|
[1]
|
Sharma, R., Kumar, K. and Tanvi, K. (2022) Dealkenylation of Neoandrographolide, a Phytochemical from Andrographis paniculata Stimulates FXR (Farnesoid X Receptor) and Enhances Gallstone Dissolution. Journal of Biomolecular Structure and Dynamics, 41, 3339-3348. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
周义志, 姚粮. 腹腔镜胆囊切除术与开腹手术治疗胆结石的效果比较[J]. 中国医药导报, 2021, 18(2): 106-109.
|
|
[3]
|
Li, Q., Liu, Z., Shang, W., Zhou, X., Mao, W., Cao, Y., et al. (2026) FXR-Targeted Drug Discovery: Recent Advances and Therapeutic Perspectives. European Journal of Medicinal Chemistry, 302, Article 118332. [Google Scholar] [CrossRef]
|
|
[4]
|
Mo, C., Xu, X., Zhang, P., Peng, Y., Zhao, X., Chen, S., et al. (2023) Discovery of HPG1860, a Structurally Novel Nonbile Acid FXR Agonist Currently in Clinical Development for the Treatment of Nonalcoholic Steatohepatitis. Journal of Medicinal Chemistry, 66, 9363-9375. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xiang, J., Zhang, Z., Xie, H., Zhang, C., Bai, Y., Cao, H., et al. (2021) Effect of Different Bile Acids on the Intestine through Enterohepatic Circulation Based on FXR. Gut Microbes, 13, Article 1949095. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Anderson, K.M. and Gayer, C.P. (2021) The Pathophysiology of Farnesoid X Receptor (FXR) in the GI Tract: Inflammation, Barrier Function and Innate Immunity. Cells, 10, Article 3206. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yan, N.N., Yan, T.T., Xia, Y.L., Hao, H., Wang, G. and Gonzalez, F.J. (2021) The Pathophysiological Function of Non-Gastrointestinal Farnesoid X Receptor. Pharmacology & Therapeutics, 226, Article 107867. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fiorucci, S., Sepe, V., Biagioli, M., Fiorillo, B., Rapacciuolo, P., Distrutti, E., et al. (2023) Development of Bile Acid Activated Receptors Hybrid Molecules for the Treatment of Inflammatory and Metabolic Disorders. Biochemical Pharmacology, 216, Article 115776. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Adorini, L. and Trauner, M. (2023) FXR Agonists in NASH Treatment. Journal of Hepatology, 79, 1317-1331. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Song, L.T., Hou, Y., Xu, D., Dai, X., Luo, J., Liu, Y., et al. (2025) Hepatic FXR-FGF4 Is Required for Bile Acid Homeostasis via an FGFR4-LRH-1 Signal Node under Cholestatic Stress. Cell Metabolism, 37, 104-120.e9. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, S., You, H., Qiu, S., Yu, D., Bai, Y., He, J., et al. (2022) A New Perspective on NAFLD: Focusing on the Crosstalk between Peroxisome Proliferator-Activated Receptor Alpha (PPARα) and Farnesoid X Receptor (FXR). Biomedicine & Pharmacotherapy, 154, Article 113577. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Deng, W.Y., Fan, W., Tang, T., Wan, H., Zhao, S., Tan, Y., et al. (2022) Farnesoid X Receptor Deficiency Induces Hepatic Lipid and Glucose Metabolism Disorder via Regulation of Pyruvate Dehydrogenase Kinase 4. Oxidative Medicine and Cellular Longevity, 2022, Article 3589525. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wen, Y., Zou, Z., Zhao, G., Zhang, M., Zhang, Y., Wang, G., et al. (2024) FXR Activation Remodels Hepatic and Intestinal Transcriptional Landscapes in Metabolic Dysfunction-Associated Steatohepatitis. Acta Pharmacologica Sinica, 45, 2313-2327. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhao, Q., Wang, X., Liu, K., Chen, H., Dan, J., Zhu, Z., et al. (2024) Activation of Farnesoid X Receptor Enhances the Efficacy of Normothermic Machine Perfusion in Ameliorating Liver Ischemia-Reperfusion Injury. American Journal of Transplantation, 24, 1610-1622. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tang, Y., Fan, Y., Wang, Y., Wang, D., Huang, Q., Chen, T., et al. (2024) A Current Understanding of FXR in NAFLD: The Multifaceted Regulatory Role of FXR and Novel Lead Discovery for Drug Development. Biomedicine & Pharmacotherapy, 175, Article 116658. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fan, H.M., Mitchell, A.L. and Williamson, C. (2021) Endocrinology in Pregnancy: Metabolic Impact of Bile Acids in Gestation. European Journal of Endocrinology, 184, R69-R83. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Fu, Y., Feng, H., Ding, X., Meng, Q., Zhang, S., Li, J., et al. (2022) Alisol B 23-Acetate Adjusts Bile Acid Metabolisim via Hepatic FXR-BSEP Signaling Activation to Alleviate Atherosclerosis. Phytomedicine, 101, Article 154120. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shcheynikov, N., Boggs, K., Green, A. and Feranchak, A.P. (2022) Identification of the Chloride Channel, Leucine-Rich Repeat-Containing Protein 8, Subfamily a (LRRC8A), in Mouse Cholangiocytes. Hepatology, 76, 1248-1258. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ding, Y., Zhang, H., Liao, Y., Chen, L., Ji, S., Qin, J., et al. (2022) Structural Insights into Human Brain-Gut Peptide Cholecystokinin Receptors. Cell Discovery, 8, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ding, C., Wang, Z.P., Dou, X.Y., et al. (2024) Farnesoid X Receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging and Disease, 15, 1508-1536.
