血液透析患者皮肤瘙痒发病机制的研究进展
Research Progress on Pathogenesis of Skin Pruritus in Patients with Hemodialysis
DOI: 10.12677/md.2026.161012, PDF, HTML, XML,   
作者: 潘彤彤*:济宁医学院临床医学院(附属医院),山东 济宁;李新建#:济宁医学院附属医院(临床医学院)肾内科,山东 济宁
关键词: 慢性肾脏病相关性瘙痒血液透析尿毒症性瘙痒症发病机制Chronic Kidney Disease-Associated Pruritus (CKD-aP) Hemodialysis Uremic Pruritus (UP) Pathogenesis
摘要: 慢性肾脏病相关性瘙痒(CKD-associated Pruritus, CKD-aP),又称尿毒症性瘙痒症(Uremic Pruritus, UP),是维持性血液透析患者常见的并发症,严重影响患者的生活质量,并与不良预后相关。其在血液透析患者中的患病率高达22%~84%。尽管近20年来透析技术不断进步,但中重度瘙痒的患病率仍维持在20%~40%。目前研究表明,CKD-aP的发病机制涉及多因素交互作用:皮肤干燥症通过破坏皮肤屏障、降低瘙痒阈值加剧症状;免疫炎症失调表现为辅助性T细胞1 (T helper 1 cell, Th1)、白细胞介素-6 (Interleukin-6, IL-6)、白细胞介素-31 (Interleukin-31, IL-31)等炎症因子升高,驱动系统性炎症反应;μ-阿片受体(μ-Opioid Receptor, MOR)过度激活与κ-阿片受体(κ-Opioid Receptor, KOR)表达减少,打破瘙痒调节平衡;尿毒症毒素(如硫酸吲哚酚、甲状旁腺激素、磷酸钙等)累积直接或间接激活神经纤维与炎症通路;神经系统紊乱涉及瞬时受体电位香草酸亚型1 (Transient Receptor Potential Vanilloid 1, TRPV1)、T型钙通道亚型Cav3.2 (Cav3.2)等离子通道异常及神经营养因子失衡,导致瘙痒信号传导异常。此外,环境污染物及个体差异等亦参与发病。尽管现有证据揭示了多维度机制,但各因素间的协同作用仍需深入探索,这为开发针对性的治疗策略提供了潜在方向。
Abstract: Chronic Kidney Disease-associated pruritus (CKD-aP), also known as Uremic Pruritus (UP), is a common complication in patients undergoing maintenance hemodialysis, significantly impairing quality of life and associated with poor prognosis. Its prevalence among hemodialysis patients ranges from 22% to 84%. Despite advances in dialysis technology over the past two decades, the prevalence of moderate to severe pruritus remains between 20% and 40%. Current evidence indicates that the pathogenesis of CKD-aP involves multiple interacting factors: xerosis cutis exacerbates symptoms by disrupting the skin barrier and lowering the itch threshold; immune-inflammatory dysregulation manifests as elevated inflammatory factors such as T helper 1 (Th1) cells, Interleukin-6 (IL-6), and Interleukin-31 (IL-31), driving systemic inflammatory responses; imbalance in the opioid system, characterized by overactivation of μ-Opioid Receptors (MOR) and reduced expression of κ-Opioid Receptors (KOR), disrupts the equilibrium of itch modulation; accumulation of uremic toxins (e.g., indoxyl sulfate, parathyroid hormone, calcium-phosphate complexes) directly or indirectly activates nerve fibers and inflammatory pathways; nervous system dysregulation involves abnormalities in ion channels such as transient receptor potential vanilloid 1 (TRPV1) and Cav3.2, along with imbalances in neurotrophic factors, leading to aberrant itch signaling. Furthermore, environmental pollutants and individual differences also contribute to disease manifestation. Although existing evidence highlights multidimensional mechanisms, the synergistic interactions among these factors warrant further investigation, offering potential directions for developing targeted therapeutic strategies.
文章引用:潘彤彤, 李新建. 血液透析患者皮肤瘙痒发病机制的研究进展[J]. 医学诊断, 2026, 16(1): 80-90. https://doi.org/10.12677/md.2026.161012

1. 引言

慢性肾脏病(Chronic Kidney Disease, CKD)相关性瘙痒(CKD-associated pruritus, CKD-aP),既往又被称为尿毒症性瘙痒症(Uremic Pruritus, UP),是接受血液透析治疗终末期肾病患者常见的并发症之一。CKD-aP在血液透析人群中的患病率差异较大,约为22%~84%,其中约20%~40%的患者报告中度至重度瘙痒[1]。一项国际透析结局和实践模式研究(Dialysis Outcomes and Practice Patterns Study, DOPPS)数据显示,尽管近二十年来透析技术不断进步,中重度瘙痒的患病率已从早期的45% (DOPPS 1期,1996~2001)下降至近年的37% (DOPPS 4~6期,2009~2018),但其临床负担依然沉重[1]-[3]。CKD-aP不仅严重影响血液透析(HD)患者的身心健康及生活质量,还引发情绪烦躁、睡眠障碍、抑郁,严重者甚至导致自杀[4]-[7]。此外,研究显示,有瘙痒的血液透析患者全因死亡率、心血管事件发生率、感染相关死亡率及住院率均显著高于无瘙痒者[2] [8]。尽管危害显著,但临床上仍存在诊断不足、治疗不规范的问题。据研究,在持续存在中重度瘙痒的患者中,18%的患者未接受瘙痒治疗,17%的患者没有向医护人员报告瘙痒,69%的医护人员对其所在病房的瘙痒患病率亦常低估[9]。目前CKD-aP在临床上仍常被忽视,其确切的发病机制尚未完全阐明,导致缺乏特效治疗方法。因此,本文旨在系统综述CKD-aP发病机制的最新研究进展,以期为深入阐明其病理生理机制和开发靶向治疗策略提供理论依据。

2. CKD-aP的临床表现及其诊断

CKD-aP的临床表现具有多样性,呈发作性,夜间较白天加重,可持续数月或甚至数年,且通常呈对称性或全身性分布,也可局部分布,主要见于背部、面部和动静脉内瘘侧上肢等部位,皮肤以干燥和鳞屑为主要表现,脓疱、结痂、丘疹、溃疡和结节等表现较为少见[6] [10]-[13]。瘙痒不具有特定的皮肤节段分布,且可因干燥、温度变化(热和冷)、压力以及淋浴等多种因素加重瘙痒症状[14]。约61%的患者表示瘙痒与透析时间无关,但仍有约24%的患者表示在透析期间或透析后短期内症状明显[10] [14]。CKD-aP的诊断需排除原发性皮肤病、慢性肝病、胆汁淤积、内分泌及代谢性疾病、血液系统疾病、感染、药物、实体肿瘤、躯体障碍等可能引发瘙痒的相关因素[15]。目前中国第一个《慢性肾脏病相关瘙痒管理中国专家共识(2025)》给出的诊断标准如下:① CKD患者出现瘙痒,排除有明确证据证明瘙痒由其他疾病所致;② 2周内至少有3 d出现瘙痒,且每天出现数次,每次持续数分钟,影响患者生活;③ 瘙痒症状反复出现,持续至少6周。诊断该病需同时满足以上3个条件[16]

