|
[1]
|
Wang, Y., Chen, L. and Liu-Bryan, R. (2021) Mitochondrial Biogenesis, Activity, and DNA Isolation in Chondrocytes. In: Haqqi, T.M. and Lefebvre, V., Eds., Methods in Molecular Biology, Springer, 195-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Guo, P., Alhaskawi, A., Adel Abdo Moqbel, S. and Pan, Z. (2025) Recent Development of Mitochondrial Metabolism and Dysfunction in Osteoarthritis. Frontiers in Pharmacology, 16, Article 1538662. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lafont, J.E., Moustaghfir, S., Durand, A. and Mallein-Gerin, F. (2023) The Epigenetic Players and the Chromatin Marks Involved in the Articular Cartilage during Osteoarthritis. Frontiers in Physiology, 14, Article 1070241. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Henry, Ó.C. and O’Neill, L.A.J. (2025) Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. European Journal of Immunology, 55, e202451381. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, Z., Munim, M.B., Sharygin, D.A., Bevis, B.J. and Vander Heiden, M.G. (2024) Understanding the Warburg Effect in Cancer. Cold Spring Harbor Perspectives in Medicine, 15, a041532. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kocianova, E., Piatrikova, V. and Golias, T. (2022) Revisiting the Warburg Effect with Focus on Lactate. Cancers, 14, Article 6028. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, H., Liu, S., Fu, S., Zhao, Q., Wang, Y., Yuan, Y., et al. (2025) Novel Insight into the Warburg Effect: Sweet Temptation. Critical Reviews in Oncology/Hematology, 214, Article ID: 104844. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Liu, N., Li, M., Liu, T., Wang, J., Zhang, B. and Zhang, M. (2025) Disorders of Glucose Metabolism and Impaired Energy Metabolism in Pfkma and Pfkmb Knockout Zebrafish. General and Comparative Endocrinology, 372, Article ID: 114787. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, Y., Gao, Y., Xiong, Y., Gong, Y., Lu, J., Zhang, Y., et al. (2024) Research Progress of Warburg Effect in Hepatocellular Carcinoma. Frontiers in Bioscience-Landmark, 29, Article 178. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhu, X., Xuan, Z., Chen, J., Li, Z., Zheng, S. and Song, P. (2020) How DNA Methylation Affects the Warburg Effect. International Journal of Biological Sciences, 16, 2029-2041. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Putilina, M.V. (2022) Mitokhondrial’naya Disfunktsiya. S.S. Korsakova Korsakov Journal of Neurology and Psychiatry, 122, 48-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Palma, F.R., Gantner, B.N., Sakiyama, M.J., Kayzuka, C., Shukla, S., Lacchini, R., et al. (2024) ROS Production by Mitochondria: Function or Dysfunction? Oncogene, 43, 295-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Halmos, T. and Suba, I. (2022) Mitochondrialis diszfunkció okozta betegségek. Orvosi Hetilap, 163, 1383-1393. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
De Roover, A., Escribano-Núñez, A., Monteagudo, S. and Lories, R. (2023) Fundamentals of Osteoarthritis: Inflammatory Mediators in Osteoarthritis. Osteoarthritis and Cartilage, 31, 1303-1311. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Vaupel, P. and Multhoff, G. (2021) Revisiting the Warburg Effect: Historical Dogma versus Current Understanding. The Journal of Physiology, 599, 1745-1757. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, D., Zhou, X., Yan, P., Yang, C., Li, Y., Han, L., et al. (2022) Lipid Metabolism Reprogramming in Colorectal Cancer. Journal of Cellular Biochemistry, 124, 3-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, X., Han, T., Zheng, S. and Wu, G. (2021) Hepatic Glucose Metabolism and Its Disorders in Fish. In: Wu, G., Ed., Advances in Experimental Medicine and Biology, Springer International Publishing, 207-236. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, S., Yuan, H., Li, L., Li, Q., Lin, P. and Li, K. (2025) Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants, 14, Article 201. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cai, Z., Long, T., Zhao, Y., Lin, R. and Wang, Y. (2022) Epigenetic Regulation in Knee Osteoarthritis. Frontiers in Genetics, 13, Article 942982. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kehayova, Y.S., Watson, E., Wilkinson, J.M., Loughlin, J. and Rice, S.J. (2021) Genetic and Epigenetic Interplay within a colgalt2 Enhancer Associated with Osteoarthritis. Arthritis & Rheumatology, 73, 1856-1865. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ball, H., Alejo, A., Kronk, T., Alejo, A. and Safadi, F. (2022) Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life, 12, Article 582. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Mei, Z., Yilamu, K., Ni, W., Shen, P., Pan, N., Chen, H., et al. (2025) Chondrocyte Fatty Acid Oxidation Drives Osteoarthritis via SOX9 Degradation and Epigenetic Regulation. Nature Communications, 16, Article No. 4892. