代谢重编程与表观遗传调控在骨关节炎中的协同作用研究进展
Research Advances in the Synergistic Effects of Metabolic Reprogramming and Epigenetic Regulation in Osteoarthritis
DOI: 10.12677/acm.2026.162456, PDF, HTML, XML,   
作者: 方少奇:绍兴文理学院医学院,浙江 绍兴;梁军波*:浙江省台州医院骨科,浙江 台州
关键词: 骨关节炎软骨退变代谢重编程表观遗传协同作用Osteoarthritis (OA) Cartilage Degeneration Metabolic Reprogramming Epigenetic Synergistic Effect
摘要: 骨关节炎(OA)是一种以关节软骨退变为主要病理特征的常见退行性疾病,严重影响患者的生活质量。近年来,代谢重编程和表观遗传调控在OA软骨退变中的作用机制成为研究热点。软骨细胞在OA进展中经历显著的代谢异常,包括糖酵解增强、线粒体功能障碍及脂质代谢紊乱,这些变化与表观遗传修饰(如DNA甲基化、组蛋白乙酰化和非编码RNA调控)密切相关,共同促进软骨降解和炎症反应。本文系统综述了代谢重编程与表观遗传调控在OA软骨退变中的协同作用,阐明二者如何通过交互作用影响软骨细胞稳态,并探讨了靶向代谢–表观遗传通路的潜在治疗策略,为OA的精准干预提供新视角。
Abstract: Osteoarthritis (OA) is a common degenerative disease characterized primarily by cartilage degradation, which severely impairs patients’ quality of life. In recent years, the mechanisms of metabolic reprogramming and epigenetic regulation in OA cartilage degradation have become a research hotspot. Chondrocytes undergo significant metabolic abnormalities during OA progression, including enhanced glycolysis, mitochondrial dysfunction, and lipid metabolism disorders. These changes are closely associated with epigenetic modifications (such as DNA methylation, histone acetylation, and non-coding RNA regulation), which together promote cartilage degradation and inflammatory responses. This article systematically reviews the synergistic effects of metabolic reprogramming and epigenetic regulation in OA cartilage degradation, elucidates how they interact to affect chondrocyte homeostasis, and explores potential therapeutic strategies targeting metabolic-epigenetic pathways, providing new insights for the precise intervention of OA.
文章引用:方少奇, 梁军波. 代谢重编程与表观遗传调控在骨关节炎中的协同作用研究进展[J]. 临床医学进展, 2026, 16(2): 820-828. https://doi.org/10.12677/acm.2026.162456

1. 引言

骨关节炎(Osteoarthritis, OA)是全球范围内致残率最高的关节疾病,其核心病理特征是关节软骨的进行性退变,主要表现为软骨细胞功能紊乱和细胞外基质(Extracellular Matrix, ECM)的降解[1]。软骨细胞是软骨唯一常驻细胞,负责ECM合成与分解以维持稳态,其功能紊乱直接引发基质降解、软骨破坏,推动OA进展[1]。近年研究聚焦代谢重编程(如线粒体障碍、糖酵解增强)与表观遗传调控(DNA甲基化、组蛋白修饰等)在OA中的关键作用:代谢重编程是退变的核心驱动因素,影响软骨细胞存活与功能[2];表观遗传调控通过可逆的修饰机制在不改变DNA序列的情况下精细调控基因表达,参与OA进程[3]。二者形成双向互作的“代谢–表观遗传网络”,共同驱动OA软骨退变,最终导致软骨细胞衰老、凋亡及ECM稳态崩溃[4]。本文将系统阐述这一协同作用的分子机制,并探讨其临床转化价值。

2. 骨关节炎软骨细胞代谢重编程特征

2.1. 糖代谢异常与Warburg效应

OA软骨细胞存在显著代谢重编程,核心特征为有氧条件下优先糖酵解(Warburg效应) [5]。该效应并非OA特有,常见于快速增殖细胞(如癌细胞),本质是代谢从高效氧化磷酸化转向低效率糖酵解,以满足增殖的能量与生物合成需求[5]。OA软骨细胞中表现为糖酵解增强、氧化磷酸化受抑[5];虽线粒体功能未完全受损,但代谢偏好改变使葡萄糖大量转化为乳酸[6],此表型助力细胞在缺氧/营养匮乏环境中存活[7]。关键机制为糖酵解酶(如限速酶磷酸果糖激酶PFK)表达上调,PFK异常与糖代谢紊乱密切相关[8];斑马鱼pfkma/pfkmb双敲除模型显示血糖升高、能量代谢受损,印证PFK对糖稳态的核心作用[8]。糖酵解增强致乳酸堆积,酸化关节微环境,促进基质降解酶表达,加速软骨破坏[9]。此外,糖酵解中间产物(如3-磷酸甘油酸3-PG、磷酸烯醇式丙酮酸PEP)既是代谢中间体,又可作为表观遗传酶(组蛋白甲基/乙酰转移酶)的底物/调节剂,调控软骨细胞基因表达,连接代谢状态与表观遗传[10]

