|
[1]
|
Matics, T.J. and Sanchez-Pinto, L.N. (2017) Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pediatrics, 171, e172352. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Leisman, D., Huang, V., Zhou, Q., Gribben, J., Bianculli, A., Bernshteyn, M., et al. (2017) Delayed Second Dose Antibiotics for Patients Admitted from the Emergency Department with Sepsis: Prevalence, Risk Factors, and Outcomes. Critical Care Medicine, 45, 956-965. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Juneja, D., Jain, N., Singh, O., Goel, A. and Arora, S. (2023) Comparison between Presepsin, Procalcitonin, and CRP as Biomarkers to Diagnose Sepsis in Critically Ill Patients. Journal of Anaesthesiology Clinical Pharmacology, 39, 458-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sánchez-Iglesias, J.L., Morales-Coma, C., Minig, L., Lago, V., Domingo, S., Mancebo, G., et al. (2024) Procalcitonin and C-Reactive Protein as Early Markers of Anastomotic Leakage in Intestinal Resections for Advanced Ovarian Cancer (EDMOCS). Acta Obstetricia et Gynecologica Scandinavica, 103, 1302-1310. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Leonard, S., Guertin, H., Odoardi, N., Miller, M.R., Patel, M.A., Daley, M., et al. (2024) Pediatric Sepsis Inflammatory Blood Biomarkers That Correlate with Clinical Variables and Severity of Illness Scores. Journal of Inflammation, 21, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Huang, J., Li, J., Wu, N., Yang, X., Zhang, L., Bian, F., et al. (2025) Microfluidic Magnetic Droplet-Based Chemiluminescence Enzyme Immunoassay for Multiplex Sepsis Biomarker Screening. The Analyst, 150, 1553-1562. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Davies, K. and McLaren, J.E. (2024) Destabilisation of T Cell-Dependent Humoral Immunity in Sepsis. Clinical Science, 138, 65-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Y., Zhang, H. and Miao, C. (2025) Unraveling Immunosenescence in Sepsis: From Cellular Mechanisms to Therapeutics. Cell Death & Disease, 16, Article No. 393. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Miao, S., Zhang, R., Guo, G., Wang, X., Zhang, B., Li, L., et al. (2025) p38 Protein as a Therapeutic Target for Sepsis-Induced Organ Dysfunction. European Journal of Pharmacology, 1002, Article ID: 177833. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Vigneron, C., Py, B.F., Monneret, G. and Venet, F. (2023) The Double Sides of NLRP3 Inflammasome Activation in Sepsis. Clinical Science, 137, 333-351. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hashem, H.E., El Masry, S.A., Mokhtar, A.M., Ismail, E.A. and Abdelaal, N.M. (2020) Valuable Role of Neutrophil CD64 and Highly Sensitive CRP Biomarkers for Diagnostic, Monitoring, and Prognostic Evaluations of Sepsis Patients in Neonatal ICUs. BioMed Research International, 2020, Article ID: 6214363. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mubaraki, M.A., Faqihi, A., AlQhtani, F., Hafiz, T.A., Alalhareth, A., Thagfan, F.A., et al. (2023) Blood Biomarkers of Neonatal Sepsis with Special Emphasis on the Monocyte Distribution Width Value as an Early Sepsis Index. Medicina, 59, Article 1425. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gopal, N., Chauhan, N., Jain, U., Dass, S.K., Sharma, H.S. and Chandra, R. (2023) Advancement in Biomarker Based Effective Diagnosis of Neonatal Sepsis. Artificial Cells, Nanomedicine, and Biotechnology, 51, 476-490. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xie, Y., Li, B., Lin, Y., Shi, F., Chen, W., Wu, W., et al. (2020) Combining Blood-Based Biomarkers to Predict Mortality of Sepsis at Arrival at the Emergency Department. Medical Science Monitor, 27, e929527. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Luo, Z., Luo, P., Gu, H., Hu, X., Xiao, S., Lu, W., et al. (2025) A Novel Long-Acting C5a-Blocking Cyclic Peptide Prevents Sepsis-Induced Organ Dysfunction via Effective Blockade of the Inflammatory Cascade. Signal Transduction and Targeted Therapy, 10, Article No. 362. [Google Scholar] [CrossRef]
|
|
[16]
|
Daud, M., Khan, M.B., Qudrat, Q.U., Ullah, I., Khan, S., Khan, M.Z., et al. (2024) Role of C-Reactive Protein and Procalcitonin in Early Diagnostic Accuracy and Their Prognostic Significance in Sepsis. Cureus, 16, e70358. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Herzlich, J., Waksman, Y., Marom, R., Berliner, S., Mandel, D. and Mangel, L. (2025) Determinants of CRP Measurements and CRP Dynamics during Early Neonatal Sepsis Work Up. Scientific Reports, 15, Article No. 18031. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Baxla, V., Sharma, A.K., Seema, K., Kumar, A., Boipai, M., Bhattacharya, P.K., et al. (2025) Sepsis Biomarkers: CRP, Procalcitonin, and Presepsin—Diagnostic and Prognostic Significance in Sepsis. Journal of West African College of Surgeons, 15, 457-462. [Google Scholar] [CrossRef]
|
|
[19]
|
Datla, S., Kitchanan, S. and Sethuraman, G. (2021) Diagnostic Reliability of Salivary C-Reactive Protein as an Alternative Noninvasive Biomarker of Neonatal Sepsis. Indian Pediatrics, 58, 745-748. [Google Scholar] [CrossRef]
|
|
[20]
|
Karunasagar, A., DSouza, C., Prasad, M., Akshay, S.D., Irusan, D., Jenifer, A., et al. (2025) Age-Specific Predictive Modelling of Sepsis Mortality: The Diagnostic Utility of CRP and Serum Creatinine. Respiratory Medicine, 250, Article ID: 108530. [Google Scholar] [CrossRef]
|
|
[21]
|
An, X.H., Zhang, X.H. and Yi, S.G. (2023) Application of PCT, IL-6, CRP, and WBC for Diagnosing Neonatal Sepsis. Clinical Laboratory, 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fouad, N.A., Fouad, M.A., Assar, E.H. and Eltaher, S.M. (2020) Combination of Procalcitonin, CRP and CD11b Biomarkers in Early Detection of Neonatal Sepsis. The Egyptian Journal of Immunology, 27, 77-86.