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Arias, C. and Salazar, L.A. (2021) Autophagy and Polyphenols in Osteoarthritis: A Focus on Epigenetic Regulation. International Journal of Molecular Sciences, 23, Article 421. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kan, T., Li, H., Hou, L., Cui, J., Wang, Y., Sun, L., et al. (2024) Matrix Stiffness Aggravates Osteoarthritis Progression through H3K27me3 Demethylation Induced by Mitochondrial Damage. iScience, 27, Article ID: 110507. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, W., Huang, Q. and Huang, A. (2022) Emerging Role of EZH2 in Rheumatic Diseases: A Comprehensive Review. International Journal of Rheumatic Diseases, 25, 1230-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yan, S., Lu, T., Yang, H., Ma, L., Zhang, Y. and Li, D. (2024) Decreased Histone H3K9 Dimethylation in Synergy with DNA Demethylation of Spi-1 Binding Site Contributes to ADAMTS-5 Expression in Articular Cartilage of Osteoarthritis Mice. Journal of Cellular Physiology, 239, e31444. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Núñez-Carro, C., Blanco-Blanco, M., Villagrán-Andrade, K.M., Blanco, F.J. and de Andrés, M.C. (2023) Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals, 16, Article 156. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ghafouri-Fard, S., Poulet, C., Malaise, M., Abak, A., Mahmud Hussen, B., Taheriazam, A., et al. (2021) The Emerging Role of Non-Coding RNAs in Osteoarthritis. Frontiers in Immunology, 12, Article 773171. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cao, G., Pei, Y., Li, P., Liu, P., Deng, Y., Gao, Y., et al. (2021) New Perspectives on the Roles of Circular RNAs in Osteoarthritis Development and Progression (Review). Experimental and Therapeutic Medicine, 22, Article No. 1471. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, Z., Yang, P., Wang, C. and Tian, R. (2022) LncRNA CRNDE Hinders the Progression of Osteoarthritis by Epigenetic Regulation of Dact1. Cellular and Molecular Life Sciences, 79, Article No. 405. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ji, M., Li, Z., Hu, X.Y., Zhang, W.T., Zhang, H.X. and Lu, J. (2023) Dynamic Chromatin Accessibility Tuning by the Long Noncoding RNA ELDR Accelerates Chondrocyte Senescence and Osteoarthritis. The American Journal of Human Genetics, 110, 606-624. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Shakeri, M., Aminian, A., Mokhtari, K., Bahaeddini, M., Tabrizian, P., Farahani, N., et al. (2024) Unraveling the Molecular Landscape of Osteoarthritis: A Comprehensive Review Focused on the Role of Non-Coding RNAs. Pathology—Research and Practice, 260, Article ID: 155446. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jiang, Y., Wang, T., Sheng, D., Han, C., Xu, T., Zhang, P., et al. (2022) Aurora A-Mediated Pyruvate Kinase M2 Phosphorylation Promotes Biosynthesis with Glycolytic Metabolites and Tumor Cell Cycle Progression. Journal of Biological Chemistry, 298, Article ID: 102561. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, R., Chen, P., Chen, Y., Chen, Y., Chu, Y., Chien, C., et al. (2024) Hydrogen Sulfide Coordinates Glucose Metabolism Switch through Destabilizing Tetrameric Pyruvate Kinase M2. Nature Communications, 15, Article No. 7463. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Akhter, N., Kochumon, S., Hasan, A., Wilson, A., Nizam, R., Al Madhoun, A., et al. (2022) IFN-γ and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. Journal of Inflammation Research, 15, 4291-4302. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Micaily, I., Roche, M., Ibrahim, M.Y., Martinez-Outschoorn, U. and Mallick, A.B. (2021) Metabolic Pathways and Targets in Chondrosarcoma. Frontiers in Oncology, 11, Article 772263. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, P., Chen, L., Xiong, Y. and Ye, D. (2024) Metabolite Regulation of Epigenetics in Cancer. Cell Reports, 43, Article ID: 114815. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, Y., Zhang, S., Sun, H. and Xu, L. (2025) The Pathogenesis and Therapeutic Implications of Metabolic Reprogramming in Renal Cell Carcinoma. Cell Death Discovery, 11, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tee, T., Ruiter, T.J.J., Wu, S., Zhang, W., Schenau, D.v.I., Rodionova, M., et al. (2025) S-Adenosylmethionine Addiction Confers Sensitivity to Methionine Restriction in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Haematologica, 110, 2620-2634. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, C., Meng, Y. and Han, J. (2024) Emerging Roles of Mitochondrial Functions and Epigenetic Changes in the Modulation of Stem Cell Fate. Cellular and Molecular Life Sciences, 81, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Bigio, B., Azam, S., Mathé, A.A. and Nasca, C. (2024) The Neuropsychopharmacology of Acetyl-L-Carnitine (LAC): Basic, Translational and Therapeutic Implications. Discover Mental Health, 4, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, M., Shi, L., Dubrot, J., Merritt, J., Vijay, V., Wei, T., et al. (2022) Mutant IDH Inhibits IFNγ-TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in Cholangiocarcinoma. Cancer Discovery, 12, 812-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Huo, M., Zhang, J., Huang, W. and Wang, Y. (2021) Interplay among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer. Frontiers in Cell and Developmental Biology, 9, Article 793428. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yue, Y., Liu, B., Xu, Q., Chen, Z., Wang, J., Zhao, Y., et al. (2025) Reciprocal Control of Metabolic and Chromatin Regulators Improves Rice Tolerance to Heat. Nature Communications, 16, Article No. 10698. [Google Scholar] [CrossRef]
|
|
[45]
|
Liu, T., Yu, S., Zhang, L., Ji, W., Wang, G., Wang, N., et al. (2025) Yes-Associated Protein 1 in Cancer: Bridging Mechanical Transduction and Epigenetic Regulation. Cancer Biology & Therapy, 26, Article ID: 2562726. [Google Scholar] [CrossRef]
|
|
[46]
|
Li, S., Wu, R., Wang, L., Dina Kuo, H., Sargsyan, D., Zheng, X., et al. (2021) Triterpenoid Ursolic Acid Drives Metabolic Rewiring and Epigenetic Reprogramming in Treatment/Prevention of Human Prostate Cancer. Molecular Carcinogenesis, 61, 111-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zheng, X. and Sawalha, A.H. (2022) The Role of Oxidative Stress in Epigenetic Changes Underlying Autoimmunity. Antioxidants & Redox Signaling, 36, 423-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Vivero, A., Espinoza, S., Álvarez-Indo, J., Catalán-Aguilera, J., Llontop, N., Jara, C., et al. (2025) The Adverse Effect of a Hypercaloric High-Fat Diet Feeding on Hypothalamic Cellular Energy Homeostasis Is Attenuated by a Hypoglycemiant. Journal of Neuroendocrinology, 37, e70099. [Google Scholar] [CrossRef]
|
|
[49]
|
El-Haddad, M.E., El-Refaie, W.M., Hammad, G.O. and EL-Massik, M.A. (2025) Intra-articular Metformin-Curcumin Cationic PLGA Nanoparticles Rejuvenate Articular Structure in MIA Induced Osteoarthritis Model via Modulating the Crosstalk between Mir93, TNFAIP3/TLR/NF-κB and AMPK/SIRT1 Trajectories. International Journal of Biological Macromolecules, 315, Article ID: 144482. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Liu, Q., Hao, B., Zhang, M., Liu, Z., Huang, Y., Zhao, X., et al. (2022) An Integrative Proteome-Based Pharmacologic Characterization and Therapeutic Strategy Exploration of SAHA in Solid Malignancies. Journal of Proteome Research, 21, 953-964. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Roy, P., Kandel, R., Sawant, N. and Singh, K.P. (2024) Estrogen-Induced Reactive Oxygen Species, through Epigenetic Reprogramming, Causes Increased Growth in Breast Cancer Cells. Molecular and Cellular Endocrinology, 579, Article ID: 112092. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Atri, S., Nasoohi, N. and Hodjat, M. (2020) Azacitidine, as a DNMT Inhibitor Decreases hTERT Gene Expression and Telomerase Activity More Effective Compared with HDAC Inhibitor in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Current Molecular Pharmacology, 14, 60-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, Y., Wang, H., Zhan, Z., Gan, L. and Bai, O. (2025) Mechanisms of HDACs in Cancer Development. Frontiers in Immunology, 16, Article 1529239. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zahraei, M., Azimi, Y., Karimipour, M., Rahimi-Jamnani, F., Valizadeh, V. and Azizi, M. (2025) CRISPR/dCas9-TET1-Mediated Epigenetic Editing Reactivates miR-200c in Breast Cancer Cells. Scientific Reports, 15, Article No. 31739. [Google Scholar] [CrossRef]
|
|
[55]
|
Matboli, M., Hossam, N., Farag, D., Hassan, M., Shehata, H., Aboelhussein, M., et al. (2024) MiRNAs: Possible Regulators of Toll Like Receptors and Inflammatory Tumor Microenvironment in Colorectal Cancer. BMC Cancer, 24, Article No. 824. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hu, Y., Liu, W., Fang, W., Dong, Y., Zhang, H. and Luo, Q. (2024) Tumor Energy Metabolism: Implications for Therapeutic Targets. Molecular Biomedicine, 5, Article No. 63. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Nguyen, T. and Duong, V. (2025) Advancements in Nanocarrier Systems for Nose-to-Brain Drug Delivery. Pharmaceuticals, 18, Article 615. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Coxon, J., Linder, E., Sweet, C., Magness, S. and Green, L. (2025) Replicating Host-Microbiome Interactions: Harnessing Organ-on-a-Chip and Organoid Technologies to Model Vaginal and Lung Physiology. Annual Review of Biomedical Engineering, 27, 403-423. [Google Scholar] [CrossRef] [PubMed]
|