3. CKD-aP的发病机制

3.1. 皮肤干燥症及其他皮肤病

皮肤干燥主要表现为鳞屑、粗糙、开裂和裂缝,在CKD患者中特指尿毒症干燥症,并非CKD-aP的首要病因。但在已存在瘙痒的前提下,皮肤干燥通过降低瘙痒的阈值而加剧瘙痒[17] [18]。研究显示,在慢性肾功能衰竭患者中,皮肤干燥症在瘙痒人群中的患病率(109/197)显著高于非瘙痒组(80/185),进一步支持两者的关联性[19]。在CKD-aP人群中,皮肤干燥症发生的主要原因可能与皮脂腺及外分泌汗腺萎缩、基底区增厚、角质层pH值失衡及脂质组成改变等相关,加之透析过程中液体移位,皮肤水合作用降低,这些因素导致皮肤屏障作用失调,对外界刺激及内源性致痒物质的敏感性升高[20]-[23]。此外,皮肤微血管病变也可能参与发病,该病变以小血管结构重塑及功能障碍为特征,受尿毒症毒素蓄积、慢性炎症等多种因素驱动,从而引发组织缺氧、氧化应激及血管生成紊乱,最终导致毛细血管稀薄和纤维化,进一步加重皮肤营养供应障碍及屏障损伤,间接参与瘙痒的加剧过程[24]。值得注意的是,CKD-aP患者持续搔抓可引发皮肤损伤、继发感染及慢性炎症,这可能进一步加重原有病情,致使瘙痒与搔抓两者形成恶性循环,产生继发性皮肤病变[20]。需强调的是,搔抓是瘙痒导致的继发行为,其本身不会诱发慢性肾功能衰竭。关于皮肤微生物组学与CKD-aP的关联,高瘙痒组与低瘙痒组间背部皮肤微生物群的整体组成无显著差异,提示皮杆菌与CKD-aP的具体关联可能尚需更大样本、多中心研究验证[25]。脂质运载蛋白2 (Lipocalin-2, LCN2)在CKD患者表皮和真皮附件中的表达显著增加,与瘙痒严重程度、CKD分级显著相关,并且随着瘙痒严重程度的改善,患者组织和血清LCN2水平显著降低,提示LCN2可能通过调控皮肤炎症反应及角质形成细胞分化参与CKD-aP [26]。研究发现,蛋白酶激活受体-2 (Protease-Activated Receptor-2, PAR-2)在终末期肾病患者表皮,尤其是上表皮的表达显著上调[27]。蛋白酶激活受体(Protease-Activated Receptors, PARs)是一类G蛋白偶联受体,其中PAR-2与急性炎症反应相关且不依赖于组胺引发瘙痒。多项研究表明,皮肤干燥可能通过降低皮肤瘙痒阈值加重CKD-aP症状,外用润肤剂可通过改善皮肤水合状态、修复屏障功能缓解部分患者的瘙痒,但并非所有皮肤干燥的CKD患者均伴有瘙痒,这意味着皮肤干燥可能只是瘙痒的加剧因素,而非直接病因[20] [24] [28]

3.2. 免疫与炎症

越来越多的证据提示,CKD-aP并非单纯的皮肤症状,而是以全身系统性慢性炎症为核心特征的疾病[10] [13] [24] [29]-[32]。免疫炎症因子表达上调和免疫细胞浸润异常在血液透析患者中尤为明显,提示免疫炎症失调是CKD-aP的关键潜在病因[13]。在血液透析合并瘙痒的患者中,辅助性T细胞1 (T helper 1 cell, Th1)、C反应蛋白(C-Reactive Protein, CRP)、白细胞介素-6 (Interleukin-6, IL-6)和白细胞介素-2 (Interleukin-2, IL-2)、干扰素-γ (Interferon-γ, IFN-γ)等炎症物质水平显著升高[24] [33]-[35]。此外,CKD-aP的发展和严重程度与高白细胞、高铁蛋白、低血清转铁蛋白及低白蛋白水平相关的炎症反应密切相关[33] [35]。这些证据进一步提示了系统性炎症在CKD-aP发病中的作用。从局部皮肤炎症反应层面来看,CKD-aP患者嗜酸性粒细胞、肥大细胞和已知的瘙痒原、组胺和胰蛋白酶水平升高[20] [32] [36] [37]。值得强调的是,尽管有组胺参与,但CKD-aP患者缺乏荨麻疹等经典的组胺特异性皮肤变化,传统抗组胺药物治疗效果甚微,并且大多数旨在减少组胺释放的临床试验均呈阴性结果,提示组胺可能并非CKD-aP的主要介导因子[10] [20] [36] [37]。近年来,特定细胞因子通路的作用备受关注。白细胞介素-31 (Interleukin-31, IL-31)作为一种新型细胞因子,已被证明参与皮肤炎症、气道超敏反应及多种瘙痒性疾病的发病机制,阻断IL-31或其受体的抗体可缓解瘙痒,其血清水平与CKD-aP患者瘙痒有关[38]-[42]。IL-31受体拮抗剂奈莫珠单抗(Nemolizumab)在特应性皮炎中达到了Ⅲ期临床试验,但在CKD-aP中的疗效仍需更多证据支持[42]-[44]。此外,IL-6/p-BTK/p-ERK的信号转导介导磷酸钙引起CKD患者瘙痒,为后续治疗提供了新的靶点,揭示了矿物质代谢异常与免疫炎症交织的另一致病途径[45]。临床干预证据进一步支持炎症机制的核心地位。沙利度胺、他克莫司、环孢素等免疫抑制剂及窄谱中波紫外线对部分CKD-aP患者的瘙痒症状具有明确改善作用[30] [46]-[48]。观察性研究表明,接受免疫抑制治疗的肾小球病变患者瘙痒发生率较低,以及饮食干预(如素食)可能通过减轻微炎症状态而改善瘙痒,均为炎症假说提供了间接佐证[24] [49] [50]。除内源性因素外,外部环境也可能加重炎症负荷。一项横断面研究表明,二氧化氮(Nitrogen Dioxide, NO2)和一氧化碳(Carbon Monoxide, CO)等环境污染物可能与维持性血液透析(Maintenance Hemodialysis, MHD)患者CKD-aP风险增加有关,强调了环境因素在其瘙痒发病机制中的重要性[51]。其机制可能在于这些污染物可诱发或加剧氧化应激,并激活炎症小体,从而放大CKD患者既有的系统性低度炎症状态,间接参与CKD-aP的发生过程。总之,免疫炎症机制在CKD-aP中扮演着重要的角色,但其确切的作用机制仍有待进一步阐明和探索。

