膳食纤维对心血管肾代谢综合征患者的调控作用研究进展
Research Progress on the Regulatory Effect of Dietary Fiber on Patients with Cardiovascular-Kidney-Metabolic Syndrome
DOI: 10.12677/acm.2026.162441, PDF, HTML, XML,    科研立项经费支持
作者: 徐 萌:山东大学第二临床学院,山东 济南;庄向华*:山东大学齐鲁第二医院内分泌代谢科,山东 济南
关键词: 膳食纤维心血管肾代谢综合征短链脂肪酸肠道微生物Dietary Fiber Cardiovascular-Kidney-Metabolic Syndrome Short-Chain Fatty Acids Gut Microbiota
摘要: 本文系统综述膳食纤维对心血管肾代谢综合征(CKM)患者的调控作用及其机制。结合近年研究进展,指出膳食纤维在降低CKM患者全因死亡率和心血管事件风险方面的积极潜力。膳食纤维主要利用其肠道发酵产物短链脂肪酸(SCFAs),发挥抑制全身性炎症、改善血管内皮功能、降低尿毒症毒素积累等作用,并在体重控制、糖脂代谢以及调节肠道微生物菌群的组成中发挥多重干预作用,从而对CKM患者的心、肾及代谢系统产生协同保护效果,为临床营养干预心血管肾代谢综合征提供理论依据。但膳食纤维在晚期肾病患者中的应用仍需谨慎并进一步研究。
Abstract: This article systematically reviews the regulatory effects and mechanisms of dietary fiber on patients with cardiovascular-kidney-metabolic syndrome (CKM). Based on recent research progress, it is pointed out that dietary fiber has a positive potential in reducing all-cause mortality and cardiovascular event risk in CKM patients. Dietary fiber mainly utilizes its intestinal fermentation products short-chain fatty acids (SCFAs) to inhibit systemic inflammation, improve vascular endothelial function, reduce the accumulation of uremic toxins, and play multiple intervention roles in weight control, glucose and lipid metabolism, and regulation of gut microbiota composition, thereby exerting a synergistic protective effect on the heart, kidney, and metabolic system of CKM patients, providing theoretical basis for clinical nutritional intervention in cardiovascular-kidney-metabolic syndrome. However, the use of dietary fiber in patients with advanced kidney disease still requires caution and further research.
文章引用:徐萌, 庄向华. 膳食纤维对心血管肾代谢综合征患者的调控作用研究进展[J]. 临床医学进展, 2026, 16(2): 699-706. https://doi.org/10.12677/acm.2026.162441

1. 引言

心血管肾代谢综合征(CKM)是一种由代谢疾病(如肥胖、糖尿病)、慢性肾病和心血管疾病复杂相互作用导致的临床疾病,这种相互关联的病理生理导致多器官损伤,显著增加心血管不良事件的可能性[1]。近年来,随着全球代谢性疾病负担的不断加剧,CKM已成为影响公众健康的重大挑战。膳食纤维作为一类不可被人体消化吸收的碳水化合物,已被广泛证实对多种慢性代谢性疾病具有保护作用[2]。膳食纤维可以通过调节肠道菌群、产生短链脂肪酸、改善代谢参数等多重机制,可能对CKM的综合管理具有重要价值。然而,目前关于膳食纤维在CKM患者中的具体作用机制、临床适用性及安全性尚未系统阐述。因此,本文旨在综述膳食纤维对CKM患者的调控作用及其机制,以期为临床实践与后续研究提供参考。

2. 心肾代谢综合征的概述

2.1. 定义与诊断标准

心血管肾代谢综合征(CKM)被定义为一种健康障碍,由肥胖、糖尿病、慢性肾病(CKD)和心血管疾病(CVD)之间的联系引起,它包括心血管疾病高风险患者和已有心血管疾病患者[3]。CKM综合征最常见的原因是脂肪组织过多和/或功能失调[4]。功能失调的脂肪组织,尤其是内脏脂肪组织,会分泌促炎和促氧化产物,这些产物会加剧与动脉粥样硬化和肾纤维化相关的病理生理过程以及代谢风险因子的发展[5] [6]。例如,促炎介质引发的炎症反应可以降低对胰岛素作用的敏感性,导致胰岛素抵抗和高血糖[7]