|
|
[23]
|
Güneş, H., Yurttutan, S., Çobanuşağı, M. and Doğaner, A. (2021) CRP/Albumin Ratio: A Promising Marker of Gram-Negative Bacteremia in Late-Onset Neonatal Sepsis. Turkish Archives of Pediatrics, 56, 32-36.
|
|
[24]
|
Lin, G.C., Küng, E., Smajlhodzic, M., Domazet, S., Friedl, H.P., Angerer, J., et al. (2021) Directed Transport of CRP across in Vitro Models of the Blood-Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics, 13, Article 256. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ramavath, C., Katam, S.K., Vardhelli, V., Deshabhotla, S. and Oleti, T.P. (2023) Examining the Utility of Rapid Salivary C-Reactive Protein as a Predictor for Neonatal Sepsis: An Analytical Cross-Sectional Pilot Study. Diagnostics, 13, Article 867. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Prakash, G., Sajan, R., Reshma, G.G., Gutjahr, G., S, V.V., Narmadha, M.P., et al. (2025) Broadening Diagnostic Horizons: Specificity of Serial Negative CRPs in Predicting Blood Culture Negativity in Suspected Neonatal Sepsis. Cureus, 17, e81660. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hao, Y.X. and Yu, J.L. (2020) Cut-Off Value of White Blood Cell Count in the Diagnosis of Early-Onset Sepsis in Neonates. Chinese Journal of Contemporary Pediatrics, 22, 1159-1163. https://pubmed.ncbi.nlm.nih.gov/33172548/
|
|
[28]
|
Zeng, T., Sun, Y., Chen, S., Pang, J., Wang, H., Cai, X., et al. (2024) The Causal Relationship between Blood Cell Indices and 28-Day Mortality in Sepsis: A Retrospective Study and Bidirectional Mendelian Randomization Analysis. BMC Infectious Diseases, 24, Article No. 619. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gezahegn, B., Abdella, A., Meseret, F., Mohammed, A., Keneni, M., Asfaw, T., et al. (2025) Treatment Outcomes and Its Associated Factors among Neonates Admitted with Sepsis in Hiwot Fana Comprehensive Specialized University Hospital, Harar, Ethiopia. Frontiers in Pediatrics, 12, Article 1434803. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Pettit, N. (2025) Leukopenia and Neutropenic Fever. Emergency Medicine Clinics of North America, 43, 431-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shil, P.K., Majumder, B.K., Basak, A.K., et al. (2023) Role of White Blood Cell Count, Immature to Total Ratio and C-Reactive Protein in Early Detection of Clinically Suspected Neonatal Sepsis. Mymensingh Medical Journal, 32, 721-726. https://pubmed.ncbi.nlm.nih.gov/37391965/
|
|
[32]
|
Mearelli, F., Nunnari, A., Chitti, F., Rombini, A., Macor, A., Denora, D., et al. (2025) Low, Intermediate, and High Glutamine Levels Are Progressively Associated with Increased Lymphopenia, a Diminished Inflammatory Response, and Higher Mortality in Internal Medicine Patients with Sepsis. Journal of Clinical Medicine, 14, Article 3313. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, D., Wei, Y., Zhang, C., Yang, Y., Wang, Z., Lu, Y., et al. (2025) Value of SOFA Score, APACHE II Score, and WBC Count for Mortality Risk Assessment in Septic Patients: A Retrospective Study. Medicine, 104, e42464. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kanungo, R. and Hippargi, S.B. (2024) CD64 Expression on Neutrophils (nCD64) as a Biomarker in Adult Patients with Sepsis: A Cross-Sectional Study. Cureus, 16, e71912. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rohil, A., Dutta, S., Varma, N., Sachdev, M.S., Bansal, A. and Kumar, P. (2021) Cell-Surface Biomarkers, C-Reactive Protein and Haematological Parameters for Diagnosing Late Onset Sepsis in Pre-Term Neonates. Journal of Tropical Pediatrics, 67, fmad016. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ho, S.F., Tan, S.J., Mazlan, M.Z., Iberahim, S., Lee, Y.X. and Hassan, R. (2023) Exploring Extended White Blood Cell Parameters for the Evaluation of Sepsis among Patients Admitted to Intensive Care Units. Diagnostics, 13, Article 2445. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Herawati, S., Somia, I.K.A., Kosasih, S., Wande, I.N., Felim, J. and Payana, I.M.D. (2024) Integrating Routine Hematological and Extended Inflammatory Parameters as a Novel Approach for Timely Diagnosis and Prognosis in Sepsis Management. Diagnostics, 14, Article 956. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Verra, C., Paulmann, M.K., Wegener, J., Marzani, E., Ferreira Alves, G., Collino, M., et al. (2024) Spleen Tyrosine Kinase: A Novel Pharmacological Target for Sepsis-Induced Cardiac Dysfunction and Multi-Organ Failure. Frontiers in Immunology, 15, Article 1447901. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, H., Yang, W., Li, H., Bai, X., Zhang, H., Fan, W., et al. (2023) PROTAC Targeting Cyclophilin a Controls Virus-Induced Cytokine Storm. iScience, 26, Article ID: 107535. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, L., Wan, H., Zhang, M., Lu, W., Xu, F. and Dong, H. (2023) Estrogen Receptor Subtype Mediated Anti-Inflammation and Vasorelaxation via Genomic and Nongenomic Actions in Septic Mice. Frontiers in Endocrinology, 14, Article 1152634. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Magnani, N.D., Marchini, T., Calabró, V., Alvarez, S. and Evelson, P. (2020) Role of Mitochondria in the Redox Signaling Network and Its Outcomes in High Impact Inflammatory Syndromes. Frontiers in Endocrinology, 11, Article 568305. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Edalati, S., Meyer, J.S., Aravot, D. and Barac, Y.D. (2024) Vagal Nerve Stimulation Potential Therapeutic Benefits in Acute Lung Rejection and Transplantation. Transplant Immunology, 86, Article ID: 102105. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yang, J., Ucakar, B., Vanvarenberg, K., Malfanti, A. and des Rieux, A. (2025) Nanoparticles Loaded with a CSF1R Antagonist Selectively Depletes Microglial Cells and Modulates Inflammation in Spinal Cord Injury. Journal of Controlled Release, 386, Article ID: 114079. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Addeo, A., Obeid, M. and Friedlaender, A. (2020) COVID-19 and Lung Cancer: Risks, Mechanisms and Treatment Interactions. Journal for ImmunoTherapy of Cancer, 8, e000892. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
He, Y., Chen, X., Zhong, J., Lin, C., Situ, J., Liu, B., et al. (2025) Glucocorticoid Reduces Mortality in LPS-Induced Sepsis Mouse Model by Inhibiting JAK1/STAT3-Mediated Inflammatory Response and Restoring Tricarboxylic Acid Cycle. Life Sciences, 375, Article ID: 123744. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shen, X., Han, Y., Gao, Z., Han, P. and Bi, X. (2023) Pre Exposure to Enriched Environment Alleviates Brain Injury after Ischemia-Reperfusion by Inhibiting p38MAPK/STAT1 Pathway. Molecular Biology Reports, 50, 2243-2255. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, Y., Li, D., Song, L. and Ding, H. (2020) Ophiopogonin D Attenuates PM2.5‑Induced Inflammation via Suppressing the AMPK/NF‑κB Pathway in Mouse Pulmonary Epithelial Cells. Experimental and Therapeutic Medicine, 20, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ge, X., Meng, Q., Wei, L., Liu, J., Li, M., Liang, X., et al. (2021) Myocardial Ischemia-Reperfusion Induced Cardiac Extracellular Vesicles Harbour Proinflammatory Features and Aggravate Heart Injury. Journal of Extracellular Vesicles, 10, e12072. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ostmann, A., Paust, H., Panzer, U., Wegscheid, C., Kapffer, S., Huber, S., et al. (2013) Regulatory T Cell-Derived IL-10 Ameliorates Crescentic GN. Journal of the American Society of Nephrology, 24, 930-942. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Park, Y.H., Lee, S.W., Kim, T., Park, H.J., Van Kaer, L. and Hong, S. (2024) The iNKT Cell Ligand α-GalCer Prevents Murine Septic Shock by Inducing IL10-Producing iNKT and B Cells. Frontiers in Immunology, 15, Article 1457690. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gu, X., Tian, T., Zhang, B., Liu, Y., Yuan, C., Shao, L., et al. (2014) Elevated Plasma Interleukin-35 Levels Predict Poor Prognosis in Patients with Non-Small Cell Lung Cancer. Tumor Biology, 36, 2651-2656. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Clere-Jehl, R., Mariotte, A., Meziani, F., Bahram, S., Georgel, P. and Helms, J. (2020) JAK-STAT Targeting Offers Novel Therapeutic Opportunities in Sepsis. Trends in Molecular Medicine, 26, 987-1002. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Hannan, E.L., Zhong, Y., Cozzens, K., Tamis-Holland, J., Ling, F.S.K., Berger, P.B., et al. (2023) Short-Term Deaths after Percutaneous Coronary Intervention Discharge: Prevalence, Risk Factors, and Hospital Risk-Adjusted Mortality. Journal of the Society for Cardiovascular Angiography & Interventions, 2, Article ID: 100559. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Reyes, M., Filbin, M.R., Bhattacharyya, R.P., Billman, K., Eisenhaure, T., Hung, D.T., et al. (2020) An Immune-Cell Signature of Bacterial Sepsis. Nature Medicine, 26, 333-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Zhou, H. (2024) The Value of Systemic Immune-Inflammation Index and T Cell Subsets in the Severity and Prognosis of Sepsis. Critical Reviews in Immunology, 44, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Tu, X., Huang, H., Xu, S., Li, C. and Luo, S. (2023) Single-Cell Transcriptomics Reveals Immune Infiltrate in Sepsis. Frontiers in Pharmacology, 14, Article 1133145. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Murao, A., Jha, A., Aziz, M. and Wang, P. (2024) Transcriptomic Profiling of Immune Cells in Murine Polymicrobial Sepsis. Frontiers in Immunology, 15, Article 1347453. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Qin, Y. and Zhang, J. (2025) The Multifaceted Role of Regulatory T Cells in Sepsis: Mechanisms, Heterogeneity, and Pathogen-Tailored Therapies. International Journal of Molecular Sciences, 26, Article 7436. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Miao, S., Chang, Z., Gu, B., et al. (2024) Generation of Tolerogenic Dendritic Cells under the Persistent Inflammation Stimulation. Shock, 61, 454-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Huang, S., Liu, D., Sun, J., Zhang, H., Zhang, J., Wang, Q., et al. (2022) Tim-3 Regulates Sepsis-Induced Immunosuppression by Inhibiting the NF-κB Signaling Pathway in CD4 T Cells. Molecular Therapy, 30, 1227-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Cummings, M.J., Guichard, V., Owor, N., Ochar, T., Kiwubeyi, M., Nankwanga, R., et al. (2024) Heterogeneous Expansion of Polymorphonuclear Myeloid-Derived Suppressor Cells Distinguishes High-Risk Sepsis Immunophenotypes in Uganda. Shock, 62, 336-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Frydman, G.H., Ellett, F., Jorgensen, J., Marand, A.L., Zukerberg, L., Selig, M.K., et al. (2023) Megakaryocytes Respond during Sepsis and Display Innate Immune Cell Behaviors. Frontiers in Immunology, 14, Article 1083339. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Schindler, P., Kupcinskas, J., Juzenas, S., Skieceviciene, J., Salteniene, V., Schulz, C., et al. (2018) Expression of MicroRNAs in the Ascites of Patients with Peritoneal Carcinomatosis and Peritonitis. Cancer Cytopathology, 126, 353-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Iro, M.A. and Soundara Pandi, S.P. (2020) Clinical Application of Non-Coding RNAs in Sepsis. Current Opinion in Infectious Diseases, 33, 530-539. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Qiu, G., Fan, J., Zheng, G., He, J., Lin, F., Ge, M., et al. (2022) Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Frontiers in Molecular Biosciences, 9, Article 814240. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Ou, Y., An, R., Wang, H., Chen, L., Shen, Y., Cai, W., et al. (2022) Oxidative Stress-Related Circulating miRNA-27a Is a Potential Biomarker for Diagnosis and Prognosis in Patients with Sepsis. BMC Immunology, 23, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
El-Hefnawy, S.M., Mostafa, R.G., El-Zayat, R.S., Elfeshawy, E.M., Abd El-Bari, H.M. and El-Monem Ellaithy, M.A. (2021) Biochemical and Molecular Study on Serum miRNA-16a and miRNA-451 as Neonatal Sepsis Biomarkers. Biochemistry and Biophysics Reports, 25, Article ID: 100915. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Fatmi, A., Rebiahi, S.A., Chabni, N., Zerrouki, H., Azzaoui, H., Elhabiri, Y., et al. (2020) miRNA-23b as a Biomarker of Culture-Positive Neonatal Sepsis. Molecular Medicine, 26, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
El-Khazragy, N., Mohamed, N.M., Mostafa, M.F., Elnakib, M., Hemida, E.H.A., Salah, A., et al. (2023) miRNAs: Novel Noninvasive Biomarkers as Diagnostic and Prognostic Tools in Neonatal Sepsis. Diagnostic Microbiology and Infectious Disease, 107, Article ID: 116053. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Liu, P., Chen, D., Lou, J., Lin, J., Huang, C., Zou, Y., et al. (2023) Heparin-Binding Protein as a Biomarker of Severe Sepsis in the Pediatric Intensive Care Unit: A Multicenter, Prospective Study. Clinica Chimica Acta, 539, 26-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Liu, Z., Li, X., Chen, M., Sun, Y., Ma, Y., Dong, M., et al. (2024) Heparin-binding Protein and Sepsis-Induced Coagulopathy: Modulation of Coagulation and Fibrinolysis via the TGF-β Signalling Pathway. Thrombosis Research, 244, Article ID: 109176. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Linder, A., Soehnlein, O. and Åkesson, P. (2010) Roles of Heparin-Binding Protein in Bacterial Infections. Journal of Innate Immunity, 2, 431-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Feng, L., Liu, S., Wang, J., Gao, Y., Xie, F., Gong, J., et al. (2024) The Performance of a Combination of Heparin-Binding Protein with Other Biomarkers for Sepsis Diagnosis: An Observational Cohort Study. BMC Infectious Diseases, 24, Article No. 755. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Taha, A.M., Najah, Q., Omar, M.M., Abouelmagd, K., Ali, M., Hasan, M.T., et al. (2024) Diagnostic and Prognostic Value of Heparin-Binding Protein in Sepsis: A Systematic Review and Meta-Analysis. Medicine, 103, e38525. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Dou, Q.L., Liu, J., Zhang, W., Wang, C., Gu, Y., Li, N., et al. (2022) Dynamic Changes in Heparin-Binding Protein as a Prognostic Biomarker for 30-Day Mortality in Sepsis Patients in the Intensive Care Unit. Scientific Reports, 12, Article No. 10751. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Zhang, Z., Zhu, Y., Cao, Y., et al. (2021) Predictive Value of Heparin Binding Protein for Sepsis. Chinese Critical Care Medicine, 33, 654-658.
|
|
[77]
|
Ye, K., Lin, X., Chen, T., Wang, L. and Liu, S. (2024) Heparin-Binding Protein Promotes Acute Lung Injury in Sepsis Mice by Blocking the Aryl Hydrocarbon Receptor Signaling Pathway. Journal of Inflammation Research, 17, 2927-2938. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Zhou, X., Cao, Y., Huang, X., Qiu, S., Xiang, X., Niu, H., et al. (2024) Screening and Application of DNA Aptamers for Heparin-Binding Protein. Molecules, 29, Article 1717. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Wang, Y.Y., Yu, S.J., Chen, Q., et al. (2025) Performance Evaluation of an Acridinium Ester-Based Chemiluminescence Assay for Heparin-Binding Protein and Its Application in the Diagnosis of Sepsis. Chinese Journal of Preventive Medicine, 59, 1546-1551.