3.3. 阿片系统失调

近年来研究表明,内源性阿片系统不仅参与疼痛调节,在瘙痒的发生与调控中也发挥关键作用。阿片受体主要有三种亚型:μ-阿片受体(μ-Opioid Receptor, MOR)、κ-阿片受体(κ-Opioid Receptor, KOR)和δ-阿片受体(δ-Opioid Receptor, DOR) [24] [52]。其中,MOR的过度激活具有促痒效应,而KOR的激活则可抑制瘙痒,且KOR的激活可抑制中枢和外周的MOR活性[24] [32] [53] [54]。一项纳入40例HD患者的研究显示,21例瘙痒患者的皮肤组织中KOR表达水平显著低于19例无瘙痒患者,且瘙痒严重程度与表皮KOR定量表达呈负相关[55]。值得注意的是,内源性阿片系统与免疫炎症系统之间存在密切的双向调控关系。炎症状态的变化会影响外周阿片受体的表达,且炎症微环境可增强阿片类物质的镇痛效应[56]。反之,多种免疫细胞(包括粒细胞、单核细胞/巨噬细胞及淋巴细胞)表面均检测到阿片受体的表达[56]-[62]。免疫细胞(包括单核细胞和T淋巴细胞)阿片受体的激活,可减少前列腺素等促炎物质的释放,进而诱导抗炎反应,而前列腺素本身亦是重要的致痒介质[20] [63] [64]。此外,阿片受体激动剂或拮抗剂的药理作用可能因组织炎症状态的不同而存在差异,这一特性在CKD-aP的病理生理过程中可能同样存在[24] [56]。因此,深入解析阿片系统与免疫炎症系统的交互调控机制,对阐明CKD-aP的复杂病理生理过程、开发靶向阿片受体平衡的治疗策略具有重要的理论与临床意义。

3.4. 尿毒症毒素和其他物质累积

CKD患者的肾小球滤过率(Glomerular Filtration Rate, GFR)下降,导致尿毒症毒素及代谢产物在体内蓄积被认为是CKD-aP发生的机制之一[20]。肾移植可显著增加尿毒症毒素清除,进而改善多数患者的瘙痒症状,间接印证了清除累积毒素对改善瘙痒的关键作用[65]。目前研究较多的潜在致痒相关物质包括甲状旁腺激素(Parathyroid Hormone, PTH)、钙、磷、铝、β2微球蛋白等[1] [10] [36] [66]-[75]。尽管继发性甲状旁腺功能亢进(Secondary Hyperparathyroidism, SHPT)患者中CKD-aP患病率较高,但并非所有CKD-aP患者均合并SHPT,且针对SHPT的治疗(包括甲状旁腺切除术)也并非总能缓解瘙痒症状,外源性PTH注射亦未直接引发瘙痒[20] [30] [71] [76]。这表明PTH可能并非直接致痒分子,其致痒作用更可能与它引起的钙磷代谢紊乱相关。血磷过高可与血清钙结合形成磷酸钙,沉积于皮肤和其他组织,进而激活局部神经纤维诱发瘙痒[20] [77]。研究显示,CKD-aP患者表皮基底层细胞外游离钙离子浓度显著高于无瘙痒者,而高血清铝离子水平也被发现是瘙痒的独立危险因素(比值比 = 5.64) [78] [79]。尽管提高透析效率是清除毒素的有效手段,多数研究发现提高透析充分性指标Kt/V (尿素清除指数)可降低MHD患者CKD-aP的患病率和程度,但也有多项研究未复现该结论,亦有瘙痒程度与PTH、钙、磷等指标无显著相关性[2] [80]-[84]。除传统的小分子及中分子毒素外,晚期糖基化终产物(Advanced Glycation End products, AGEs)作为在高血糖和慢性肾脏病(CKD)中蓄积的异质性化合物,可通过与其受体(Receptor for AGEs, RAGE)结合,激活下游NF-κB等信号通路,促进氧化应激与促炎细胞因子(如IL-1α、IL-6)的释放[85]。研究表明,AGEs在CKD-aP患者皮肤角质层异常堆积,推测其可能是连接代谢紊乱、持续性微炎症与瘙痒的潜在途径之一[86]

近年来,代谢组学研究为理解毒素谱提供了新视角。研究发现,瘙痒严重程度不同的患者之间存在特征性代谢物差异,其中磷脂、尿毒症毒素和类固醇的组合对区分两者具有较高的准确性(Area Under the Curve, AUC = 0.899) [87]。另一项研究发现,酯类、油酸酯类和甘油酯类代谢物在瘙痒患者中显著升高[88]。然而,亦有代谢组学研究并未发现特异性差异,这提示该领域仍需大样本、多中心研究验证[89]。单一尿毒症毒素与CKD-aP的关联性存在争议且结论不一。这表明,瘙痒可能并非由某一种特定毒素直接引起,而是多种毒素共同作用、并与机体其他系统(如免疫、神经系统)相互作用的结果。提高透析充分性虽能改善部分患者症状,但无法完全缓解,也印证了其机制的复杂性。

3.5. 神经系统紊乱

神经系统功能紊乱被认为可能是CKD-aP的发病机制之一。普遍认为,瘙痒的产生是源于皮肤感受器或外周神经末梢受到刺激后产生电信号,该信号经C纤维传入到脊髓背角,经过特定神经元整合处理后,沿脊髓丘脑通路上行投射至大脑皮层及其他相关区域,最终产生瘙痒感知[90]-[92]。CKD-aP患者的这一传导通路可能存在多环节异常。研究发现,与无瘙痒的HD患者相比,CKD-aP患者的T型钙通道亚型Cav3.2、大电导钙激活钾通道(big conductance calcium-activated potassium channel, BKCa)及钙激活氯离子通道(Anoctamin 1,ANO1,又称跨膜蛋白16A,Transmembrane protein 16A,TMEM16A)的表达显著上调,而瞬时受体电位通道香草酸亚型1 (Transient receptor potential vanilloid 1, TRPV1)的表达下降[93]。这种特定离子通道的表达谱改变可能共同导致神经元兴奋性增高。同时,B型钠尿肽(B-type Natriuretic Peptide, BNP)已被认为是存在于小鼠瘙痒感受神经元中的一种瘙痒选择性神经肽,主要在TRPV1神经元中表达,而TRPV1的体感神经元能够触发瘙痒,提示BNP与特定瘙痒神经元亚群密切相关[94] [95]。此外,神经营养因子-4 (Neurotrophin-4, NT-4)在CKD-aP患者血清中水平升高并与瘙痒程度正相关,提示其可能参与瘙痒的神经调节[96]。表皮瘙痒的激活可能还与多种神经递质有关,包括血清素、降钙素基因相关肽、阿片肽、组胺和其他细胞因子[97]。MHD患者常合并感觉异常和不宁腿综合征,其CKD-aP的发生率显著增高;反之,CKD-aP患者中周围感觉运动神经病变和自主神经异常的患病率也显著增高,提示这些神经功能障碍与瘙痒可能存在共同的病理生理基础或相互促进的临床关系[98]-[100]。在富含腺嘌呤饮食诱导的CKD小鼠模型中,氧化应激、全身性炎症和线粒体功能障碍被认为是神经变性和神经功能紊乱的根本原因,从而诱发神经性疼痛和病理性瘙痒[97] [101] [102]。加巴喷丁、普瑞巴林、辣椒素等治疗神经性疼痛的药物,能有效缓解部分CKD-aP患者的症状,为神经系统机制提供了有力的临床佐证[98] [103]-[106]