根据CKM综合征发病生理、风险谱系及预防等因素可将其分期如下:0期,缺乏CKM风险因子,包括无代谢风险因素,且无慢性肾病或亚临床心血管疾病证据的非超重/肥胖人群;第一阶段,脂肪过多或功能失调,包括超重,腹部肥胖或脂肪组织功能障碍(临床表现为葡萄糖耐受受损或糖尿病前期),且无其他代谢风险因子或慢性肾病的人群;第二阶段定义为存在代谢风险因子(如高甘油三酯血症、高血压、转移性脂肪综合征、糖尿病)和/或中高风险慢性肾病;第三阶段定义为亚临床心血管疾病,患者为极高风险CKD患者或预测10年心血管疾病风险较高的个体;第四阶段CKM综合征被定义临床心血管疾病,包括冠心病、充血性心力衰竭和中风[3] [8]

2.2. 流行病学与危害

在2011年至2020年间,近90%的美国成年人符合CKM综合征(1期及以上)的标准,15%符合晚期的标准[9]。在大型亚洲队列中,70%的参与者患有CKM病,在≥55岁人群中,近90%患有慢性肾脏病[10]。这说明CKM综合征影响着半数以上人群的身体健康。心血管肾代谢综合征可对几乎所有主要器官系统造成危害,除了导致心力衰竭,冠心病等心血管疾病和肾衰竭外,还可能引起认知过早衰退,代谢功能障碍相关脂肪性肝病(此前为非酒精性脂肪肝病)以及癌症风险增加[11]-[13]。此外,CKM综合征还可能导致过早死亡以及由心血管疾病(CVD)负担驱动的高医疗支出[3]。鉴于CKM综合征的高患病率和对人类生命健康的高危害性,心血管肾代谢综合征已经成为越来越不能忽视的全球性问题。

3. 膳食纤维与心肾代谢综合征的相关性研究

3.1. 流行病学研究证据

Yafei Guo等[14]人开展的针对美国代谢综合征成年人的大型前瞻性研究中,分析了10,962名美国代谢综合征(Mets)患者(NHANES 1999~2018,平均年龄58.1岁)的前瞻性数据,其中Mets通过ATP III标准诊断。研究发现,在美国成年人中,较高的膳食纤维摄入与显著较低的全因病和心血管疾病死亡率相关。且纤维摄入量存在潜在阈值效应,低于21.7克/天,每增加5克纤维,所有原因死亡风险降低7% (HR = 0.93, 95% CI: 0.91~0.96, p < 0.0001)。这说明膳食纤维的充足摄入对代谢异常引起的心血管疾病有潜在改善作用。

3.2. 临床试验研究证据

JENKO PRAŽNIKAR Z等[15]人研究了膳食纤维补充剂对代谢综合征特征患者能量限制期间减重及血脂和葡萄糖血清谱的影响,这项随机对照研究将100名超重或肥胖参与者随机分配为含有不同膳食纤维的膳食纤维补充剂组或安慰剂组,分别在0周、4周、8周进行体重、体质指数(BMI)、C反应蛋白等方面的检测。研究表明,膳食纤维补充剂组在能量限制(ER)4周后脂肪量和内脏脂肪显著下降,8周后体重、BMI显著下降,并改善了脂质谱和炎症;而安慰剂组则仅在ER8周后观察到部分参数的显著差异。Jarrar等[16]人利用阿拉伯胶(GA,一种膳食纤维)补充作为干预措施,观察其对代谢综合征参数的影响,结果显示使用GA可使收缩压、舒张压和自由脂肪质量均显著下降。以上试验结果说明可溶性膳食纤维在调节代谢综合征患者血脂异常,改善炎症,降低血压方面的潜力。