|
|
[80]
|
Wang, L., Zhang, J., Zhang, L., Hu, L. and Tian, J. (2022) Significant Difference of Differential Expression Pyroptosis-Related Genes and Their Correlations with Infiltrated Immune Cells in Sepsis. Frontiers in Cellular and Infection Microbiology, 12, Article 1005392. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Ding, W., Huang, L., Wu, Y., Su, J., He, L., Tang, Z., et al. (2023) The Role of Pyroptosis-Related Genes in the Diagnosis and Subclassification of Sepsis. PLOS ONE, 18, e0293537. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Yang, J., Ou, F., Li, B., Zeng, L., Chen, Q., Gan, H., et al. (2025) Machine Learning Based Screening of Biomarkers Associated with Cell Death and Immunosuppression of Multiple Life Stages Sepsis Populations. Scientific Reports, 15, Article No. 30302. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Patnaik, R., Azim, A. and Agarwal, V. (2020) Neutrophil CD64 a Diagnostic and Prognostic Marker of Sepsis in Adult Critically Ill Patients: A Brief Review. Indian Journal of Critical Care Medicine, 24, 1242-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Yin, W.P., Li, J.B., Zheng, X.F., An, L., et al. (2020) Effect of Neutrophil CD64 for Diagnosing Sepsis in Emergency Department. World Journal of Emergency Medicine, 11, 79-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Zou, H., Ye, Z., Liu, S., et al. (2021) The Value of Neutrophil CD64 Index in the Diagnosis of Patients with Sepsis in Intensive Care Unit. Chinese Critical Care Medicine, 33, 676-679.
|
|
[86]
|
Griffin, K., Miller, L., Yang, Y., Sharp, E., Young, L., Garcia, L., et al. (2025) Affinity-Based 3D-Printed Microfluidic Chip for Clinical Sepsis Detection with CD69, CD64, and CD25. Journal of Pharmaceutical and Biomedical Analysis, 252, Article ID: 116500. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Yang, Y., Griffin, K., Li, X., Sharp, E., Young, L., Garcia, L., et al. (2023) Combined CD25, CD64, and CD69 Biomarker in 3d-Printed Multizone Millifluidic Device for Sepsis Detection in Clinical Samples. Analytical Chemistry, 95, 12819-12825. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Lekka, K., Marangos, M., Roupas, N., Karakantza, M., Gogos, C. and Velissaris, D. (2020) Evaluation of the Activity of Neutrophils and Monocytes in Diabetic Patients with Sepsis, Can Surface Antigens HLA-DR and CD64 Be Useful as Prognostic Factors? Journal of Clinical Medicine Research, 12, 157-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Zakaria, M., Karam, N., Hassan, T., Zidan, N., Abdelsalam, A., Ramadan, R.A., et al. (2025) Neutrophil CD64 Can Be an Early Predictor for Sepsis during Febrile Neutropenic Episodes in Children with Cancer: A Case Control Study. Italian Journal of Pediatrics, 51, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Zhu, Q., Wang, H., Chen, L., Yu, Y. and Chen, M. (2025) Comparison of the Accuracy of Procalcitonin, Neutrophil CD64, and C-Reactive Protein for the Diagnosis and Prognosis of Septic Patients after Antibiotic Therapy. Practical Laboratory Medicine, 43, e00444. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Ramírez-Ramírez, A., Mancilla-Herrera, I., Figueroa-Damián, R., Soriano-Becerril, D.M. and Villeda-Gabriel, G. (2025) Expression of CD64 and CD69 as Biomarkers for Late-Onset Sepsis Diagnosis in Infants Born Prematurely. The Brazilian Journal of Infectious Diseases, 29, Article ID: 104511. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Morino, G., Takahashi, G., Kan, S., Inoue, Y., Sato, K. and Shirakawa, K. (2021) Antibody-Mediated Soluble CD14 Stabilization Prevents Agitation-Induced Increases in Presepsin Levels in Blood Component Specimens. BioTechniques, 70, 160-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Ikegame, A., Kondo, A., Kitaguchi, K., Sasa, K. and Miyoshi, M. (2022) Presepsin Production in Monocyte/Macrophage-Mediated Phagocytosis of Neutrophil Extracellular Traps. Scientific Reports, 12, Article No. 5978. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Mabrey, F.L., Martin, T.R., Calfee, C.S., Liu, K.D., LaCombe, B., Brown-Swigart, L., et al. (2025) Anti-CD14 Treatment in Patients with Severe COVID-19 Clinical and Biological Effects in a Phase 2 Randomized Open-Label Adaptive Platform Clinical Trial. Chest Critical Care, 3, Article ID: 100117. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Lee, B., Park, J.E., Yoon, S.J., Park, C., Lee, N.Y., Shin, T.G., et al. (2024) No Significant Differences in Presepsin Levels According to the Causative Microorganism of Bloodstream Infection. Infection & Chemotherapy, 56, 47-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Koizumi, Y., Sakanashi, D., Mohri, T., Watanabe, H., Shiota, A., Asai, N., et al. (2020) Can Presepsin Uniformly Respond to Various Pathogens? An in Vitro Assay of New Sepsis Marker. BMC Immunology, 21, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Lee, J., Kim, S., Kim, K.H., Jeong, N.R., Kim, S.C. and Oh, E. (2021) The Association between Dynamic Changes in Serum Presepsin Levels and Mortality in Immunocompromised Patients with Sepsis: A Prospective Cohort Study. Diagnostics, 11, Article 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Aliu-Bejta, A., Kurshumliu, M., Namani, S., Dreshaj, S. and Baršić, B. (2023) Ability of Presepsin Concentrations to Predict Mortality in Adult Patients with Sepsis. Journal of Clinical and Translational Science, 7, e121. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
AlJarhi, U.M., Sadek, K.M., Darwish, E.M., Elmessiery, R.M., Salem, K., Khalil, S.A., et al. (2020) Evaluation of Serum Presepsin, Procalcitonin, Copeptin, and High-Sensitivity C-Reactive Protein for Differentiating Bacterial Infection from Disease Activity in Egyptian Patients with Systemic Lupus Erythematosus. Clinical Rheumatology, 40, 1861-1869. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Wu, J., Zhan, X., Wang, S., Liao, X., Li, L. and Luo, J. (2023) The Value of Plasma Presepsin as a Diagnostic and Prognostic Biomarker for Sepsis in Southern China. Inflammation Research, 72, 1829-1837. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Kim, H., Hur, M., Lee, H., Lee, G., Lee, K.R. and Mannello, F. (2025) Early Sepsis Detection in Adult Patients with Suspected Sepsis in an Emergency Setting: A Sequential Strategy of Monocyte Distribution Width and Presepsin. Diagnostics, 15, Article 2574. [Google Scholar] [CrossRef]
|
|
[102]
|
Igna, R., Gîrleanu, I., Cojocariu, C., Huiban, L., Muzîca, C., Sîngeap, A., et al. (2022) The Role of Presepsin and Procalcitonin in Early Diagnosis of Bacterial Infections in Cirrhotic Patients with Acute-on-Chronic Liver Failure. Journal of Clinical Medicine, 11, Article 5410. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Dragoş, D., Ghenu, M.I., Timofte, D., Balcangiu-Stroescu, A., Ionescu, D. and Manea, M.M. (2023) The Cutoff Value of Presepsin for Diagnosing Sepsis Increases with Kidney Dysfunction, a Cross-Sectional Observational Study. Medicine, 102, e32620. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Fujieda, K., Tanaka, A., Ozeki, T., Furuhashi, K., Sano, Y., Ishida, S., et al. (2025) Acute T-Cell Rejection after Living-Donor Kidney Transplantation: Monitoring with Urinary Presepsin. Cureus, 17, e95462. [Google Scholar] [CrossRef]
|
|
[105]
|
Figueras Aloy, J., Vilanova Juanola, J.M., Molina González, J. and Jiménez González, R. (1991) Pathogenic Factors in Bronchopulmonary Dysplasia. Anales de Pediatría, 35, 36-40. https://pubmed.ncbi.nlm.nih.gov/1772170/
|
|
[106]
|
Jang, W., Fujii, N., Fujii, T. and Choi, J.W. (2025) The Effect of Malnutrition, Inflammatory Biomarkers, and Stress-Induced Hyperglycemia on the Glomerular Filtration Rate in Renal Dysfunction. International Journal of General Medicine, 18, 4481-4494. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Shozushima, T., Takahashi, G., Matsumoto, N., Kojika, M., Endo, S. and Okamura, Y. (2011) Usefulness of Presepsin (sCD14-ST) Measurements as a Marker for the Diagnosis and Severity of Sepsis That Satisfied Diagnostic Criteria of Systemic Inflammatory Response Syndrome. Journal of Infection and Chemotherapy, 17, 764-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Adami, M., Giamarellos-Bourboulis, E.J. and Polyzogopoulou, E. (2024) Towards Improved Point-of-Care (POC) Testing for Patients with Suspected Sepsis: POC Tests for Host Biomarkers and Possible Microbial Pathogens. Expert Review of Molecular Diagnostics, 24, 829-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Patel, K. and Suh-Lailam, B.B. (2019) Implementation of Point-of-Care Testing in a Pediatric Healthcare Setting. Critical Reviews in Clinical Laboratory Sciences, 56, 239-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Hou, S.K., Lin, H.A., Chen, S.C., Lin, C.F. and Lin, S.F. (2021) Monocyte Distribution Width, Neutrophil-to-Lymphocyte Ratio, and Platelet-to-Lymphocyte Ratio Improves Early Prediction for Sepsis at the Emergency. Journal of Personalized Medicine, 11, Article 732. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Akyel, S., Korkmaz, A. and Yıldız, A. (2025) Assessment of the Severity of Intermediate Coronary Artery Stenosis Using the Systemic Inflammatory Response Index. Diagnostics, 15, Article 162. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Zhang, Z., Qiu, X., Zeng, X., Liu, X., Lu, J., Xu, C., et al. (2025) Integrated Multi Omics and Machine Learning Reveal Mitochondrial Immunometabolic Networks in Sepsis Associated Encephalopathy. Scientific Reports, 15, Article No. 33572. [Google Scholar] [CrossRef]