4. 总结与展望

CKD-aP的发病机制复杂,涉及多方面相互作用,可能是一个由尿毒症毒素累积启动,涉及皮肤屏障、免疫炎症、阿片系统及神经通路等多系统深度交互形成的复杂网络,各系统共同驱动瘙痒的发生与持续。值得注意的是,CKD-aP的临床表现存在显著的异质性,其发病率、严重程度及治疗反应在个体间差异显著,且与多种因素的关联性在不同研究中常不一致。这种异质性强烈提示,CKD-aP并非单一的疾病实体,而是在尿毒症这一共同背景下,由不同主导病理机制与个体遗传、环境、共病等因素相互修饰,所呈现出的多样化临床表型。

因此,未来的研究需超越对单一机制的孤立关注,应致力于揭示这些机制的交织关系,在系统层面揭示这些通路之间的动态交互网络与关键节点,结合多组学技术与临床表型,寻找能够区分不同主导机制类型的特异性生物标志物,进而探索基于病理生理机制的临床分型,为开发针对性治疗策略、实现个体化医疗提供坚实的理论依据,最终改善终末期肾病患者的长期生活质量与预后。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Pisoni, R.L., Wikstrom, B., Elder, S.J., Akizawa, T., Asano, Y., Keen, M.L., et al. (2006) Pruritus in Haemodialysis Patients: International Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrology Dialysis Transplantation, 21, 3495-3505. [Google Scholar] [CrossRef] [PubMed]
[2] Sukul, N., Karaboyas, A., Csomor, P.A., Schaufler, T., Wen, W., Menzaghi, F., et al. (2021) Self-Reported Pruritus and Clinical, Dialysis-Related, and Patient-Reported Outcomes in Hemodialysis Patients. Kidney Medicine, 3, 42-53.e1. [Google Scholar] [CrossRef] [PubMed]
[3] Shah, S., Onugha, E. and Swartz, S.J. (2023) Chronic Kidney Disease-Associated Pruritus: What Is Known and Its Application in Children. Pediatric Nephrology, 39, 25-35. [Google Scholar] [CrossRef] [PubMed]
[4] Xue, G., Yuan, H., Fan, D., Yang, Y., Ma, C., Liu, J., et al. (2024) Efficacy and Safety of Difelikefalin in the Treatment of Hemodialysis Patients with Pruritus: A Meta-Analysis and Systematic Review. Clinical Nephrology, 101, 155-163. [Google Scholar] [CrossRef] [PubMed]
[5] Xie, Q., Hu, N. and Chen, Y. (2021) Chronic Kidney Disease-Associated Pruritus Significantly Impacts on Quality of Life of Patients on Haemodialysis and Associates with Increased Levels of Serum Calcium and Phosphorus. Postgraduate Medical Journal, 98, e16. [Google Scholar] [CrossRef] [PubMed]
[6] Kim, D. and Pollock, C. (2021) Epidemiology and Burden of Chronic Kidney Disease-Associated Pruritus. Clinical Kidney Journal, 14, i1-i7. [Google Scholar] [CrossRef] [PubMed]
[7] Bai, Y., Wang, C., Xu, M., Pan, M., Sun, Q. and Chen, R. (2021) The Clinical Effectiveness and Safety of Traditional Chinese Medicine Uremic Clearance Granule Combined with High-Flux Hemodialysis in the Treatment of Uremic Pruritus: A Protocol for Systematic Review and Meta-Analysis. Medicine, 100, e26423. [Google Scholar] [CrossRef] [PubMed]
[8] Grochulska, K., Ofenloch, R., Mettang, T. and Weisshaar, E. (2019) Mortality of Haemodialysis Patients with and without Chronic Itch: A Follow-Up Study of the German Epidemiological Hemodialysis Itch Study (GEHIS). Acta Dermato Venereologica, 99, 423-428. [Google Scholar] [CrossRef] [PubMed]
[9] Rayner, H.C., Larkina, M., Wang, M., Graham-Brown, M., van der Veer, S.N., Ecder, T., et al. (2017) International Comparisons of Prevalence, Awareness, and Treatment of Pruritus in People on Hemodialysis. Clinical Journal of the American Society of Nephrology, 12, 2000-2007. [Google Scholar] [CrossRef] [PubMed]
[10] Mettang, T. and Kremer, A.E. (2015) Uremic Pruritus. Kidney International, 87, 685-691. [Google Scholar] [CrossRef] [PubMed]
[11] Mathur, V.S., Lindberg, J., Germain, M., Block, G., Tumlin, J., Smith, M., et al. (2010) A Longitudinal Study of Uremic Pruritus in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology, 5, 1410-1419. [Google Scholar] [CrossRef] [PubMed]
[12] Shirazian, S., Aina, O., Park, Y., Chowdhury, N., Leger, K., Hou, L., et al. (2017) Chronic Kidney Disease-Associated Pruritus: Impact on Quality of Life and Current Management Challenges. International Journal of Nephrology and Renovascular Disease, 10, 11-26. [Google Scholar] [CrossRef] [PubMed]
[13] 汤晓静, 梅长林. 血液透析患者瘙痒症的发病机制及药物治疗进展[J]. 中华肾脏病杂志, 2024, 40(1): 61-66.
[14] Cheng, A. and Wong, L. (2022) Uremic Pruritus: From Diagnosis to Treatment. Diagnostics, 12, Article No. 1108. [Google Scholar] [CrossRef] [PubMed]
[15] 中国医师协会皮肤科医师分会. 慢性瘙痒管理指南(2024版) [J]. 中华皮肤科杂志, 2024, 57(5): 387-399.
[16] 中华国际医学交流基金会中华肾脏病防治专项基金专家委员会. 慢性肾脏病相关瘙痒管理中国专家共识(2025年版) [J]. 中华肾脏病杂志, 2025, 41(7): 555-566.
[17] Polena, H., Chavagnac-Bonneville, M. and Sayag, M. (2022) Improvement of Quality of Life in Dialysis and Diabetic Patients by Skin Dryness and Pruritus Management with an Ecobiological Dermo-Cosmetic Product. Clinical, Cosmetic and Investigational Dermatology, 15, 2143-2152. [Google Scholar] [CrossRef] [PubMed]
[18] Moniaga, C., Tominaga, M. and Takamori, K. (2020) Mechanisms and Management of Itch in Dry Skin. Acta Dermato Venereologica, 100, 10-21. [Google Scholar] [CrossRef] [PubMed]
[19] Hu, T., Wang, B., Liao, X. and Wang, S. (2019) Clinical Features and Risk Factors of Pruritus in Patients with Chronic Renal Failure. Experimental and Therapeutic Medicine, 18, 964-971. [Google Scholar] [CrossRef] [PubMed]
[20] Molina, P., Ojeda, R., Blanco, A., Alcalde, G., Prieto-Velasco, M., Aresté, N., et al. (2023) Etiopathogenesis of Chronic Kidney Disease-Associated Pruritus: Putting the Pieces of the Puzzle Together. Nefrología (English Edition), 43, 48-62. [Google Scholar] [CrossRef] [PubMed]