EBRAHIM Z等[17]人探讨β-葡聚糖益生元对3至5期慢性肾病患者的肾功能、尿毒症毒素及肠道微生物群的影响,研究中59名参与者被随机分配到β-葡聚糖益生元干预组(n = 30)或对照组(n = 29),在基线、第8周和第14周使用16S rRNA测序评估肾功能(尿素、肌酐和肾小球滤过率)、尿毒毒素总和游离水平。研究结果表明,与对照组相比,干预组尿毒症毒素水平显著下降,14周内肾功能无显著变化。有限证据表明膳食纤维摄入可能降低尿毒症毒素如血清尿素、血清肌酐水平,但未发现对临床重要结局有影响。证据不足以推荐在慢性肾病患者中使用膳食纤维保护肾脏[18]。此外,过量膳食纤维可能会提高慢性肾病患者高钾血症风险。因此,对于CKM患者伴有严重肾脏疾病,是否要使用膳食纤维仍需要进一步随机对照试验验证。

3.3. 动物实验研究证据

LIU J等[19]人对Sprague-Dawley (SD)大鼠进行的6周喂食实验显示,DFs对代谢综合征具有剂量依赖的调控作用,可通过减缓体重增长速度控制肥胖,降低体质指数(BMI),抑制高脂饮食引起的TG、TC和LDL-C的增加,并改善了肝脏病理异常。此外,研究结果表明,DFs (膳食纤维)还通过促进肝脏脂质的分解和运输,提高棕色脂肪组织的能量消耗,在降低体重和脂质水平方面发挥了有效作用。其中在相同剂量下,SDF (可溶性膳食纤维)组改善大鼠血脂异常效果的优于IDF (不溶性膳食纤维)组,TDF (总膳食纤维)组对减缓大鼠体重增长、减轻高脂饮食对大鼠肝脏的负担,缓解脂肪肝症状的效果最佳,这也体现了IDF与SDF在此方面的协同作用。

KOMATSU Y [20]等人研究了可溶性纤维菊粉对Mets大鼠模型心脏、脂肪组织和肝脏病理以及代谢紊乱的影响,结果表明,高膳食纤维摄入可以减轻Mets大鼠的高血压、左心室纤维化和舒张功能障碍,同时减轻了Mets大鼠的脂肪组织炎症和纤维化,并降低了血清中IL-6水平的升高。这说明膳食纤维可以改善Mets大鼠心脏功能,发挥一定的抗炎作用,同时也为探究膳食纤维对心肾代谢健康的影响机制提供了证据。

4. 膳食纤维影响心肾代谢健康的可能机制

4.1. 心血管保护机制

膳食纤维在人体肠道内的代谢产物短链脂肪酸(SCFAs)可显著抑制IL-6和IL-8的产生,以及降低内皮细胞上的VCAM-1表达[21]。其中IL-6是动脉粥样硬化下游炎症反应传播的重要上游炎症细胞因子[22],IL-8和VCAM-1参与单核细胞在粥样硬化部位的粘附[23] [24]。因此,膳食纤维可通过在体内产生SCFAs抑制血管内皮细胞激活,减少血管炎症反应,预防动脉粥样硬化发生发展。此外,SCFAs还可以沿肠道–器官轴与G蛋白偶联受体相互作用,以减少炎症、血管阻力和心肌重塑,从而降低血压,保护心血管系统[25]

4.2. 肾脏保护机制

Sirich等人证明,血液透析患者在补充膳食纤维六周后,血浆中吲哚硫酸盐、硫酸对晶晶酯和血浆尿素氮水平显著下降[26]。而这些物质与慢性肾病和透析患者全因死亡和心血管疾病风险密切相关[27] [28]。这是因为膳食纤维会影响肠道微生物群的组成,使微生物活动从蛋白水解转向糖解发酵,从而减少与慢性肾病进展相关的肠道来源尿毒症毒素的产生,降低慢性肾病和透析患者的心血管疾病和死亡率[29]

