|
[1]
|
Marassi, M. and Fadini, G.P. (2023) The Cardio-Renal-Metabolic Connection: A Review of the Evidence. Cardiovascular Diabetology, 22, Article No. 195. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Veronese, N., Gianfredi, V., Solmi, M., Barbagallo, M., Dominguez, L.J., Mandalà, C., et al. (2025) The Impact of Dietary Fiber Consumption on Human Health: An Umbrella Review of Evidence from 17,155,277 Individuals. Clinical Nutrition, 51, 325-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ndumele, C.E., Rangaswami, J., Chow, S.L., Neeland, I.J., Tuttle, K.R., Khan, S.S., et al. (2023) Cardiovascular-kidney-metabolic Health: A Presidential Advisory from the American Heart Association. Circulation, 148, 1606-1635. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ndumele, C.E., Neeland, I.J., Tuttle, K.R., Chow, S.L., Mathew, R.O., Khan, S.S., et al. (2023) A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement from the American Heart Association. Circulation, 148, 1636-1664. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Powell-Wiley, T.M., Poirier, P., Burke, L.E., Després, J., Gordon-Larsen, P., Lavie, C.J., et al. (2021) Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143, e984-e1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sheng, X., Qiu, C., Liu, H., Gluck, C., Hsu, J.Y., He, J., et al. (2020) Systematic Integrated Analysis of Genetic and Epigenetic Variation in Diabetic Kidney Disease. Proceedings of the National Academy of Sciences of the United States of America, 117, 29013-29024. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rana, M.N. and Neeland, I.J. (2022) Adipose Tissue Inflammation and Cardiovascular Disease: An Update. Current Diabetes Reports, 22, 27-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Minhas, A.M.K., Mathew, R.O., Sperling, L.S., Nambi, V., Virani, S.S., Navaneethan, S.D., et al. (2024) Prevalence of the Cardiovascular-Kidney-Metabolic Syndrome in the United States. Journal of the American College of Cardiology, 83, 1824-1826. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Aggarwal, R., Ostrominski, J.W. and Vaduganathan, M. (2024) Prevalence of Cardiovascular-Kidney-Metabolic Syndrome Stages in US Adults, 2011-2020. JAMA, 331, 1858-1860. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsai, M., Kao, J.T., Wong, C., Liao, C., Lo, W., Chien, K., et al. (2025) Cardiovascular-Kidney-Metabolic Syndrome and All-Cause and Cardiovascular Mortality: A Retrospective Cohort Study. PLOS Medicine, 22, e1004629. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ben Assayag, E., Eldor, R., Korczyn, A.D., Kliper, E., Shenhar-Tsarfaty, S., Tene, O., et al. (2017) Type 2 Diabetes Mellitus and Impaired Renal Function Are Associated with Brain Alterations and Poststroke Cognitive Decline. Stroke, 48, 2368-2374. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yki-Järvinen, H. (2014) Non-Alcoholic Fatty Liver Disease as a Cause and a Consequence of Metabolic Syndrome. The Lancet Diabetes & Endocrinology, 2, 901-910. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Giovannucci, E., Harlan, D.M., Archer, M.C., Bergenstal, R.M., Gapstur, S.M., Habel, L.A., et al. (2010) Diabetes and Cancer: A Consensus Report. Diabetes Care, 33, 1674-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Guo, Y., Li, M. and Huang, Y. (2025) Association of Dietary Fiber Intake with All-Cause and Cardiovascular Mortality in U.S. Adults with Metabolic Syndrome: NHANES 1999-2018. Frontiers in Nutrition, 12, Article 1659000. [Google Scholar] [CrossRef]
|
|
[15]
|