[21] Szepietowski, J.C., Reich, A. and Schwartz, R.A. (2004) Uraemic Xerosis. Nephrology Dialysis Transplantation, 19, 2709-2712. [Google Scholar] [CrossRef] [PubMed]
[22] Chorążyczewska, W., Reich, A. and Szepietowski, J. (2016) Lipid Content and Barrier Function Analysis in Uraemic Pruritus. Acta Dermato Venereologica, 96, 402-403. [Google Scholar] [CrossRef] [PubMed]
[23] Kuypers, D.R. (2009) Skin Problems in Chronic Kidney Disease. Nature Reviews Nephrology, 5, 157-170. [Google Scholar] [CrossRef] [PubMed]
[24] Schricker, S. and Kimmel, M. (2021) Unravelling the Pathophysiology of Chronic Kidney Disease-Associated Pruritus. Clinical Kidney Journal, 14, i23-i31. [Google Scholar] [CrossRef] [PubMed]
[25] Lee, J.G., Seo, H., Son, S.S., et al. (2023) Loss of Cutibacterium Is Responsible for Chronic Kidney Disease-Associated Pruritus in Patients on Dialysis. Kidney Research and Clinical Practice, 44, 176-188.
[26] Bazid, H.A.S., Sakr, H.G., Abdallah, R.A., Arafat, E.S., Ragheb, A. and Seleit, I. (2023) Serum and Tissue Lipocalin-2 Expression in Chronic Kidney Disease Pruritic Patients. Applied Immunohistochemistry & Molecular Morphology, 31, 635-643. [Google Scholar] [CrossRef] [PubMed]
[27] Moon, S.J., Kim, H.J., Cho, S.B., Lee, S.H., Choi, H.Y., Park, H.C., et al. (2014) Epidermal Proteinase-Activated Receptor-2 Expression Is Increased in End-Stage Renal Disease Patients with Pruritus: A Pilot Study. Electrolytes & Blood Pressure, 12, 74-79. [Google Scholar] [CrossRef] [PubMed]
[28] Yosipovitch, G., Duque, M.I., Patel, T.S., Ishiuji, Y., Guzman-Sanchez, D.A., Dawn, A.G., et al. (2007) Skin Barrier Structure and Function and Their Relationship to Pruritus in End-Stage Renal Disease. Nephrology Dialysis Transplantation, 22, 3268-3272. [Google Scholar] [CrossRef] [PubMed]
[29] Chiu, Y., Chen, H., Chuang, Y., Hsu, S., Lai, C., Pai, M., et al. (2008) Association of Uraemic Pruritus with Inflammation and Hepatitis Infection in Haemodialysis Patients. Nephrology Dialysis Transplantation, 23, 3685-3689. [Google Scholar] [CrossRef] [PubMed]
[30] Agarwal, P., Garg, V., Karagaiah, P., Szepietowski, J.C., Grabbe, S. and Goldust, M. (2021) Chronic Kidney Disease-Associated Pruritus. Toxins, 13, Article No. 527. [Google Scholar] [CrossRef] [PubMed]
[31] Makar, M., Smyth, B. and Brennan, F. (2021) Chronic Kidney Disease-Associated Pruritus: A Review. Kidney and Blood Pressure Research, 46, 659-669. [Google Scholar] [CrossRef] [PubMed]
[32] Verduzco, H.A. and Shirazian, S. (2020) CKD-Associated Pruritus: New Insights into Diagnosis, Pathogenesis, and Management. Kidney International Reports, 5, 1387-1402. [Google Scholar] [CrossRef] [PubMed]
[33] Kimmel, M., Alscher, D.M., Dunst, R., Braun, N., Machleidt, C., Kiefer, T., et al. (2005) The Role of Micro-Inflammation in the Pathogenesis of Uraemic Pruritus in Haemodialysis Patients. Nephrology Dialysis Transplantation, 21, 749-755. [Google Scholar] [CrossRef] [PubMed]
[34] Fallahzadeh, M.K., Roozbeh, J., Geramizadeh, B. and Namazi, M.R. (2011) Interleukin-2 Serum Levels Are Elevated in Patients with Uremic Pruritus: A Novel Finding with Practical Implications. Nephrology Dialysis Transplantation, 26, 3338-3344. [Google Scholar] [CrossRef] [PubMed]
[35] Virga, G., Visentin, I., La Milia, V. and Bonadonna, A. (2002) Inflammation and Pruritus in Haemodialysis Patients. Nephrology Dialysis Transplantation, 17, 2164-2169. [Google Scholar] [CrossRef] [PubMed]
[36] Dugas‐Breit, S., Schöpf, P., Dugas, M., Schiffl, H., Ruëff, F. and Przybilla, B. (2005) Baseline Serum Levels of Mast Cell Tryptase Are Raised in Hemodialysis Patients and Associated with Severity of Pruritus. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 3, 343-347. [Google Scholar] [CrossRef] [PubMed]
[37] Francos, G.C., Kauh, Y.C., Gittlen, S.D., Schulman, E.S., Besarab, A., Goyal, S., et al. (1991) Elevated Plasma Histamine in Chronic Uremia Effects of Ketotifen on Pruritus. International Journal of Dermatology, 30, 884-889. [Google Scholar] [CrossRef] [PubMed]
[38] Ko, M., Peng, Y., Chen, H., Hsu, S., Pai, M., Yang, J., et al. (2014) Interleukin-31 Is Associated with Uremic Pruritus in Patients Receiving Hemodialysis. Journal of the American Academy of Dermatology, 71, 1151-1159.e1. [Google Scholar] [CrossRef] [PubMed]
[39] Oweis, A.O., AL-Qarqaz, F., Bodoor, K., Heis, L., Alfaqih, M.A., Almomani, R., et al. (2021) Elevated Interleukin 31 Serum Levels in Hemodialysis Patients Are Associated with Uremic Pruritus. Cytokine, 138, Article ID: 155369. [Google Scholar] [CrossRef] [PubMed]
[40] Świerczyńska, K., Krajewski, P.K., Nowicka-Suszko, D., Białynicki-Birula, R., Krajewska, M. and Szepietowski, J.C. (2022) The Serum Level of IL-31 in Patients with Chronic Kidney Disease-Associated Pruritus: What Can We Expect? Toxins, 14, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
[41] Kabashima, K. and Irie, H. (2021) Interleukin-31 as a Clinical Target for Pruritus Treatment. Frontiers in Medicine, 8, Article 638325. [Google Scholar] [CrossRef] [PubMed]