此外,膳食纤维经微生物分解产生的SCFA可以降低结肠pH值,激活质子敏感的GPR65,从而降低CD8+ T细胞活性和心脏和肾组织中的纤维化[25]。SCFAs还可以下调与心脏和肾脏炎症相关的转录调控因子Egr1,并通过GPR43/109a信号减少肾脏肾素–血管紧张素系统激活,从而减少水钠储留,降低血压[30]

4.3. 全身性与代谢机制

高膳食纤维食物因其体积大且能量密度相对较低,可促进饱腹感,从而达到减少能量摄入,控制体重的效果[31]。不溶性纤维因其不溶于水,可通过增加粪便体积,并使其顺畅地通过消化道,促进排便,缓解便秘,减轻体重[32]。而大多数可溶性纤维类型会导致肠道内容物高度粘稠,具有凝胶状特性,可能导致延迟胃排空和/或阻碍肠道吸收,从而改善血糖[31]。此外,膳食纤维还可以通过提高食物血糖指数(GI),降低肥胖风险,改善受试者的葡萄糖稳态,调节激素反应等方式改善胰岛素抵抗[33] [34]。其中可溶性膳食纤维在改善胰岛素抵抗方面较不溶性膳食纤维更占优势[32]。最后,在调节血脂代谢方面,可溶性膳食纤维诱导肠道微生物多样性的显著改变,有效促进产酸细菌生长以产生短链脂肪酸(SCFAs),SCFAs通过肠肝轴的β氧化激活AMPK通路,进而调控脂质代谢,达到降低体脂相关指标的效果[35]。可溶性膳食纤维还可能通过SCFAs与小肠内胆汁盐结合增多,胆汁盐重吸收减少、食物血糖反应降低以及可溶性膳食纤维发酵产物的产生来降低胆固醇水平,不可溶性纤维则可通过促进饱腹感和腹胀感降低胆固醇[36] [37]

4.4. 肠道微生物菌群保护机制

高淀粉糖玉米饮食(含特定膳食纤维)干预增加了小鼠肠道内与健康益处相关的物种数量,如双歧杆菌科的假长双歧杆菌、动物双歧杆菌和乳杆菌科的植物乳杆菌,同时减少与致病机制相关的物种,特别是无乳链球菌(Streptococcus agalactiae)、雪德勒菌(Mucispirillum schaedleri)和不明毒菌(Alistipes indistinctus),从而减轻肠道炎症并改善高脂蛋白引起的菌群失调[38]。同样在人体试验中,代谢综合征患者通过补充益生菌和采取低热量高纤维饮食方案,可增加肠道内Log乳酸杆菌、Log双歧杆菌和Log型杆菌数量[39]。综上所述,膳食纤维可以调节肠道微生物菌群,增加肠道内双歧杆菌、乳酸杆菌等有益菌数量。

此外,上述肠道有益微生物群可将膳食纤维转化为SCFAs,SCFAs不仅可以通过调控特定细胞信号通路和转录因子保护肠道上皮屏障的完整性,还可以通过增加上皮细胞的增殖和分化来支持肠道屏障功能[40]。同时,SCFAs可通过与G蛋白偶联受体43和41 (GPR43和GPR41)结合,抑制宿主免疫细胞中的NF-κB激活,最终发挥抗炎作用[41]