|
|
[21]
|
He, X., Shi, J., Bu, L., Zhou, S., Wu, K., Liang, G., et al. (2024) Ursodeoxycholic Acid Alleviates Fat Embolism Syndrome-Induced Acute Lung Injury by Inhibiting the P38 MAPK/NF-κB Signalling Pathway through FXR. Biochemical Pharmacology, 230, Article 116574. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sun, D., Yuan, F., Fu, M., Zhong, M., Zhang, S., Lu, Y., et al. (2024) Farnesoid X Receptor Activation Protects against Renal Fibrosis via Modulation of β-Catenin Signaling. Molecular Metabolism, 79, Article 101841. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, C.Y., Liu, S., Gao, C., Dai, X., Lian, L., Cui, Z., et al. (2026) Dark Tea Ameliorates Liver Fibrosis via FXR/TGR5-Mediated Intestinal Permeability and Liver Sinusoidal Capillarization. Journal of Ethnopharmacology, 354, Article 120537. [Google Scholar] [CrossRef]
|
|
[24]
|
Yan, J., Nie, Y., Chen, X., Ding, M. and Zhang, S. (2024) Mechanistic Study of Fructus Aurantii (Quzhou Origin) in Regulating Ileal Reg3g in the Treatment for NASH. Phytomedicine, 133, Article 155924. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
De Vito, F., Marasco, R., Suraci, E., Facciolo, A., Hribal, M.L., Sesti, G., et al. (2025) FXR Stimulation by Obeticholic Acid Treatment Restores Gut Mucosa Functional and Structural Integrity in Individuals with Altered Glucose Tolerance. Diabetes, 74, 1399-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, P., Wang, Y., Dong, Y. and Zhang, X. (2025) Unveiling the Gut-Liver Axis: The Behind-The-Scenes “Manipulator” of Human Immune Function. Frontiers in Immunology, 16, Article 1638197. [Google Scholar] [CrossRef]
|
|
[27]
|
Sun, L.L., Cai, J. and Gonzalez, F.J. (2021) The Role of Farnesoid X Receptor in Metabolic Diseases, and Gastrointestinal and Liver Cancer. Nature Reviews Gastroenterology & Hepatology, 18, 335-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chang, L., Wang, C., Peng, J., Yuan, M., Zhang, Z., Xu, Y., et al. (2025) Sea Buckthorn Polysaccharides Regulate Bile Acids Synthesis and Metabolism through FXR to Improve Th17/Treg Immune Imbalance Caused by High-Fat Diet. Journal of Agricultural and Food Chemistry, 73, 15376-15388. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xu, M., Shen, Y., Cen, M., Zhu, Y., Cheng, F., Tang, L., et al. (2021) Modulation of the Gut Microbiota-Farnesoid X Receptor Axis Improves Deoxycholic Acid-Induced Intestinal Inflammation in Mice. Journal of Crohn’s and Colitis, 15, 1197-1210. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, Z., Shen, Y., Xin, J., Xu, X., Ding, Q., Chen, W., et al. (2023) Cryptotanshinone Alleviates Radiation-Induced Lung Fibrosis via Modulation of Gut Microbiota and Bile Acid Metabolism. Phytotherapy Research, 37, 4557-4571. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, W., Li, L., Li, X., Chen, J., Wang, R., Yang, Q., et al. (2025) FXR Overexpression Alleviates Cholestasis via NLRC4 Inflammasome Suppression and Bile Acid Homeostasis Regulation. Free Radical Biology and Medicine, 238, 152-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
You, M., Zhou, L., Wu, F., Zhang, L., Zhu, S. and Zhang, H. (2025) Probiotics for the Treatment of Hyperlipidemia: Focus on Gut-Liver Axis and Lipid Metabolism. Pharmacological Research, 214, Article 107694. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhao, H., Lin, G., Yin, Y., Wu, Q., Wang, Y., Tang, N., et al. (2025) Impact of Micro-and Nanoplastics on Gastrointestinal Diseases: Recent Advances. European Journal of Internal Medicine, 139, Article 106419. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shukla, P.K., Rao, R.G., Meena, A.S., Giorgianni, F., Lee, S.C., Raju, P., et al. (2023) Paneth Cell Dysfunction in Radiation Injury and Radio-Mitigation by Human Α-Defensin 5. Frontiers in Immunology, 14, Article 1174140. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Brookhart, M.A., Mayne, T.J., Coombs, C., Breskin, A., Ness, E., Bessonova, L., et al. (2025) Hepatic Real-World Outcomes with Obeticholic Acid in Primary Biliary Cholangitis (HEROES): A Trial Emulation Study Design. Hepatology, 81, 1647-1659. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Ng, C.H., Tang, A.S.P., Xiao, J., Wong, Z.Y., Yong, J.N., Fu, C.E., et al. (2023) Safety and Tolerability of Obeticholic Acid in Chronic Liver Disease: A Pooled Analysis of 1878 Individuals. Hepatology Communications, 7, e0005. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fiorucci, S., Biagioli, M., Baldoni, M., Ricci, P., Sepe, V., Zampella, A., et al. (2021) The Identification of Farnesoid X Receptor Modulators as Treatment Options for Nonalcoholic Fatty Liver Disease. Expert Opinion on Drug Discovery, 16, 1193-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, G., Wang, T., Xie, Y., He, L., Liu, H., Chen, H., et al. (2025) Sub-Chronic Realgar Exposure Causes Liver Inflammatory Injury in Mice by Inducing Bile Acid-Mediated NLRP3 Inflammasome Activation through Down-Regulation of Ileal FXR. Journal of Ethnopharmacology, 351, Article 120174. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ratziu, V., Rinella, M.E., Neuschwander-Tetri, B.A., Lawitz, E., Denham, D., Kayali, Z., et al. (2022) EDP-305 in Patients with NASH: A Phase II Double-Blind Placebo-Controlled Dose-Ranging Study. Journal of Hepatology, 76, 506-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Harrison, S.A., Bashir, M.R., Lee, K., Shim-Lopez, J., Lee, J., Wagner, B., et al. (2021) A Structurally Optimized FXR Agonist, MET409, Reduced Liver Fat Content over 12 Weeks in Patients with Non-Alcoholic Steatohepatitis. Journal of Hepatology, 75, 25-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yu Cai Lim, M. and Kiat Ho, H. (2024) Pharmacological Modulation of Cholesterol 7α-Hydroxylase (CYP7A1) as a Therapeutic Strategy for Hypercholesterolemia. Biochemical Pharmacology, 220, Article 115985. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Liang, C., Wang, X., Peng, K., Lai, P., Liu, Z., Ma, J., et al. (2022) Idol Depletion Protects against Spontaneous Atherosclerosis in a Hamster Model of Familial Hypercholesterolemia. Oxidative Medicine and Cellular Longevity, 2022, Article 1889632. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhao, X., Long, S., Zhu, M., Hao, H., Liao, Y., Zhang, C., et al. (2025) Potential Roles of SNX17, Rab11, and Rab5 in LDLR Recycling. Arteriosclerosis, Thrombosis, and Vascular Biology, 45, e338-e354. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hu, H., Shao, W., Liu, Q., Liu, N., Wang, Q., Xu, J., et al. (2022) Gut Microbiota Promotes Cholesterol Gallstone Formation by Modulating Bile Acid Composition and Biliary Cholesterol Secretion. Nature Communications, 13, Article No. 1252. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Niu, D., Wu, X.L., Zhang, Y.X., et al. (2024) Tailoring Obeticholic Acid Activity by Iridium (III) Complex Conjugation to Develop a Farnesoid X receptor Probe. Journal of Advanced Research, 71, 307-316.
|
|
[46]
|
Xu, H., Fang, F., Wu, K., Song, J., Li, Y., Lu, X., et al. (2023) Gut Microbiota-Bile Acid Crosstalk Regulates Murine Lipid Metabolism via the Intestinal FXR-FGF19 Axis in Diet-Induced Humanized Dyslipidemia. Microbiome, 11, Article No. 262. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Shen, W., Wang, Y., Shao, W., Wang, Q., Jiang, Z. and Hu, H. (2021) Dietary Plant Sterols Prevented Cholesterol Gallstone Formation in Mice. Food & Function, 12, 11829-11837. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Huang, D., Shen, S., Zhuang, Q., Ye, X., Qian, Y., Dong, Z., et al. (2024) Ganoderma lucidum Polysaccharide Ameliorates Cholesterol Gallstone Formation by Modulating Cholesterol and Bile Acid Metabolism in an FXR-Dependent Manner. Chinese Medicine, 19, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Henry, Z., Meadows, V. and Guo, G.L. (2023) FXR and NASH: An Avenue for Tissue-Specific Regulation. Hepatology Communications, 7, e0127. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Fiorucci, S., Distrutti, E., Carino, A., Zampella, A. and Biagioli, M. (2021) Bile Acids and Their Receptors in Metabolic Disorders. Progress in Lipid Research, 82, Article 101094. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gioiello, A., Rosatelli, E. and Cerra, B. (2024) Patented Farnesoid X Receptor Modulators: A Review (2019-Present). Expert Opinion on Therapeutic Patents, 34, 547-564. [Google Scholar] [CrossRef] [PubMed]
|