|
|
[113]
|
Yao, T., Guan, C., Chen, Q., Wang, P., Xing, N., Liu, Z., et al. (2025) Multi-Omics Nominates VDAC2 as a Candidate Protective Locus in Sepsis-Associated Cholesterol Dysregulation. Apoptosis, 30, 3190-3206. [Google Scholar] [CrossRef]
|
|
[114]
|
Cheng, T., Xu, Y., Liu, Z., Wang, Y., Zhang, Z. and Huang, W. (2025) Multi-Omics Analysis Reveals Neutrophil Heterogeneity and Key Molecular Drivers in Sepsis-Associated Acute Kidney Injury. Frontiers in Immunology, 16, Article 1637692. [Google Scholar] [CrossRef]
|
|
[115]
|
Lin, Z., Chen, D., Zhang, P., Luo, J., Chen, S., Gu, S., et al. (2025) MultiOmics Reveal Neutrophil Heterogeneity in Sepsis (Review). International Journal of Molecular Medicine, 56, 1-15. [Google Scholar] [CrossRef]
|
|
[116]
|
Lin, S., Cai, K., Feng, S. and Lin, Z. (2024) Identification of m5C-Related Gene Diagnostic Biomarkers for Sepsis: A Machine Learning Study. Frontiers in Genetics, 15, Article 1444003. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Suo, T., Xu, M. and Fang, J. (2025) Lactylation Modulates Immune Infiltration in Sepsis-Induced Acute Respiratory Distress Syndrome: A Multi-Omics and Machine Learning Study with Experimental Confirmation. European Journal of Medical Research, 30, Article No. 1100. [Google Scholar] [CrossRef]
|
|
[118]
|
Zhang, Z., Chen, L., Shen, H., Wang, J., Yang, J., Yang, S., et al. (2025) Deriving Consensus Sepsis Clusters via Goal-Directed Subgroup Identification in Multi-Omics Study. Nature Communications, 16, Article No. 10328. [Google Scholar] [CrossRef]
|
|
[119]
|
Luo, Y., Gao, J., Su, X., Li, H., Li, Y., Qi, W., et al. (2025) Unraveling the Immunological Landscape and Gut Microbiome in Sepsis: A Comprehensive Approach to Diagnosis and Prognosis. eBioMedicine, 113, Article ID: 105586. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Chen, Y., Huang, X., Liu, X., et al. (2023) Effect of Continuous Blood Purification on Immunity and Endothelial Cell Function in Patients with Sepsis. Chinese Critical Care Medicine, 35, 146-151.
|
|
[121]
|
Wang, Z., Xie, Z., Zhao, Y., Bu, T., et al. (2021) Effect of Dendritic Cells on Immune Function Regulated by Programmed Cell Death-1/Programmed Cell Death-Ligand 1 in Sepsis. Chinese Critical Care Medicine, 33, 1032-1039.
|
|
[122]
|
Liu, J., Zhou, G., Wang, X. and Liu, D. (2022) Metabolic Reprogramming Consequences of Sepsis: Adaptations and Contradictions. Cellular and Molecular Life Sciences, 79, Article No. 456. [Google Scholar] [CrossRef] [PubMed]
|
|
[123]
|
Langston, J.C., Yang, Q., Kiani, M.F. and Kilpatrick, L.E. (2023) Leukocyte Phenotyping in Sepsis Using Omics, Functional Analysis, and In Silico Modeling. Shock, 59, 224-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Tang, J., Shang, C., Chang, Y., Jiang, W., Xu, J., Zhang, L., et al. (2024) Peripheral PD-1+NK Cells Could Predict the 28-Day Mortality in Sepsis Patients. Frontiers in Immunology, 15, Article 1426064. [Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Li, Z., Wang, L., Yang, S., Luo, B., Liu, Y., Chen, M., et al. (2025) Immune-associated Molecular Classification and Prognosis Signature of Sepsis. PLOS ONE, 20, e0326083. [Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Wang, X., Guo, Z., Wang, Z., Wang, X., Xia, Y., Wu, D., et al. (2025) Exploring the Role of Circadian Rhythm-Related Genes in the Identification of Sepsis Subtypes and the Construction of Diagnostic Models Based on RNA-Seq and scRNA-Seq. International Journal of Molecular Sciences, 26, Article 3993. [Google Scholar] [CrossRef] [PubMed]
|
|
[127]
|
Zhang, W., Anyalebechi, J.C., Ramonell, K.M., Chen, C., Xie, J., Liang, Z., et al. (2021) TIGIT Modulates Sepsis-Induced Immune Dysregulation in Mice with Preexisting Malignancy. JCI Insight, 6, e139823. [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Yuan, L., Wang, Y., Chen, Y., Chen, X., Li, S. and Liu, X. (2023) Shikonin Inhibits Immune Checkpoint PD-L1 Expression on Macrophage in Sepsis by Modulating PKM2. International Immunopharmacology, 121, Article ID: 110401. [Google Scholar] [CrossRef] [PubMed]
|
|
[129]
|
Zhou, Y., Yu, Z. and Lu, Y. (2025) To Explore the Influencing Factors of Clinical Failure of Anti-Tumor Necrosis Factor-α (TNF-α) Therapy in Sepsis. Life Sciences, 369, Article ID: 123556. [Google Scholar] [CrossRef] [PubMed]
|
|
[130]
|
Ji, X., Yang, X., Shi, C., Guo, D., Wang, X., Messina, J.M., et al. (2022) Functionalized Core-Shell Nanogel Scavenger for Immune Modulation Therapy in Sepsis. Advanced Therapeutics, 5, Article ID: 2200127. [Google Scholar] [CrossRef] [PubMed]