5. 膳食纤维对心–肾–代谢病理交互链条的阻断作用

膳食纤维的干预核心在于其作为微生物发酵底物,通过竞争性抑制蛋白质发酵和增强有益代谢,打破心–肾–代谢病理交互链条[29]。具体而言,可溶性纤维经肠道菌群酵解产生短链脂肪酸(如丁酸盐),后者不仅能抑制全身炎症,增强肠道免疫反应,还能作为结肠上皮细胞的主要营养来源,通过调控连接蛋白帮助维持上皮屏障的完整性,以减少肠道稳态破坏,降低肠源性尿毒毒素(如硫酸吲哚酚、三甲基胺氧化物)进入血液[40] [42]。上述肠源性尿毒毒素对人体代谢、心血管系统、肾脏系统都造成负面影响。如IS (硫酸吲哚酚)通过提高空腹血糖水平和降低葡萄糖转运蛋白1 (GLUT1)表达,诱导促成糖尿病状态,干扰人体正常代谢,并可通过激活炎症和凝血通路直接促进血管钙化[43]。IS还可通过AHR-CYP1B1轴干扰线粒体代谢,直接诱导心肌损伤[44]。TMAO (三甲基胺氧化物)则可导致PERK/IRE1α轴激活,可能增加心房重塑和心律失常[45]。肠源性尿毒毒素的积累还会增加慢性肾病患者的肾脏排泄负担。因此,膳食纤维通过调控菌群,增加SCFAs产生,减少肠源性尿毒毒素的生成和毒性,从而有效打断从肠道生态失调到心肾功能恶化的病理交互链条。

6. 总结

心血管肾代谢综合征作为一种涉及代谢异常、慢性肾病和心血管疾病的复杂综合征,可以显著增加心肾事件及过早死亡风险,已成为重大公共卫生问题[3]。本文系统回顾心血管肾代谢综合征的分期和流行病学情况以及膳食纤维在CKM管理中的作用。研究表明膳食纤维不仅可通过改善体重、血糖、血脂及炎症指标对代谢异常产生积极影响,还能通过调节肠道微生态、产生短链脂肪酸等机制发挥心肾保护作用。尽管现有证据表明,适量增加膳食纤维摄入可显著降低CKM患者的全因死亡率和心血管事件风险,但是其在严重肾功能受损患者中的安全性与有效性仍待进一步明确,未来仍需更多高质量的随机对照试验进行进一步验证,以明确膳食纤维在不同阶段CKM患者中的最佳摄入量、类型及长期安全性,推动其在临床营养干预中的规范应用。

