|
[1]
|
Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Harrison, P.J., Geddes, J.R. and Tunbridge, E.M. (2018) The Emerging Neurobiology of Bipolar Disorder. Trends in Neurosciences, 41, 18-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Simpson, J.E. (2023) Potential Mechanisms Underlying the Dysfunction of the Blood-Brain Barrier. International Journal of Molecular Sciences, 24, Article No. 8184. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bora, E. (2014) Neurodevelopmental Origin of Cognitive Impairment in Schizophrenia. Psychological Medicine, 45, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hjorthøj, C., Stürup, A.E., McGrath, J.J. and Nordentoft, M. (2017) Years of Potential Life Lost and Life Expectancy in Schizophrenia: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 4, 295-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Puvogel, S., Palma, V. and Sommer, I.E.C. (2022) Brain Vasculature Disturbance in Schizophrenia. Current Opinion in Psychiatry, 35, 146-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Najjar, S., Pahlajani, S., De Sanctis, V., Stern, J.N.H., Najjar, A. and Chong, D. (2017) Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Frontiers in Psychiatry, 8, Article No. 83. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Stanca, S., Rossetti, M., Bokulic Panichi, L. and Bongioanni, P. (2024) The Cellular Dysfunction of the Brain-Blood Barrier from Endothelial Cells to Astrocytes: The Pathway towards Neurotransmitter Impairment in Schizophrenia. International Journal of Molecular Sciences, 25, Article No. 1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cheng, Y., Wang, T., Zhang, T., Yi, S., Zhao, S., Li, N., et al. (2022) Increased Blood-Brain Barrier Permeability of the Thalamus Correlated with Symptom Severity and Brain Volume Alterations in Patients with Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7, 1025-1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Futtrup, J., Margolinsky, R., Benros, M.E., Moos, T., Routhe, L.J., Rungby, J., et al. (2020) Blood-Brain Barrier Pathology in Patients with Severe Mental Disorders: A Systematic Review and Meta-Analysis of Biomarkers in Case-Control Studies. Brain, Behavior, & Immunity—Health, 6, Article ID: 100102. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Uranova, N.A., Zimina, I.S., Vikhreva, O.V., Krukov, N.O., Rachmanova, V.I. and Orlovskaya, D.D. (2010) Ultrastructural Damage of Capillaries in the Neocortex in Schizophrenia. The World Journal of Biological Psychiatry, 11, 567-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Katsel, P., Roussos, P., Pletnikov, M. and Haroutunian, V. (2017) Microvascular Anomaly Conditions in Psychiatric Disease. Schizophrenia—Angiogenesis Connection. Neuroscience & Biobehavioral Reviews, 77, 327-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Enwright III, J.F., Huo, Z., Arion, D., Corradi, J.P., Tseng, G. and Lewis, D.A. (2017) Transcriptome Alterations of Prefrontal Cortical Parvalbumin Neurons in Schizophrenia. Molecular Psychiatry, 23, 1606-1613. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Argaw, A.T., Gurfein, B.T., Zhang, Y., Zameer, A. and John, G.R. (2009) Vegf-Mediated Disruption of Endothelial CLN-5 Promotes Blood-Brain Barrier Breakdown. Proceedings of the National Academy of Sciences, 106, 1977-1982. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fulzele, S. and Pillai, A. (2009) Decreased VEGF mRNA Expression in the Dorsolateral Prefrontal Cortex of Schizophrenia Subjects. Schizophrenia Research, 115, 372-373. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pillai, A., Howell, K.R., Ahmed, A.O., Weinberg, D., Allen, K.M., Bruggemann, J., et al. (2015) Association of Serum VEGF Levels with Prefrontal Cortex Volume in Schizophrenia. Molecular Psychiatry, 21, 686-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Meixensberger, S., Kuzior, H., Fiebich, B.L., Süß, P., Runge, K., Berger, B., et al. (2021) Upregulation of sICAM-1 and sVCAM-1 Levels in the Cerebrospinal Fluid of Patients with Schizophrenia Spectrum Disorders. Diagnostics, 11, Article No. 1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yamamori, H., Hashimoto, R., Ishima, T., Kishi, F., Yasuda, Y., Ohi, K., et al. (2013) Plasma Levels of Mature Brain-Derived Neurotrophic Factor (BDNF) and Matrix Metalloproteinase-9 (MMP-9) in Treatment-Resistant Schizophrenia Treated with Clozapine. Neuroscience Letters, 556, 37-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nie, F., Jin, R., Wu, S., Yuan, W., Wu, Y., Xue, S., et al. (2024) AQP4 Is Upregulated in Schizophrenia and Its Inhibition Attenuates Mk-801-Induced Schizophrenia-Like Behaviors in Mice. Behavioural Brain Research, 475, Article ID: 115220. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gur, R.E., Bassett, A.S., McDonald-McGinn, D.M., Bearden, C.E., Chow, E., Emanuel, B.S., et al. (2017) A Neurogenetic Model for the Study of Schizophrenia Spectrum Disorders: The International 22q11.2 Deletion Syndrome Brain Behavior Consortium. Molecular Psychiatry, 22, 1664-1672. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Crockett, A.M., Ryan, S.K., Vásquez, A.H., Canning, C., Kanyuch, N., Kebir, H., et al. (2021) Disruption of the Blood-brain Barrier in 22q11.2 Deletion Syndrome. Brain, 144, 1351-1360. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Greene, C., Kealy, J., Humphries, M.M., Gong, Y., Hou, J., Hudson, N., et al. (2017) Dose-Dependent Expression of Claudin-5 Is a Modifying Factor in Schizophrenia. Molecular Psychiatry, 23, 2156-2166. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nishiura, K., Ichikawa-Tomikawa, N., Sugimoto, K., Kunii, Y., Kashiwagi, K., Tanaka, M., et al. (2017) PKA Activation and Endothelial Claudin-5 Breakdown in the Schizophrenic Prefrontal Cortex. Oncotarget, 8, 93382-93391. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sugimoto, K., Ichikawa-Tomikawa, N., Nishiura, K., Kunii, Y., Sano, Y., Shimizu, F., et al. (2020) Serotonin/5-HT1A Signaling in the Neurovascular Unit Regulates Endothelial CLDN5 Expression. International Journal of Molecular Sciences, 22, Article No. 254. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Koblan, K.S., Kent, J., Hopkins, S.C., Krystal, J.H., Cheng, H., Goldman, R., et al. (2020) A Non-D2-Receptor-Binding Drug for the Treatment of Schizophrenia. New England Journal of Medicine, 382, 1497-1506. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Alexopoulos, G.S. (2005) Depression in the Elderly. The Lancet, 365, 1961-1970. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ménard, C., Pfau, M.L., Hodes, G.E. and Russo, S.J. (2016) Immune and Neuroendocrine Mechanisms of Stress Vulnerability and Resilience. Neuropsychopharmacology, 42, 62-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Greene, C., Hanley, N. and Campbell, M. (2020) Blood-Brain Barrier Associated Tight Junction Disruption Is a Hallmark Feature of Major Psychiatric Disorders. Translational Psychiatry, 10, Article No. 373. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Menard, C., Pfau, M.L., Hodes, G.E., Kana, V., Wang, V.X., Bouchard, S., et al. (2017) Social Stress Induces Neurovascular Pathology Promoting Depression. Nature Neuroscience, 20, 1752-1760. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dudek, K.A., Dion-Albert, L., Lebel, M., LeClair, K., Labrecque, S., Tuck, E., et al. (2020) Molecular Adaptations of the Blood-Brain Barrier Promote Stress Resilience vs. Depression. Proceedings of the National Academy of Sciences, 117, 3326-3336. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zheng, P., Romme, E., Spek, P.J.v.d., Dirven, C.M.F., Willemsen, R. and Kros, J.M. (2010) Glut1/SLC2A1 Is Crucial for the Development of the Blood‐Brain Barrier in Vivo. Annals of Neurology, 68, 835-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kahl, K.G., Georgi, K., Bleich, S., Muschler, M., Hillemacher, T., Hilfiker-Kleinert, D., et al. (2016) Altered DNA Methylation of Glucose Transporter 1 and Glucose Transporter 4 in Patients with Major Depressive Disorder. Journal of Psychiatric Research, 76, 66-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Cobb, J.A., O’Neill, K., Milner, J., Mahajan, G.J., Lawrence, T.J., May, W.L., et al. (2016) Density of GFAP-Immunoreactive Astrocytes Is Decreased in Left Hippocampi in Major Depressive Disorder. Neuroscience, 316, 209-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rajkowska, G., Hughes, J., Stockmeier, C.A., Javier Miguel-Hidalgo, J. and Maciag, D. (2013) Coverage of Blood Vessels by Astrocytic Endfeet Is Reduced in Major Depressive Disorder. Biological Psychiatry, 73, 613-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
van Agtmaal, M.J.M., Houben, A.J.H.M., Pouwer, F., Stehouwer, C.D.A. and Schram, M.T. (2017) Association of Microvascular Dysfunction with Late-Life Depression: A Systematic Review and Meta-Analysis. JAMA Psychiatry, 74, 729-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Shi, W., Zhang, S., Yao, K., Meng, Q., Lu, Y., Ren, Y., et al. (2024) Breakdown of the Blood-Brain Barrier in Depressed Mice Induced by Chronic Unpredictable Mild Stress. Journal of Psychiatric Research, 180, 138-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, F.R., Tóth, A.E., et al. (2016) Restraint Stress-Induced Morphological Changes at the Blood-Brain Barrier in Adult Rats. Frontiers in Molecular Neuroscience, 8, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Xu, G., Li, Y., Ma, C., Wang, C., Sun, Z., Shen, Y., et al. (2019) Restraint Stress Induced Hyperpermeability and Damage of the Blood-Brain Barrier in the Amygdala of Adult Rats. Frontiers in Molecular Neuroscience, 12, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Matsuno, H., Tsuchimine, S., O’Hashi, K., Sakai, K., Hattori, K., Hidese, S., et al. (2022) Association between Vascular Endothelial Growth Factor-Mediated Blood-Brain Barrier Dysfunction and Stress-Induced Depression. Molecular Psychiatry, 27, 3822-3832. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Treccani, G., Schlegelmilch, A., Schultz, N., Herzog, D.P., Bessa, J.M., Sotiropoulos, I., et al. (2020) Hippocampal NG2+ Pericytes in Chronically Stressed Rats and Depressed Patients: A Quantitative Study. Stress, 24, 353-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Almeida, P.G.C., Nani, J.V., Oses, J.P., Brietzke, E. and Hayashi, M.A.F. (2020) Neuroinflammation and Glial Cell Activation in Mental Disorders. Brain, Behavior, & Immunity—Health, 2, Article ID: 100034. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhao, D., Wu, Y., Zhao, H., Zhang, F., Wang, J., Liu, Y., et al. (2024) Midbrain FA Initiates Neuroinflammation and Depression Onset in both Acute and Chronic LPS-Induced Depressive Model Mice. Brain, Behavior, and Immunity, 117, 356-375. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Li, T., Zheng, L. and Han, X. (2020) Fenretinide Attenuates Lipopolysaccharide (LPS)-Induced Blood-Brain Barrier (BBB) and Depressive-Like Behavior in Mice by Targeting Nrf-2 Signaling. Biomedicine & Pharmacotherapy, 125, Article ID: 109680. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, X., Liu, H., Wu, X., Zhao, Z., Wang, S., Wang, H., et al. (2024) Xiaoyaosan against Depression through Suppressing LPS Mediated TLR4/NLRP3 Signaling Pathway in “Microbiota-Gut-Brain” Axis. Journal of Ethnopharmacology, 335, Article ID: 118683. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kessler, R. (1993) Sex and Depression in the National Comorbidity Survey I: Lifetime Prevalence, Chronicity and Recurrence. Journal of Affective Disorders, 29, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dion-Albert, L., Cadoret, A., Doney, E., Kaufmann, F.N., Dudek, K.A., Daigle, B., et al. (2022) Vascular and Blood-brain Barrier-Related Changes Underlie Stress Responses and Resilience in Female Mice and Depression in Human Tissue. Nature Communications, 13, Article No. 164.