Jenko Pražnikar, Z., Mohorko, N., Gmajner, D., Kenig, S. and Petelin, A. (2023) Effects of Four Different Dietary Fibre Supplements on Weight Loss and Lipid and Glucose Serum Profiles during Energy Restriction in Patients with Traits of Metabolic Syndrome: A Comparative, Randomized, Placebo-Controlled Study. Foods, 12, Article 2122. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Jarrar, A.H., Stojanovska, L., Apostolopoulos, V., Feehan, J., Bataineh, M.F., Ismail, L.C., et al. (2021) The Effect of Gum Arabic (Acacia Senegal) on Cardiovascular Risk Factors and Gastrointestinal Symptoms in Adults at Risk of Metabolic Syndrome: A Randomized Clinical Trial. Nutrients, 13, Article 194. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ebrahim, Z., Proost, S., Tito, R., Raes, J., Glorieux, G., Moosa, M., et al. (2022) The Effect of SS-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients, 14, Article 805. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lin, P., Chou, C., Ou, S., Fang, T. and Chen, J. (2021) Systematic Review of Nutrition Supplements in Chronic Kidney Diseases: A GRADE Approach. Nutrients, 13, Article 469. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, J., Hua, J., Chen, S., Zhao, L., Wang, Q. and Zhou, A. (2022) The Potential Mechanisms of Bergamot-Derived Dietary Fiber Alleviating High-Fat Diet-Induced Hyperlipidemia and Obesity in Rats. Food & Function, 13, 8228-8242. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Komatsu, Y., Aoyama, K., Yoneda, M., Ashikawa, S., Nakano, S., Kawai, Y., et al. (2021) The Prebiotic Fiber Inulin Ameliorates Cardiac, Adipose Tissue, and Hepatic Pathology, but Exacerbates Hypertriglyceridemia in Rats with Metabolic Syndrome. American Journal of Physiology-Heart and Circulatory Physiology, 320, H281-H295. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, M., van Esch, B.C.A.M., Henricks, P.A.J., Garssen, J. and Folkerts, G. (2018) Time and Concentration Dependent Effects of Short Chain Fatty Acids on Lipopolysaccharide-or Tumor Necrosis Factor α-Induced Endothelial Activation. Frontiers in Pharmacology, 9, Article 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hartman, J. and Frishman, W.H. (2014) Inflammation and Atherosclerosis: A Review of the Role of Interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiology in Review, 22, 147-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Boisvert, W.A. (2004) The Participation of Chemokines in Atherosclerosis. Discovery Medicine, 4, 288-292.
|
|
[24]
|
Burris, R.L., Ng, H. and Nagarajan, S. (2013) Soy Protein Inhibits Inflammation-Induced VCAM-1 and Inflammatory Cytokine Induction by Inhibiting the NF-κB and AKT Signaling Pathway in Apolipoprotein E-Deficient Mice. European Journal of Nutrition, 53, 135-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xie, L., Muralitharan, R.R., Dinakis, E., et al. (2025). Dietary Fiber Controls Blood Pressure and Cardiovascular Risk by Lowering Large Intestinal pH and Activating the Proton-Sensing Receptor GPR65. https://www.biorxiv.org/content/10.1101/2022.11.17.516695v2[CrossRef]
|
|
[26]
|
Sirich, T.L., Plummer, N.S., Gardner, C.D., Hostetter, T.H. and Meyer, T.W. (2014) Effect of Increasing Dietary Fiber on Plasma Levels of Colon-Derived Solutes in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology, 9, 1603-1610. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Moradi, H., Sica, D.A. and Kalantar-Zadeh, K. (2013) Cardiovascular Burden Associated with Uremic Toxins in Patients with Chronic Kidney Disease. American Journal of Nephrology, 38, 136-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wu, I.W., Hsu, K.H., Lee, C.C., Sun, C.Y., Hsu, H.J., Tsai, C.J., et al. (2010) P-Cresyl Sulphate and Indoxyl Sulphate Predict Progression of Chronic Kidney Disease. Nephrology Dialysis Transplantation, 26, 938-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Melekoglu, E. and Samur, F.G. (2021) Dietary Strategies for Gut-Derived Protein-Bound Uremic Toxins and Cardio-Metabolic Risk Factors in Chronic Kidney Disease: A Focus on Dietary Fibers. Critical Reviews in Food Science and Nutrition, 63, 3994-4008. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Marques, F.Z., Nelson, E., Chu, P., Horlock, D., Fiedler, A., Ziemann, M., et al. (2017) High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 135, 964-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Slavin, J.L. (2005) Dietary Fiber and Body Weight. Nutrition, 21, 411-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Nie, Y. and Luo, F. (2021) Dietary Fiber: An Opportunity for a Global Control of Hyperlipidemia. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 5542342. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Byrne, C.S., Chambers, E.S., Morrison, D.J. and Frost, G. (2015) The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis. International Journal of Obesity, 39, 1331-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Weickert, M.O. and Pfeiffer, A.F.H. (2008) Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes. The Journal of Nutrition, 138, 439-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Y., Xia, D., Chen, J., Zhang, X., Wang, H., Huang, L., et al. (2022) Dietary Fibers with Different Viscosity Regulate Lipid Metabolism via AMPK Pathway: Roles of Gut Microbiota and Short-Chain Fatty Acid. Poultry Science, 101, 101742. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gunness, P. and Gidley, M.J. (2010) Mechanisms Underlying the Cholesterol-Lowering Properties of Soluble Dietary Fibre Polysaccharides. Food & Function, 1, 149-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
van Bennekum, A.M., Nguyen, D.V., Schulthess, G., Hauser, H. and Phillips, M.C. (2005) Mechanisms of Cholesterol-Lowering Effects of Dietary Insoluble Fibres: Relationships with Intestinal and Hepatic Cholesterol Parameters. British Journal of Nutrition, 94, 331-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chiou, W., Lai, W., Cai, Y., Du, M., Lai, H., Chen, J., et al. (2022) Gut Microbiota-Directed Intervention with High-Amylose Maize Ameliorates Metabolic Dysfunction in Diet-Induced Obese Mice. Food & Function, 13, 9481-9495. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hassan, N.E., El-Masry, S.A., El Shebini, S.M., Ahmed, N.H., Mohamed T, F., Mostafa, M.I., et al. (2024) Gut Dysbiosis Is Linked to Metabolic Syndrome in Obese Egyptian Women: Potential Treatment by Probiotics and High Fiber Diets Regimen. Scientific Reports, 14, Article No. 5464. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kieffer, D.A., Martin, R.J. and Adams, S.H. (2016) Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 7, 1111-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Li, M., van Esch, B.C.A.M., Henricks, P.A.J., Garssen, J. and Folkerts, G. (2021) IL-33 Is Involved in the Anti-Inflammatory Effects of Butyrate and Propionate on TNFα-Activated Endothelial Cells. International Journal of Molecular Sciences, 22, Article 2447. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Szrejder, M. and Piwkowska, A. (2025) Gut Microbiome-Derived Short-Chain Fatty Acids in Glomerular Protection and Modulation of Chronic Kidney Disease Progression. Nutrients, 17, Article 2904. [Google Scholar] [CrossRef]
|
|
[43]
|
Opdebeeck, B., Maudsley, S., Azmi, A., De Maré, A., De Leger, W., Meijers, B., et al. (2019) Indoxyl Sulfate and P-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. Journal of the American Society of Nephrology, 30, 751-766. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Y., Han, X., Feng, T., Li, Z., Yu, H., Chen, Y., et al. (2025) Gut-Microbiota-Derived Indole Sulfate Promotes Heart Failure in Chronic Kidney Disease. Cell Host & Microbe, 33, 1715-1730.e5. [Google Scholar] [CrossRef]
|
|
[45]
|
Cheng, T., Lee, T., Li, S., Lee, T., Chen, Y., Kao, Y., et al. (2025) Short-Chain Fatty Acid Butyrate against TMAO Activating Endoplasmic-Reticulum Stress and PERK/IRE1-Axis with Reducing Atrial Arrhythmia. Journal of Advanced Research, 73, 549-560. [Google Scholar] [CrossRef] [PubMed]
|