[42] Kabashima, K., Matsumura, T., Komazaki, H. and Kawashima, M. (2021) Nemolizumab Plus Topical Agents in Patients with Atopic Dermatitis (AD) and Moderate-to-Severe Pruritus Provide Improvement in Pruritus and Signs of AD for up to 68 Weeks: Results from Two Phase III, Long-Term Studies. British Journal of Dermatology, 186, 642-651. [Google Scholar] [CrossRef] [PubMed]
[43] Kinugasa, E., Igawa, K., Shimada, H., Kondo, M., Funakoshi, S., Imada, N., et al. (2021) Anti-Pruritic Effect of Nemolizumab in Hemodialysis Patients with Uremic Pruritus: A Phase II, Randomized, Double-Blind, Placebo-Controlled Clinical Study. Clinical and Experimental Nephrology, 25, 875-884. [Google Scholar] [CrossRef] [PubMed]
[44] Silverberg, J.I., Pinter, A., Pulka, G., Poulin, Y., Bouaziz, J., Wollenberg, A., et al. (2020) Phase 2B Randomized Study of Nemolizumab in Adults with Moderate-to-Severe Atopic Dermatitis and Severe Pruritus. Journal of Allergy and Clinical Immunology, 145, 173-182. [Google Scholar] [CrossRef] [PubMed]
[45] Keshari, S., Sipayung, A.D., Hsieh, C., Su, L., Chiang, Y., Chang, H., et al. (2019) IL-6/p-BTK/p-ERK Signaling Mediates Calcium Phosphate‐induced Pruritus. The FASEB Journal, 33, 12036-12046. [Google Scholar] [CrossRef] [PubMed]
[46] Fusaro, M., Munaretto, G., Spinello, M. and Gallieni, M. (2004) Regression of Uraemic Pruritus by Cyclosporin Treatment in a Haemodialysis Patient. Nephrology Dialysis Transplantation, 19, 1338-1339. [Google Scholar] [CrossRef] [PubMed]
[47] Gilchrest, B.A., Rowe, J.W., Brown, R.S., Steinman, T.I. and Arndt, K.A. (1977) Relief of Uremic Pruritus with Ultraviolet Phototherapy. New England Journal of Medicine, 297, 136-138. [Google Scholar] [CrossRef] [PubMed]
[48] Sharma, D. and Kwatra, S.G. (2016) Thalidomide for the Treatment of Chronic Refractory Pruritus. Journal of the American Academy of Dermatology, 74, 363-369. [Google Scholar] [CrossRef] [PubMed]
[49] Weisshaar, E., Weiss, M., Passlick-Deetjen, J., Tschulena, U., Maleki, K. and Mettang, T. (2015) Laboratory and Dialysis Characteristics in Hemodialysis Patients Suffering from Chronic Itch—Results from a Representative Cross-Sectional Study. BMC Nephrology, 16, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
[50] Tseng, C.Y., Wu, T.T., Lai, C.W., Lin, H., Chou, C., Chang, C., et al. (2018) Vegetarian Diet May Ameliorate Uremic Pruritus in Hemodialysis Patients. Renal Failure, 40, 514-519. [Google Scholar] [CrossRef] [PubMed]
[51] Huang, W., Lin, J., Weng, C., Hsu, C. and Yen, T. (2016) Environmental NO2 and CO Exposure: Ignored Factors Associated with Uremic Pruritus in Patients Undergoing Hemodialysis. Scientific Reports, 6, Article No. 31168. [Google Scholar] [CrossRef] [PubMed]
[52] Carstens, E. and Akiyama, T. (2014) Itch: Mechanisms and Treatment. CRC Press/Taylor & Francis.
[53] Tey, H.L. and Yosipovitch, G. (2011) Targeted Treatment of Pruritus: A Look into the Future. British Journal of Dermatology, 165, 5-17. [Google Scholar] [CrossRef] [PubMed]
[54] Cowan, A., Kehner, G.B. and Inan, S. (2015) Targeting Itch with Ligands Selective for Κ Opioid Receptors. In: Cowan, A. and Yosipovitch, G., Eds., Handbook of Experimental Pharmacology, Springer, 291-314. [Google Scholar] [CrossRef] [PubMed]
[55] Wieczorek, A., Krajewski, P., Kozioł‐Gałczyńska, M. and Szepietowski, J.C. (2020) Opioid Receptors Expression in the Skin of Haemodialysis Patients Suffering from Uraemic Pruritus. Journal of the European Academy of Dermatology and Venereology, 34, 2368-2372. [Google Scholar] [CrossRef] [PubMed]
[56] Stein, C., Clark, J.D., Oh, U., Vasko, M.R., Wilcox, G.L., Overland, A.C., et al. (2009) Peripheral Mechanisms of Pain and Analgesia. Brain Research Reviews, 60, 90-113. [Google Scholar] [CrossRef] [PubMed]
[57] Cabot, P.J., Carter, L., Schäfer, M. and Stein, C. (2001) Methionine-Enkephalin-and Dynorphin A-Release from Immune Cells and Control of Inflammatory Pain. Pain, 93, 207-212. [Google Scholar] [CrossRef] [PubMed]
[58] Labuz, D., Berger, S., Mousa, S.A., Zöllner, C., Rittner, H.L., Shaqura, M.A., et al. (2006) Peripheral Antinociceptive Effects of Exogenous and Immune Cell-Derived Endomorphins in Prolonged Inflammatory Pain. The Journal of Neuroscience, 26, 4350-4358. [Google Scholar] [CrossRef] [PubMed]
[59] Mousa, S.A., Machelska, H., Schäfer, M. and Stein, C. (2002) Immunohistochemical Localization of Endomorphin-1 and Endomorphin-2 in Immune Cells and Spinal Cord in a Model of Inflammatory Pain. Journal of Neuroimmunology, 126, 5-15. [Google Scholar] [CrossRef] [PubMed]
[60] Smith, E.M. (2003) Opioid Peptides in Immune Cells. Advances in Experimental Medicine and Biology, 521, 51-68.
[61] Verma-Gandhu, M., Bercik, P., Motomura, Y., Verdu, E.F., Khan, W.I., Blennerhassett, P.A., et al. (2006) CD4+ T-Cell Modulation of Visceral Nociception in Mice. Gastroenterology, 130, 1721-1728. [Google Scholar] [CrossRef] [PubMed]
[62] Cabot, P.J., Carter, L., Gaiddon, C., Zhang, Q., Schäfer, M., Loeffler, J.P., et al. (1997) Immune Cell-Derived Beta-Endorphin. Production, Release, and Control of Inflammatory Pain in Rats. Journal of Clinical Investigation, 100, 142-148. [Google Scholar] [CrossRef] [PubMed]