基金项目

山东省重点研发计划(2023CXGC010713)。

NOTES

*通讯作者。

参考文献

[1] Marassi, M. and Fadini, G.P. (2023) The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovascular Diabetology, 22, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
[2] Veronese, N., Gianfredi, V., Solmi, M., Barbagallo, M., Dominguez, L.J., Mandalà, C., et al. (2025) The Impact of Dietary Fiber Consumption on Human Health: An Umbrella Review of Evidence from 17,155,277 Individuals. Clinical Nutrition, 51, 325-333. [Google Scholar] [CrossRef] [PubMed]
[3] Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., et al. (2023) Cardiovascular-kidney-metabolic Health: A Presidential Advisory from the American Heart Association. Circulation, 148, 1606-1635. [Google Scholar] [CrossRef] [PubMed]
[4] Ndumele, C.E., Neeland, I.J., Tuttle, K.R., Chow, S.L., Mathew, R.O., Khan, S.S., et al. (2023) A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement from the American Heart Association. Circulation, 148, 1636-1664. [Google Scholar] [CrossRef] [PubMed]
[5] Powell-Wiley, T.M., Poirier, P., Burke, L.E., Després, J., Gordon-Larsen, P., Lavie, C.J., et al. (2021) Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143, e984-e1010. [Google Scholar] [CrossRef] [PubMed]
[6] Sheng, X., Qiu, C., Liu, H., Gluck, C., Hsu, J.Y., He, J., et al. (2020) Systematic Integrated Analysis of Genetic and Epigenetic Variation in Diabetic Kidney Disease. Proceedings of the National Academy of Sciences of the United States of America, 117, 29013-29024. [Google Scholar] [CrossRef] [PubMed]
[7] Rana, M.N. and Neeland, I.J. (2022) Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Current Diabetes Reports, 22, 27-37. [Google Scholar] [CrossRef] [PubMed]
[8] Minhas, A.M.K., Mathew, R.O., Sperling, L.S., Nambi, V., Virani, S.S., Navaneethan, S.D., et al. (2024) Prevalence of the Cardiovascular-Kidney-Metabolic Syndrome in the United States. Journal of the American College of Cardiology, 83, 1824-1826. [Google Scholar] [CrossRef] [PubMed]
[9] Aggarwal, R., Ostrominski, J.W. and Vaduganathan, M. (2024) Prevalence of Cardiovascular-Kidney-Metabolic Syndrome Stages in US Adults, 2011-2020. JAMA, 331, 1858-1860. [Google Scholar] [CrossRef] [PubMed]
[10] Tsai, M., Kao, J.T., Wong, C., Liao, C., Lo, W., Chien, K., et al. (2025) Cardiovascular-Kidney-Metabolic Syndrome and All-Cause and Cardiovascular Mortality: A Retrospective Cohort Study. PLOS Medicine, 22, e1004629. [Google Scholar] [CrossRef] [PubMed]
[11] Ben Assayag, E., Eldor, R., Korczyn, A.D., Kliper, E., Shenhar-Tsarfaty, S., Tene, O., et al. (2017) Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated with Brain Alterations and Poststroke Cognitive Decline. Stroke, 48, 2368-2374. [Google Scholar] [CrossRef] [PubMed]
[12] Yki-Järvinen, H. (2014) Non-Alcoholic Fatty Liver Disease as a Cause and a Consequence of Metabolic Syndrome. The Lancet Diabetes & Endocrinology, 2, 901-910. [Google Scholar] [CrossRef] [PubMed]
[13] Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel, L.A., et al. (2010) Diabetes and Cancer: A Consensus Report. Diabetes Care, 33, 1674-1685. [Google Scholar] [CrossRef] [PubMed]
[14] Guo, Y., Li, M. and Huang, Y. (2025) Association of Dietary Fiber Intake with All-Cause and Cardiovascular Mortality in U.S. Adults with Metabolic Syndrome: NHANES 1999-2018. Frontiers in Nutrition, 12, Article 1659000. [Google Scholar] [CrossRef
[15] Jenko Pražnikar, Z., Mohorko, N., Gmajner, D., Kenig, S. and Petelin, A. (2023) Effects of Four Different Dietary Fibre Supplements on Weight Loss and Lipid and Glucose Serum Profiles during Energy Restriction in Patients with Traits of Metabolic Syndrome: A Comparative, Randomized, Placebo-Controlled Study. Foods, 12, Article 2122. [Google Scholar] [CrossRef] [PubMed]