|
|
[131]
|
Ji, X., Shi, C., Yuan, D., Luo, M., Suo, L., Yang, X., et al. (2025) Harnessing Telodendrimer Nanotraps in Nanogels for Systemic Immune Modulation in Sepsis Treatment. ACS Pharmacology & Translational Science, 8, 2204-2219. [Google Scholar] [CrossRef] [PubMed]
|
|
[132]
|
Xin, Q., Zhang, S., Sun, S., Song, N., Zhe, Y., Tian, F., et al. (2024) Multienzyme Active Nanozyme for Efficient Sepsis Therapy through Modulating Immune and Inflammation Inhibition. ACS Applied Materials & Interfaces, 16, 36047-36062. [Google Scholar] [CrossRef] [PubMed]
|
|
[133]
|
Ferrari, F., Longhitano, Y., Voza, A., Fumagalli, J., Savioli, G., Zanza, C., et al. (2025) Clinical Applications of Polymyxin B Hemadsorption in Sepsis and Septic Shock. Journal of Intensive Care Medicine, 41, 91-96. [Google Scholar] [CrossRef]
|
|
[134]
|
Cutuli, S.L., Grieco, D.L., De Pascale, G. and Antonelli, M. (2021) Hemadsorption. Current Opinion in Anaesthesiology, 34, 113-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[135]
|
Mac, C.H., Nguyen, G.L.T., Nguyen, D.T.M., Huang, S., Peng, H., Chang, Y., et al. (2025) Noninvasive Vagus Nerve Electrical Stimulation for Immune Modulation in Sepsis Therapy. Journal of the American Chemical Society, 147, 8406-8421. [Google Scholar] [CrossRef] [PubMed]
|
|
[136]
|
Lerman, I., Bu, Y., Singh, R., Silverman, H.A., Bhardwaj, A., Mann, A.J., et al. (2025) Next Generation Bioelectronic Medicine: Making the Case for Non-Invasive Closed-Loop Autonomic Neuromodulation. Bioelectronic Medicine, 11, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[137]
|
Xiao, Y., Yuan, Y., Hu, D. and Wang, H. (2024) Exosome-Derived MicroRNA: Potential Target for Diagnosis and Treatment of Sepsis. Journal of Immunology Research, 2024, Article ID: 4481452. [Google Scholar] [CrossRef] [PubMed]
|
|
[138]
|
Zhang, M., Xie, J., Zhang, P., Wang, L., Wang, Q. and Yin, W. (2025) Bidirectional Regulatory Roles in the Immune Modulation, Organ Dysfunction, and Therapy of Sepsis. International Journal of Nanomedicine, 20, 13527-13541. [Google Scholar] [CrossRef]
|
|
[139]
|
Yi, C., Zhang, H., Yang, J., Chen, D. and Jiang, S. (2024) Elucidating Common Pathogenic Transcriptional Networks in Infective Endocarditis and Sepsis: Integrated Insights from Biomarker Discovery and Single-Cell RNA Sequencing. Frontiers in Immunology, 14, Article 1298041. [Google Scholar] [CrossRef] [PubMed]
|
|
[140]
|
Peng, Y., Wu, Q., Zhuang, B., Ding, X., Peng, Y., Jing, D., et al. (2025) Blood Transcriptome Analysis Reveals CTSB and ATP6V0D1 Expression in Circulating Monocytes as Potential Biomarkers of Sepsis. Shock. [Google Scholar] [CrossRef]
|
|
[141]
|
Parthasarathy, U., Kuang, Y., Thakur, G., Hogan, J.D., Wyche, T.P., Norton, J.E., et al. (2023) Distinct Subsets of Neutrophils Crosstalk with Cytokines and Metabolites in Patients with Sepsis. iScience, 26, Article ID: 105948. [Google Scholar] [CrossRef] [PubMed]
|
|
[142]
|
Zhang, R., Long, F., Wu, J. and Tan, R. (2025) Distinct Immunological Signatures Define Three Sepsis Recovery Trajectories: A Multi-Cohort Machine Learning Study. Frontiers in Medicine, 12, Article 1575237. [Google Scholar] [CrossRef] [PubMed]
|
|
[143]
|
Tanak, A.S., Sardesai, A., Muthukumar, S. and Prasad, S. (2022) Simultaneous Detection of Sepsis Host Response Biomarkers in Whole Blood Using Electrochemical Biosensor. Bioengineering & Translational Medicine, 7, e10310. [Google Scholar] [CrossRef] [PubMed]
|
|
[144]
|
Alba-Patiño, A., Russell, S.M., Borges, M., Pazos-Pérez, N., Álvarez-Puebla, R.A. and de la Rica, R. (2020) Nanoparticle-Based Mobile Biosensors for the Rapid Detection of Sepsis Biomarkers in Whole Blood. Nanoscale Advances, 2, 1253-1260. [Google Scholar] [CrossRef] [PubMed]
|
|
[145]
|
Cotoia, A., Parisano, V., Mariotti, P.S., Lizzi, V., Netti, G.S., Ranieri, E., et al. (2024) Kinetics of Different Blood Biomarkers during Polymyxin-B Extracorporeal Hemoperfusion in Abdominal Sepsis. Blood Purification, 53, 574-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[146]
|
Bartlett, M.L., Goux, H., Johnson, L., Schully, K.L., Gregory, M., Brandsma, J., et al. (2024) Retrospective Analysis of Blood Biomarkers of Neurological Injury in Human Cases of Viral Infection and Bacterial Sepsis. The Journal of Infectious Diseases, 231, 805-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[147]
|
Xu, Z., Zhang, J., Li, Z., Wu, H., Xu, H., Guo, Y., et al. (2025) Organ-Targeted Biomarkers of Sepsis: A Systematic Review Reveals the Value of Inflammation and Lipid Metabolic Dysregulation. Pharmacological Research, 219, Article ID: 107917. [Google Scholar] [CrossRef] [PubMed]
|