|
[1]
|
Pandey, S. (2024) Sepsis, Management & Advances in Metabolomics. Nanotheranostics, 8, 270-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vincent, J., Jones, G., David, S., Olariu, E. and Cadwell, K.K. (2019) Frequency and Mortality of Septic Shock in Europe and North America: A Systematic Review and Meta-Analysis. Critical Care, 23, Article No. 196. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Martínez, M.L., Plata-Menchaca, E.P., Ruiz-Rodríguez, J.C. and Ferrer, R. (2020) An Approach to Antibiotic Treatment in Patients with Sepsis. Journal of Thoracic Disease, 12, 1007-1021. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Supinski, G.S., Schroder, E.A. and Callahan, L.A. (2020) Mitochondria and Critical Illness. Chest, 157, 310-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ishihara, T., Ban-Ishihara, R., Maeda, M., Matsunaga, Y., Ichimura, A., Kyogoku, S., et al. (2015) Dynamics of Mitochondrial DNA Nucleoids Regulated by Mitochondrial Fission Is Essential for Maintenance of Homogeneously Active Mitochondria during Neonatal Heart Development. Molecular and Cellular Biology, 35, 211-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yapa, N.M.B., Lisnyak, V., Reljic, B. and Ryan, M.T. (2021) Mitochondrial Dynamics in Health and Disease. FEBS Letters, 595, 1184-1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Preau, S., Vodovar, D., Jung, B., Lancel, S., Zafrani, L., Flatres, A., et al. (2021) Energetic Dysfunction in Sepsis: A Narrative Review. Annals of Intensive Care, 11, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dumont, A., Lee, M., Barouillet, T., Murphy, A. and Yvan-Charvet, L. (2021) Mitochondria Orchestrate Macrophage Effector Functions in Atherosclerosis. Molecular Aspects of Medicine, 77, Article ID: 100922. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Chen, W., Zhao, H. and Li, Y. (2023) Mitochondrial Dynamics in Health and Disease: Mechanisms and Potential Targets. Signal Transduction and Targeted Therapy, 8, Article No. 333. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nedel, W., Deutschendorf, C. and Portela, L.V.C. (2023) Sepsis-induced Mitochondrial Dysfunction: A Narrative Review. World Journal of Critical Care Medicine, 12, 139-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, K. and Petr, J. (2024) Mitochondrial Dynamics: Updates and Perspectives. Scientific Reports, 14, Article No. 9936. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Raven, K.D. and Kapetanovic, R. (2024) Mitochondrial Dynamics: Regulating Cell Metabolism, Homoeostasis, Health and Disease. Seminars in Cell & Developmental Biology, 161, 20-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhu, X., Wang, X., Jiao, S., Liu, Y., Shi, L., Xu, Q., et al. (2023) Cardiomyocyte Peroxisome Proliferator-Activated Receptor Α Prevents Septic Cardiomyopathy via Improving Mitochondrial Function. Acta Pharmacologica Sinica, 44, 2184-2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, Y., Pan, Y., Chen, M., Tan, Y., Chang, X., Li, H., et al. (2024) PKM2 Interacts with and Phosphorylates PHB2 to Sustain Mitochondrial Quality Control against Septic Cerebral-Cardiac Injury. International Journal of Medical Sciences, 21, 633-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kumar, M., Sharma, S. and Mazumder, S. (2023) Role of UPRmt and Mitochondrial Dynamics in Host Immunity: It Takes Two to Tango. Frontiers in Cellular and Infection Microbiology, 13, Article ID: 1135203. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zou, R., Tao, J., Qiu, J., Lu, H., Wu, J., Zhu, H., et al. (2022) DNA-PKcs Promotes Sepsis-Induced Multiple Organ Failure by Triggering Mitochondrial Dysfunction. Journal of Advanced Research, 41, 39-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wang, W. and Liu, C. (2023) Sepsis Heterogeneity. World Journal of Pediatrics, 19, 919-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, D., Huang, S.Y., Sun, J.H., Zhang, H.C., Cai, Q.L., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Quintana-Cabrera, R. and Scorrano, L. (2023) Determinants and Outcomes of Mitochondrial Dynamics. Molecular Cell, 83, 857-876. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hong, X., Isern, J., Campanario, S., Perdiguero, E., Ramírez-Pardo, I., Segalés, J., et al. (2022) Mitochondrial Dynamics Maintain Muscle Stem Cell Regenerative Competence Throughout Adult Life by Regulating Metabolism and Mitophagy. Cell Stem Cell, 29, 1298-1314.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kumar, S., Ashraf, R. and C.K., A. (2021) Mitochondrial Dynamics Regulators: Implications for Therapeutic Intervention in Cancer. Cell Biology and Toxicology, 38, 377-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Amhaz, S., Boëda, B., Chouchène, M., Colasse, S., Dingli, F., Loew, D., et al. (2023) The UAS Thioredoxin-Like Domain of UBXN7 Regulates E3 Ubiquitin Ligase Activity of RNF111/Arkadia. BMC Biology, 21, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cai, C., Tang, Y., Zhai, J. and Zheng, C. (2022) The RING Finger Protein Family in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 300. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, S., Guan, X., Liu, W., Zhu, Z., Jin, H., Zhu, Y., et al. (2022) YTHDF1 Alleviates Sepsis by Upregulating WWP1 to Induce NLRP3 Ubiquitination and Inhibit Caspase-1-Dependent Pyroptosis. Cell Death Discovery, 8, Article No. 244. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Natarajan, V. (2019) Mind the Gap between the Endothelium and E3 Ubiquitin Ligase: TRIM21 Is a Viable Therapeutic Target in Sepsis-Induced Endothelial Dysfunction. American Journal of Respiratory Cell and Molecular Biology, 61, 676-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, Z., Cao, Z., Gui, F., Zhang, M., Wu, X., Peng, H., et al. (2022) TMEM43 Protects against Sepsis-Induced Cardiac Injury via Inhibiting Ferroptosis in Mice. Cells, 11, Article No. 2992. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, Z., Zhang, J., Gao, S., Jiang, Y., Qu, M., Gu, J., et al. (2024) Suppression of Skp2 Contributes to Sepsis-Induced Acute Lung Injury by Enhancing Ferroptosis through the Ubiquitination of SLC3A2. Cellular and Molecular Life Sciences, 81, Article No. 325. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, D., Wei, R., Zhang, X., Gong, S., Wan, M., Wang, F., et al. (2024) Gut Commensal Metabolite Rhamnose Promotes Macrophages Phagocytosis by Activating SLC12A4 and Protects against Sepsis in Mice. Acta Pharmaceutica Sinica B, 14, 3068-3085. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ashrafi, F., Ghezeldasht, S.A. and Ghobadi, M.Z. (2021) Identification of Joint Gene Players Implicated in the Pathogenesis of HTLV-1 and BLV through a Comprehensive System Biology Analysis. Microbial Pathogenesis, 160, Article ID: 105153. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
He, L.L., Xu, F., Zhan, X.Q., Chen, Z.H. and Shen, H.H. (2020) Identification of Critical Genes Associated with the Development of Asthma by Co-Expression Modules Construction. Molecular Immunology, 123, 18-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Qin, Y., Liu, C., Li, Q., Zhou, X. and Wang, J. (2023) Mechanistic Analysis of Th2-Type Inflammatory Factors in Asthma. Journal of Thoracic Disease, 15, 6898-6914. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kamisoglu, K., Haimovich, B., Calvano, S.E., Coyle, S.M., Corbett, S.A., Langley, R.J., et al. (2015) Human Metabolic Response to Systemic Inflammation: Assessment of the Concordance between Experimental Endotoxemia and Clinical Cases of Sepsis/SIRS. Critical Care, 19, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, J., He, Y. and Zhou, D. (2023) The Role of Ubiquitination in Microbial Infection Induced Endothelial Dysfunction: Potential Therapeutic Targets for Sepsis. Expert Opinion on Therapeutic Targets, 27, 827-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Delano, M.J. and Ward, P.A. (2016) The