[16] Jarrar, A.H., Stojanovska, L., Apostolopoulos, V., Feehan, J., Bataineh, M.F., Ismail, L.C., et al. (2021) The Effect of Gum Arabic (Acacia Senegal) on Cardiovascular Risk Factors and Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndrome: A Randomized Clinical Trial. Nutrients, 13, Article 194. [Google Scholar] [CrossRef] [PubMed]
[17] Ebrahim, Z., Proost, S., Tito, R., Raes, J., Glorieux, G., Moosa, M., et al. (2022) The Effect of SS-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients, 14, Article 805. [Google Scholar] [CrossRef] [PubMed]
[18] Lin, P., Chou, C., Ou, S., Fang, T. and Chen, J. (2021) Systematic Review of Nutrition Supplements in Chronic Kidney Diseases: A GRADE Approach. Nutrients, 13, Article 469. [Google Scholar] [CrossRef] [PubMed]
[19] Liu, J., Hua, J., Chen, S., Zhao, L., Wang, Q. and Zhou, A. (2022) The Potential Mechanisms of Bergamot-Derived Dietary Fiber Alleviating High-Fat Diet-Induced Hyperlipidemia and Obesity in Rats. Food & Function, 13, 8228-8242. [Google Scholar] [CrossRef] [PubMed]
[20] Komatsu, Y., Aoyama, K., Yoneda, M., Ashikawa, S., Nakano, S., Kawai, Y., et al. (2021) The Prebiotic Fiber Inulin Ameliorates Cardiac, Adipose Tissue, and Hepatic Pathology, but Exacerbates Hypertriglyceridemia in Rats with Metabolic Syndrome. American Journal of Physiology-Heart and Circulatory Physiology, 320, H281-H295. [Google Scholar] [CrossRef] [PubMed]
[21] Li, M., van Esch, B.C.A.M., Henricks, P.A.J., Garssen, J. and Folkerts, G. (2018) Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide-or Tumor Necrosis Factor α-Induced Endothelial Activation. Frontiers in Pharmacology, 9, Article 233. [Google Scholar] [CrossRef] [PubMed]
[22] Hartman, J. and Frishman, W.H. (2014) Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiology in Review, 22, 147-151. [Google Scholar] [CrossRef] [PubMed]
[23] Boisvert, W.A. (2004) The Participation of Chemokines in Atherosclerosis. Discovery Medicine, 4, 288-292.
[24] Burris, R.L., Ng, H. and Nagarajan, S. (2013) Soy Protein Inhibits Inflammation-Induced VCAM-1 and Inflammatory Cytokine Induction by Inhibiting the NF-κB and AKT Signaling Pathway in Apolipoprotein E-Deficient Mice. European Journal of Nutrition, 53, 135-148. [Google Scholar] [CrossRef] [PubMed]
[25] Xie, L., Muralitharan, R.R., Dinakis, E., et al. (2025). Dietary Fiber Controls Blood Pressure and Cardiovascular Risk by Lowering Large Intestinal pH and Activating the Proton-Sensing Receptor GPR65. https://www.biorxiv.org/content/10.1101/2022.11.17.516695v2[CrossRef
[26] Sirich, T.L., Plummer, N.S., Gardner, C.D., Hostetter, T.H. and Meyer, T.W. (2014) Effect of Increasing Dietary Fiber on Plasma Levels of Colon-Derived Solutes in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology, 9, 1603-1610. [Google Scholar] [CrossRef] [PubMed]
[27] Moradi, H., Sica, D.A. and Kalantar-Zadeh, K. (2013) Cardiovascular Burden Associated with Uremic Toxins in Patients with Chronic Kidney Disease. American Journal of Nephrology, 38, 136-148. [Google Scholar] [CrossRef] [PubMed]
[28] Wu, I.W., Hsu, K.H., Lee, C.C., Sun, C.Y., Hsu, H.J., Tsai, C.J., et al. (2010) P-Cresyl Sulphate and Indoxyl Sulphate Predict Progression of Chronic Kidney Disease. Nephrology Dialysis Transplantation, 26, 938-947. [Google Scholar] [CrossRef] [PubMed]
[29] Melekoglu, E. and Samur, F.G. (2021) Dietary Strategies for Gut-Derived Protein-Bound Uremic Toxins and Cardio-Metabolic Risk Factors in Chronic Kidney Disease: A Focus on Dietary Fibers. Critical Reviews in Food Science and Nutrition, 63, 3994-4008. [Google Scholar] [CrossRef] [PubMed]