|
|
[47]
|
Carvalho, A.F., Firth, J. and Vieta, E. (2020) Bipolar Disorder. New England Journal of Medicine, 383, 58-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kessing, L.V., Ziersen, S.C., Andersen, P.K. and Vinberg, M. (2021) A Nation-Wide Population-Based Longitudinal Study on Life Expectancy and Cause Specific Mortality in Patients with Bipolar Disorder and Their Siblings. Journal of Affective Disorders, 294, 472-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Fries, G.R., Walss-Bass, C., Bauer, M.E. and Teixeira, A.L. (2019) Revisiting Inflammation in Bipolar Disorder. Pharmacology Biochemistry and Behavior, 177, 12-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Barbosa, I.G., Bauer, M.E., Machado-Vieira, R. and Teixeira, A.L. (2014) Cytokines in Bipolar Disorder: Paving the Way for Neuroprogression. Neural Plasticity, 2014, Article ID: 360481. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Calkin, C., McClelland, C., Cairns, K., Kamintsky, L. and Friedman, A. (2021) Insulin Resistance and Blood-Brain Barrier Dysfunction Underlie Neuroprogression in Bipolar Disorder. Frontiers in Psychiatry, 12, Article ID: 636174. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhu, Y., Webster, M.J., Mendez Victoriano, G., Middleton, F.A., Massa, P.T. and Weickert, C.S. (2024) Molecular Evidence for Altered Angiogenesis in Neuroinflammation-Associated Schizophrenia and Bipolar Disorder Implicate an Abnormal Midbrain Blood-Brain Barrier. Schizophrenia Bulletin, 51, 1146-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kamintsky, L., Cairns, K.A., Veksler, R., Bowen, C., Beyea, S.D., Friedman, A., et al. (2020) Blood-Brain Barrier Imaging as a Potential Biomarker for Bipolar Disorder Progression. NeuroImage: Clinical, 26, Article ID: 102049. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Schroeter, M.L., Abdul-Khaliq, H., Krebs, M., Diefenbacher, A. and Blasig, I.E. (2008) Serum Markers Support Disease-Specific Glial Pathology in Major Depression. Journal of Affective Disorders, 111, 271-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Fiedorowicz, J.G., Coryell, W.H., Rice, J.P., Warren, L.L. and Haynes, W.G. (2012) Vasculopathy Related to Manic/Hypomanic Symptom Burden and First-Generation Antipsychotics in a Sub-Sample from the Collaborative Depression Study. Psychotherapy and Psychosomatics, 81, 235-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Fiedorowicz, J.G., Solomon, D.A., Endicott, J., Leon, A.C., Li, C., Rice, J.P., et al. (2009) Manic/Hypomanic Symptom Burden and Cardiovascular Mortality in Bipolar Disorder. Psychosomatic Medicine, 71, 598-606. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zetterberg, H., Jakobsson, J., Redsäter, M., Andreasson, U., Pålsson, E., Ekman, C.J., et al. (2014) Blood-Cerebrospinal Fluid Barrier Dysfunction in Patients with Bipolar Disorder in Relation to Antipsychotic Treatment. Psychiatry Research, 217, 143-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wakonigg Alonso, C., McElhatton, F., O’Mahony, B., Campbell, M., Pollak, T.A. and Stokes, P.R.A. (2024) The Blood-Brain Barrier in Bipolar Disorders: A Systematic Review. Journal of Affective Disorders, 361, 434-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Lizano, P., Pong, S., Santarriaga, S., Bannai, D. and Karmacharya, R. (2023) Brain Microvascular Endothelial Cells and Blood-Brain Barrier Dysfunction in Psychotic Disorders. Molecular Psychiatry, 28, 3698-3708. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Kılıç, F., Işık, Ü., Demirdaş, A., Doğuç, D.K. and Bozkurt, M. (2020) Serum Zonulin and Claudin-5 Levels in Patients with Bipolar Disorder. Journal of Affective Disorders, 266, 37-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Turan, Ç., Kesebir, S. and Süner, Ö. (2014) Are ICAM, VCAM and E-Selectin Levels Different in First Manic Episode and Subsequent Remission? Journal of Affective Disorders, 163, 76-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Hochman, E., Taler, M., Flug, R., Gur, S., Dar, S., Bormant, G., et al. (2023) Serum Claudin-5 Levels among Patients with Unipolar and Bipolar Depression in Relation to the Pro-Inflammatory Cytokine Tumor Necrosis Factor-Alpha Levels. Brain, Behavior, and Immunity, 109, 162-167. [Google Scholar] [CrossRef] [PubMed]
|