[63] Phan, N., Lotts, T., Antal, A., Bernhard, J. and Ständer, S. (2012) Systemic Kappa Opioid Receptor Agonists in the Treatment of Chronic Pruritus: A Literature Review. Acta Dermato Venereologica, 92, 555-560. [Google Scholar] [CrossRef] [PubMed]
[64] Trachtenberg, A.J., Collister, D. and Rigatto, C. (2020) Recent Advances in the Treatment of Uremic Pruritus. Current Opinion in Nephrology & Hypertension, 29, 465-470. [Google Scholar] [CrossRef] [PubMed]
[65] Altmeyer, P., Kachel, H.G., Schäfer, G. and Fassbinder, W. (1986) Normalization of Uremic Skin Changes Following Kidney Transplantation. Hautarzt, 37, 217-221.
[66] Yatzidis, H., Digenis, P. and Fountas, P. (1975) Hypervitaminosis A Accompanying Advanced Chronic Renal Failure. BMJ, 3, 352-353. [Google Scholar] [CrossRef] [PubMed]
[67] Bencini, P.L., Pravettoni, G. and Crosti, C. (1988) Cutaneous Divalent Ions and Uremic Pruritus. Giornale Italiano di Dermatologia e Venereologia, 123, 143-145.
[68] Ståhle-Båckdahl, M., Hägermark, Ö., Lins, L., Törring, O., Hilliges, M. and Johansson, O. (1989) Experimental and Immunohistochemical Studies on the Possible Role of Parathyroid Hormone in Uraemic Pruritus. Journal of Internal Medicine, 225, 411-415. [Google Scholar] [CrossRef] [PubMed]
[69] Kimata, N., Fuller, D.S., Saito, A., Akizawa, T., Fukuhara, S., Pisoni, R.L., et al. (2014) Pruritus in Hemodialysis Patients: Results from the Japanese Dialysis Outcomes and Practice Patterns Study (JDOPPS). Hemodialysis International, 18, 657-667. [Google Scholar] [CrossRef] [PubMed]
[70] Blachley, J.D., Blankenship, D.M., Menter, A., Parker, T.F. and Knochel, J.P. (1985) Uremic Pruritus: Skin Divalent Ion Content and Response to Ultraviolet Phototherapy. American Journal of Kidney Diseases, 5, 237-241. [Google Scholar] [CrossRef] [PubMed]
[71] Hampers, C.L., Katz, A.I., Wilson, R.E. and Merrill, J.P. (1968) Disappearance of Uremic Itching after Subtotal Parathyroidectomy. New England Journal of Medicine, 279, 695-697. [Google Scholar] [CrossRef] [PubMed]
[72] Narita, I., Alchi, B., Omori, K., Sato, F., Ajiro, J., Saga, D., et al. (2006) Etiology and Prognostic Significance of Severe Uremic Pruritus in Chronic Hemodialysis Patients. Kidney International, 69, 1626-1632. [Google Scholar] [CrossRef] [PubMed]
[73] Welter, E.d.Q., Frainer, R.H., Maldotti, A., Losekann, A. and Weber, M.B. (2011) Evaluating the Association between Alterations in Mineral Metabolism and Pruritus in Hemodialysis Patients. Anais Brasileiros de Dermatologia, 86, 31-36. [Google Scholar] [CrossRef] [PubMed]
[74] Assounga, A.G., Bascoul, S., Canaud, B., Bouya, P.A., Vendrell, J.P., Sciolla, J.P., et al. (1990) A Study of Β2-Microglobulin Skin Deposits in Dialyzed Patients and Healthy Controls. American Journal of Kidney Diseases, 15, 556-561. [Google Scholar] [CrossRef] [PubMed]
[75] Andoh, T., Maki, T., Li, S. and Uta, D. (2017) Β2-microglobulin Elicits Itch-Related Responses in Mice through the Direct Activation of Primary Afferent Neurons Expressing Transient Receptor Potential Vanilloid 1. European Journal of Pharmacology, 810, 134-140. [Google Scholar] [CrossRef] [PubMed]
[76] Makhlough, A., Emadi, N., Sedighi, O., et al. (2013) Relationship between Serum Intact Parathyroid Hormone and Pruritus in Hemodialysis Patients. Iranian Journal of Kidney Diseases, 7, 42-46.
[77] Narita, I., Iguchi, S., Omori, K. and Gejyo, F. (2008) Uremic Pruritus in Chronic Hemodialysis Patients. Journal of Nephrology, 21, 161-165.
[78] Momose, A., Shiraiwa, Y., Narita, S., Kusumi, T., Goto, S. and Sera, K. (2017) Total Calcium and Albumin Are Decreased in the Deeper Epidermis of Patients with Chronic Kidney Disease-Associated Pruritus. Nephron, 136, 103-110. [Google Scholar] [CrossRef] [PubMed]
[79] Hsu, C., Weng, C., Chan, M., Lin-Tan, D., Yen, T. and Huang, W. (2018) Association between Serum Aluminum Level and Uremic Pruritus in Hemodialysis Patients. Scientific Reports, 8, Article No. 17251. [Google Scholar] [CrossRef] [PubMed]
[80] Duque, M.I., Thevarajah, S., Chan, Y.H., Tuttle, A.B., Freedman, B.I. and Yosipovitch, G. (2006) Uremic Pruritus Is Associated with Higher kt/V and Serum Calcium Concentration. Clinical Nephrology, 66, 184-191. [Google Scholar] [CrossRef] [PubMed]
[81] Hiroshige, K., Kabashima, N., Takasugi, M. and Kuroiwa, A. (1995) Optimal Dialysis Improves Uremic Pruritus. American Journal of Kidney Diseases, 25, 413-419. [Google Scholar] [CrossRef] [PubMed]
[82] Dyachenko, P., Shustak, A. and Rozenman, D. (2005) Hemodialysis‐Related Pruritus and Associated Cutaneous Manifestations. International Journal of Dermatology, 45, 664-667. [Google Scholar] [CrossRef] [PubMed]
[83] Ko, M.J., Wu, H.Y., Chen, H.Y., Chiu, Y., Hsu, S., Pai, M., et al. (2013) Uremic Pruritus, Dialysis Adequacy, and Metabolic Profiles in Hemodialysis Patients: A Prospective 5-Year Cohort Study. PLOS ONE, 8, e71404. [Google Scholar] [CrossRef] [PubMed]
[84] Shirazian, S., Kline, M., Sakhiya, V., Schanler, M., Moledina, D., Patel, C., et al. (2013) Longitudinal Predictors of Uremic Pruritus. Journal of Renal Nutrition, 23, 428-431. [Google Scholar] [CrossRef] [PubMed]