[30] Marques, F.Z., Nelson, E., Chu, P., Horlock, D., Fiedler, A., Ziemann, M., et al. (2017) High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 135, 964-977. [Google Scholar] [CrossRef] [PubMed]
[31] Slavin, J.L. (2005) Dietary Fiber and Body Weight. Nutrition, 21, 411-418. [Google Scholar] [CrossRef] [PubMed]
[32] Nie, Y. and Luo, F. (2021) Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5542342. [Google Scholar] [CrossRef] [PubMed]
[33] Byrne, C.S., Chambers, E.S., Morrison, D.J. and Frost, G. (2015) The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis. International Journal of Obesity, 39, 1331-1338. [Google Scholar] [CrossRef] [PubMed]
[34] Weickert, M.O. and Pfeiffer, A.F.H. (2008) Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. The Journal of Nutrition, 138, 439-442. [Google Scholar] [CrossRef] [PubMed]
[35] Li, Y., Xia, D., Chen, J., Zhang, X., Wang, H., Huang, L., et al. (2022) Dietary Fibers with Different Viscosity Regulate Lipid Metabolism via AMPK Pathway: Roles of Gut Microbiota and Short-Chain Fatty Acid. Poultry Science, 101, 101742. [Google Scholar] [CrossRef] [PubMed]
[36] Gunness, P. and Gidley, M.J. (2010) Mechanisms Underlying the Cholesterol-Lowering Properties of Soluble Dietary Fibre Polysaccharides. Food & Function, 1, 149-155. [Google Scholar] [CrossRef] [PubMed]
[37] van Bennekum, A.M., Nguyen, D.V., Schulthess, G., Hauser, H. and Phillips, M.C. (2005) Mechanisms of Cholesterol-Lowering Effects of Dietary Insoluble Fibres: Relationships with Intestinal and Hepatic Cholesterol Parameters. British Journal of Nutrition, 94, 331-337. [Google Scholar] [CrossRef] [PubMed]
[38] Chiou, W., Lai, W., Cai, Y., Du, M., Lai, H., Chen, J., et al. (2022) Gut Microbiota-Directed Intervention with High-Amylose Maize Ameliorates Metabolic Dysfunction in Diet-Induced Obese Mice. Food & Function, 13, 9481-9495. [Google Scholar] [CrossRef] [PubMed]
[39] Hassan, N.E., El-Masry, S.A., El Shebini, S.M., Ahmed, N.H., Mohamed T, F., Mostafa, M.I., et al. (2024) Gut Dysbiosis Is Linked to Metabolic Syndrome in Obese Egyptian Women: Potential Treatment by Probiotics and High Fiber Diets Regimen. Scientific Reports, 14, Article No. 5464. [Google Scholar] [CrossRef] [PubMed]
[40] Kieffer, D.A., Martin, R.J. and Adams, S.H. (2016) Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 7, 1111-1121. [Google Scholar] [CrossRef] [PubMed]
[41] Li, M., van Esch, B.C.A.M., Henricks, P.A.J., Garssen, J. and Folkerts, G. (2021) IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells. International Journal of Molecular Sciences, 22, Article 2447. [Google Scholar] [CrossRef] [PubMed]
[42] Szrejder, M. and Piwkowska, A. (2025) Gut Microbiome-Derived Short-Chain Fatty Acids in Glomerular Protection and Modulation of Chronic Kidney Disease Progression. Nutrients, 17, Article 2904. [Google Scholar] [CrossRef
[43] Opdebeeck, B., Maudsley, S., Azmi, A., De Maré, A., De Leger, W., Meijers, B., et al. (2019) Indoxyl Sulfate and P-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. Journal of the American Society of Nephrology, 30, 751-766. [Google Scholar] [CrossRef] [PubMed]
[44] Zhang, Y., Han, X., Feng, T., Li, Z., Yu, H., Chen, Y., et al. (2025) Gut-Microbiota-Derived Indole Sulfate Promotes Heart Failure in Chronic Kidney Disease. Cell Host & Microbe, 33, 1715-1730.e5. [Google Scholar] [CrossRef
[45] Cheng, T., Lee, T., Li, S., Lee, T., Chen, Y., Kao, Y., et al. (2025) Short-Chain Fatty Acid Butyrate against TMAO Activating Endoplasmic-Reticulum Stress and PERK/IRE1-Axis with Reducing Atrial Arrhythmia. Journal of Advanced Research, 73, 549-560. [Google Scholar] [CrossRef] [PubMed]