic Immune Modulation in Sepsis Treatment. ACS Pharmacology & Translational Science, 8, 2204-2219. [Google Scholar] [CrossRef] [PubMed]
[132] Xin, Q., Zhang, S., Sun, S., Song, N., Zhe, Y., Tian, F., et al. (2024) Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS Applied Materials & Interfaces, 16, 36047-36062. [Google Scholar] [CrossRef] [PubMed]
[133] Ferrari, F., Longhitano, Y., Voza, A., Fumagalli, J., Savioli, G., Zanza, C., et al. (2025) Clinical Applications of Polymyxin B Hemadsorption in Sepsis and Septic Shock. Journal of Intensive Care Medicine, 41, 91-96. [Google Scholar] [CrossRef
[134] Cutuli, S.L., Grieco, D.L., De Pascale, G. and Antonelli, M. (2021) Hemadsorption. Current Opinion in Anaesthesiology, 34, 113-118. [Google Scholar] [CrossRef] [PubMed]
[135] Mac, C.H., Nguyen, G.L.T., Nguyen, D.T.M., Huang, S., Peng, H., Chang, Y., et al. (2025) Noninvasive Vagus Nerve Electrical Stimulation for Immune Modulation in Sepsis Therapy. Journal of the American Chemical Society, 147, 8406-8421. [Google Scholar] [CrossRef] [PubMed]
[136] Lerman, I., Bu, Y., Singh, R., Silverman, H.A., Bhardwaj, A., Mann, A.J., et al. (2025) Next Generation Bioelectronic Medicine: Making the Case for Non-Invasive Closed-Loop Autonomic Neuromodulation. Bioelectronic Medicine, 11, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
[137] Xiao, Y., Yuan, Y., Hu, D. and Wang, H. (2024) Exosome-Derived MicroRNA: Potential Target for Diagnosis and Treatment of Sepsis. Journal of Immunology Research, 2024, Article ID: 4481452. [Google Scholar] [CrossRef] [PubMed]
[138] Zhang, M., Xie, J., Zhang, P., Wang, L., Wang, Q. and Yin, W. (2025) Bidirectional Regulatory Roles in the Immune Modulation, Organ Dysfunction, and Therapy of Sepsis. International Journal of Nanomedicine, 20, 13527-13541. [Google Scholar] [CrossRef
[139] Yi, C., Zhang, H., Yang, J., Chen, D. and Jiang, S. (2024) Elucidating Common Pathogenic Transcriptional Networks in Infective Endocarditis and Sepsis: Integrated Insights from Biomarker Discovery and Single-Cell RNA Sequencing. Frontiers in Immunology, 14, Article 1298041. [Google Scholar] [CrossRef] [PubMed]
[140] Peng, Y., Wu, Q., Zhuang, B., Ding, X., Peng, Y., Jing, D., et al. (2025) Blood Transcriptome Analysis Reveals CTSB and ATP6V0D1 Expression in Circulating Monocytes as Potential Biomarkers of Sepsis. Shock. [Google Scholar] [CrossRef
[141] Parthasarathy, U., Kuang, Y., Thakur, G., Hogan, J.D., Wyche, T.P., Norton, J.E., et al. (2023) Distinct Subsets of Neutrophils Crosstalk with Cytokines and Metabolites in Patients with Sepsis. iScience, 26, Article ID: 105948. [Google Scholar] [CrossRef] [PubMed]
[142] Zhang, R., Long, F., Wu, J. and Tan, R. (2025) Distinct Immunological Signatures Define Three Sepsis Recovery Trajectories: A Multi-Cohort Machine Learning Study. Frontiers in Medicine, 12, Article 1575237. [Google Scholar] [CrossRef] [PubMed]
[143] Tanak, A.S., Sardesai, A., Muthukumar, S. and Prasad, S. (2022) Simultaneous Detection of Sepsis Host Response Biomarkers in Whole Blood Using Electrochemical Biosensor. Bioengineering & Translational Medicine, 7, e10310. [Google Scholar] [CrossRef] [PubMed]
[144] Alba-Patiño, A., Russell, S.M., Borges, M., Pazos-Pérez, N., Álvarez-Puebla, R.A. and de la Rica, R. (2020) Nanoparticle-Based Mobile Biosensors for the Rapid Detection of Sepsis Biomarkers in Whole Blood. Nanoscale Advances, 2, 1253-1260. [Google Scholar] [CrossRef] [PubMed]
[145] Cotoia, A., Parisano, V., Mariotti, P.S., Lizzi, V., Netti, G.S., Ranieri, E., et al. (2024) Kinetics of Different Blood Biomarkers during Polymyxin-B Extracorporeal Hemoperfusion in Abdominal Sepsis. Blood Purification, 53, 574-582. [Google Scholar] [CrossRef] [PubMed]
[146] Bartlett, M.L., Goux, H., Johnson, L., Schully, K.L., Gregory, M., Brandsma, J., et al. (2024) Retrospective Analysis of Blood Biomarkers of Neurological Injury in Human Cases of Viral Infection and Bacterial Sepsis. The Journal of Infectious Diseases, 231, 805-815. [Google Scholar] [CrossRef] [PubMed]
[147] Xu, Z., Zhang, J., Li, Z., Wu, H., Xu, H., Guo, Y., et al. (2025) Organ-Targeted Biomarkers of Sepsis: A Systematic Review Reveals the Value of Inflammation and Lipid Metabolic Dysregulation. Pharmacological Research, 219, Article ID: 107917. [Google Scholar] [CrossRef] [PubMed]