[85] Stinghen, A.E.M., Massy, Z.A., Vlassara, H., Striker, G.E. and Boullier, A. (2016) Uremic Toxicity of Advanced Glycation End Products in CKD. Journal of the American Society of Nephrology, 27, 354-370. [Google Scholar] [CrossRef] [PubMed]
[86] Attia, E.A. and Hassan, A.A. (2014) Uremic Pruritus Pathogenesis, Revisited. Arab Journal of Nephrology and Transplantation, 7, 91-96.
[87] Wu, Q., Zhang, H., Ding, J., Hong, Z., Wu, H., Zhu, Z., et al. (2018) UPLC-QTOF MS-Based Serum Metabolomic Profiling Analysis Reveals the Molecular Perturbations Underlying Uremic Pruritus. BioMed Research International, 2018, Article ID: 4351674. [Google Scholar] [CrossRef] [PubMed]
[88] Tan, R., Xu, L., Li, T., Zhao, W., Han, R., Zhang, Q., et al. (2024) Serum Untargeted Metabolomics Analysis of Uremic Pruritus in Patients with Various Etiologies. International Immunopharmacology, 143, Article ID: 113563. [Google Scholar] [CrossRef] [PubMed]
[89] Bolanos, C.G., Pham, N.M., Mair, R.D., Meyer, T.W. and Sirich, T.L. (2021) Metabolomic Analysis of Uremic Pruritus in Patients on Hemodialysis. PLOS ONE, 16, e0246765. [Google Scholar] [CrossRef] [PubMed]
[90] Yonova, D. (2007) Pruritus in Certain Internal Diseases. Hippokratia, 11, 67-71.
[91] Bautista, D.M., Wilson, S.R. and Hoon, M.A. (2014) Why We Scratch an Itch: The Molecules, Cells and Circuits of Itch. Nature Neuroscience, 17, 175-182. [Google Scholar] [CrossRef] [PubMed]
[92] Combs, S.A., Teixeira, J.P. and Germain, M.J. (2015) Pruritus in Kidney Disease. Seminars in Nephrology, 35, 383-391. [Google Scholar] [CrossRef] [PubMed]
[93] Momose, A., Yabe, M., Chiba, S., Kumakawa, K., Shiraiwa, Y. and Mizukami, H. (2019) Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus. Medicines, 6, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
[94] Mishra, S.K. and Hoon, M.A. (2013) The Cells and Circuitry for Itch Responses in Mice. Science, 340, 968-971. [Google Scholar] [CrossRef] [PubMed]
[95] Imamachi, N., Park, G.H., Lee, H., Anderson, D.J., Simon, M.I., Basbaum, A.I., et al. (2009) Trpv1-Expressing Primary Afferents Generate Behavioral Responses to Pruritogens via Multiple Mechanisms. Proceedings of the National Academy of Sciences, 106, 11330-11335. [Google Scholar] [CrossRef] [PubMed]
[96] Sorour, N.E., Elesawy, F.M., Tabl, H.A., Ibrahim, M.E. and Akl, E.M. (2019) Evaluation of Serum Levels of Neurotrophin 4 and Brain-Derived Nerve Growth Factor in Uremic Pruritus Patients. Clinical, Cosmetic and Investigational Dermatology, 12, 109-114. [Google Scholar] [CrossRef] [PubMed]
[97] Uppal, N.N., Corona, A. and Fishbane, S. (2022) Pruritus in Chronic Kidney Disease. Current Opinion in Nephrology & Hypertension, 31, 435-441. [Google Scholar] [CrossRef] [PubMed]
[98] Gunal, A.I., Ozalp, G., Yoldas, T.K., Gunal, S.Y., Kirciman, E. and Celiker, H. (2004) Gabapentin Therapy for Pruritus in Haemodialysis Patients: A Randomized, Placebo-Controlled, Double-Blind Trial. Nephrology Dialysis Transplantation, 19, 3137-3139. [Google Scholar] [CrossRef] [PubMed]
[99] Johansson, O., Hilliges, M. and Ståhle-Bäckdahl, M. (1989) Intraepidermal Neuron-Specific Enolase (NSE)-Immunoreactive Nerve Fibres: Evidence for Sprouting in Uremic Patients on Maintenance Hemodialysis. Neuroscience Letters, 99, 281-286. [Google Scholar] [CrossRef] [PubMed]
[100] Zakrzewska-Pniewska, B. and Jędras, M. (2001) Is Pruritus in Chronic Uremic Patients Related to Peripheral Somatic and Autonomic Neuropathy? Study by R-R Interval Variation Test (RRIV) and by Sympathetic Skin Response (SSR). Neurophysiologie Clinique/Clinical Neurophysiology, 31, 181-193. [Google Scholar] [CrossRef] [PubMed]
[101] Fantini, F., Baraldi, A., Sevignani, C., Spattini, A., Pincelli, C. and Giannetti, A. (1992) Cutaneous Innervation in Chronic Renal Failure Patients. an Immunohistochemical Study. Acta Dermato-Venereologica, 72, 102-105. [Google Scholar] [CrossRef
[102] Mazumder, M.K., Paul, R., Bhattacharya, P. and Borah, A. (2019) Neurological Sequel of Chronic Kidney Disease: From Diminished Acetylcholinesterase Activity to Mitochondrial Dysfunctions, Oxidative Stress and Inflammation in Mice Brain. Scientific Reports, 9, Article No. 3097. [Google Scholar] [CrossRef] [PubMed]
[103] Naini, A.E., Harandi, A.A., Khanbabapour, S., et al. (2007) Gabapentin: A Promising Drug for the Treatment of Uremic Pruritus. Saudi Journal of Kidney Diseases and Transplantation, 18, 378-381.
[104] Solak, Y., Biyik, Z., Atalay, H., Gaipov, A., Guney, F., Turk, S., et al. (2012) Pregabalin versus Gabapentin in the Treatment of Neuropathic Pruritus in Maintenance Haemodialysis Patients: A Prospective, Crossover Study. Nephrology, 17, 710-717. [Google Scholar] [CrossRef] [PubMed]
[105] Shavit, L., Grenader, T., Lifschitz, M. and Slotki, I. (2013) Use of Pregabalin in the Management of Chronic Uremic Pruritus. Journal of Pain and Symptom Management, 45, 776-781. [Google Scholar] [CrossRef] [PubMed]
[106] Breneman, D.L., Scott Cardone, J., Blumsack, R.F., Lather, R.M., Searle, E.A. and Pollack, V.E. (1992) Topical Capsaicin for Treatment of Hemodialysis-Related Pruritus. Journal of the American Academy of Dermatology, 26, 91-94. [Google Scholar] [CrossRef] [PubMed]