Immune System’s Role in Sepsis Progression, Resolution, and Long‐Term Outcome. Immunological Reviews, 274, 330-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Edwards, A.V. and Jones, C.T. (1988) Secretion of Corticotrophin Releasing Factor from the Adrenal during Splanchnic Nerve Stimulation in Conscious Calves. The Journal of Physiology, 400, 89-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Cereghetti, G.M., Stangherlin, A., de Brito, O.M., Chang, C.R., Blackstone, C., Bernardi, P., et al. (2008) Dephosphorylation by Calcineurin Regulates Translocation of Drp1 to Mitochondria. Proceedings of the National Academy of Sciences, 105, 15803-15808. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Xie, B., Wang, S., Jiang, N. and Li, J.J. (2019) Cyclin B1/CDK1-Regulated Mitochondrial Bioenergetics in Cell Cycle Progression and Tumor Resistance. Cancer Letters, 443, 56-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lucero, M., Suarez, A.E. and Chambers, J.W. (2019) Phosphoregulation on Mitochondria: Integration of Cell and Organelle Responses. CNS Neuroscience & Therapeutics, 25, 837-858. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
de Brito, O.M. and Scorrano, L. (2008) Mitofusin 2 Tethers Endoplasmic Reticulum to Mitochondria. Nature, 456, 605-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Osses, N. and Henrãquez, J.P. (2015) Bone Morphogenetic Protein Signaling in Vertebrate Motor Neurons and Neuromuscular Communication. Frontiers in Cellular Neuroscience, 8, Article No. 453. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Narendradev, N.D., Ravindran, R., Jain, P., Chaudhary, S., Velikkakath, A.K.G., Sudharman, A., et al. (2025) Endosomal RFFL Ubiquitin Ligase Regulates Mitochondrial Morphology by Targeting Mitofusin 2. Journal of Cell Science, 138, jcs263830. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Gründemann, D., Hartmann, L. and Flögel, S. (2022) The Ergothioneine Transporter (ETT): Substrates and Locations, an Inventory. FEBS Letters, 596, 1252-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fu, T. and Shen, L. (2022) Ergothioneine as a Natural Antioxidant against Oxidative Stress-Related Diseases. Frontiers in Pharmacology, 13, Article ID: 850813. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xie, C., Powell, C., Yao, M., Wu, J. and Dong, Q. (2014) Ubiquitin-Conjugating Enzyme E2C: A Potential Cancer Biomarker. The International Journal of Biochemistry & Cell Biology, 47, 113-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Horn, S.R., Thomenius, M.J., Johnson, E.S., Freel, C.D., Wu, J.Q., Coloff, J.L., et al. (2011) Regulation of Mitochondrial Morphology by Apc/ccdh1-Mediated Control of Drp1 Stability. Molecular Biology of the Cell, 22, 1207-1216. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhang, S., You, X., Zheng, Y., Shen, Y., Xiong, X. and Sun, Y. (2023) The UBE2C/CDH1/DEPTOR Axis Is an Oncogene and Tumor Suppressor Cascade in Lung Cancer Cells. Journal of Clinical Investigation, 133, e162434. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yan, R. and Zhou, T. (2022) Identification of Key Biomarkers in Neonatal Sepsis by Integrated Bioinformatics Analysis and Clinical Validation. Heliyon, 8, e11634. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Li, G., Tian, X., Wei, E., Zhang, F. and Liu, H. (2025) Immunogenic Cell Death Biomarkers for Sepsis Diagnosis and Mechanism via Integrated Bioinformatics. Scientific Reports, 15, Article No. 18575. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Reinhart, K., Bauer, M., Riedemann, N.C. and Hartog, C.S. (2012) New Approaches to Sepsis: Molecular Diagnostics and Biomarkers. Clinical Microbiology Reviews, 25, 609-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Barichello, T., Generoso, J.S., Singer, M. and Dal-Pizzol, F. (2022) Biomarkers for Sepsis: More than Just Fever and Leukocytosis—A Narrative Review. Critical Care, 26, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|