2.2. 线粒体功能障碍与ROS产生

OA软骨细胞代谢重编程伴随显著线粒体功能障碍,表现为形态异常(肿胀、嵴减少)、ATP合成效率降低,但活性氧(ROS)生成增加[11] [12]。线粒体DNA损伤及电子传递链复合物活性改变加剧氧化应激[13]。过量ROS (如超氧阴离子、过氧化氢)激活NF-κB等信号通路,驱动软骨细胞分泌IL-1β、TNF-α等炎症介质,形成恶性循环,加重关节炎症与软骨破坏[14]。同时,ROS作为信号分子,通过调控氧化还原敏感的表观遗传酶(如DNA去甲基化TET家族、组蛋白去甲基化JMJD家族),影响DNA及组蛋白修饰,重塑软骨细胞表观遗传景观,调控细胞存活、炎症及基质代谢相关基因表达,参与OA病理进程[15]

2.3. 脂质代谢重编程

OA软骨细胞代谢紊乱还表现为脂质代谢重编程,以脂肪酸合成增强(ACC、FASN活性上调)和β-氧化抑制(CPT1表达下调)为特征[16]。这种转变导致脂质(如甘油三酯)异常堆积,引发脂毒性,诱发内质网应激及软骨细胞凋亡,加速软骨丢失[17]。更关键的是,脂质代谢物(如乙酰辅酶A、S-腺苷甲硫氨酸SAM)是代谢与表观遗传的桥梁:乙酰辅酶A为组蛋白乙酰化直接底物,调控染色质结构及基因转录;SAM是DNA和组蛋白甲基化反应中关键的甲基供体[18]。综上,脂质代谢重编程既通过脂毒性直接损伤细胞,又通过调控乙酰-CoA、SAM等代谢物水平,影响表观遗传修饰(组蛋白乙酰化、甲基化等),调控软骨细胞分化、炎症及基质稳态相关基因表达,是代谢与表观遗传协同的重要环节[18]

3. 骨关节炎中的表观遗传调控机制

3.1. DNA甲基化动态变化

研究表明,DNA甲基化在OA软骨退变中起关键调控作用。全基因组甲基化分析显示OA软骨存在大量差异甲基化区域,显著富集于ECM合成及炎症相关基因[19]。如COLGALT2基因启动子区低甲基化可上调其表达,影响胶原糖基化[20]。DNMTs与TET家族蛋白维持甲基化/去甲基化动态平衡,其中TET介导的主动去甲基化过程通过调控SOX9等软骨形成关键基因影响OA进展[21]。代谢重编程与DNA甲基化密切相关:α-酮戊二酸(α-KG)、琥珀酸等作为TET/DNMT辅助因子,通过影响酶活性调节甲基化平衡[22];线粒体功能异常致α-KG/琥珀酸比例改变,可影响关键基因甲基化状态,促进OA进展[23]

3.2. 组蛋白修饰异常

组蛋白修饰异常是OA表观遗传调控的重要特征,表现为OA软骨细胞中H3K27me3整体降低、H3K9ac增加[24]。这种改变与EZH2 (催化H3K27me3的甲基转移酶)下调、p300/CBP (组蛋白乙酰转移酶)激活相关,二者协同促进促分解代谢基因表达[25]。代谢异常与组蛋白修饰互为调控:SDH/IDH突变致琥珀酸、2-HG等堆积,竞争性抑制JMJD等组蛋白去甲基化酶活性[22];乙酰-CoA作为组蛋白乙酰化直接底物,其水平变化影响乙酰转移酶活性及染色质开放性,OA中脂肪酸氧化增强致乙酰-CoA积累,通过促进H3K9ac激活MMP13、ADAMTS7等基质降解酶的表达[22]。此外,H3K9me2修饰降低与ADAMTS-5表达上调相关,抑制组蛋白去甲基化酶LSD1可缓解OA小鼠软骨退变[26]

3.3. 非编码RNA调控网络

非编码RNA (如miR-140、miR-146a、HOTAIR、MALAT1等)在OA软骨退变中形成复杂调控网络,通过调控ECM代谢关键基因参与病理进程[27]。例如,miR-140靶向抑制ADAMTS5以阻止基质降解,其在OA中表达下调会加剧降解[28];环状RNA (如ciRS-7)作为miRNA海绵参与代谢–炎症正反馈[29]。代谢应激(如缺氧)可通过HIF-1α调控非编码RNA表达:缺氧诱导lncRNA CRNDE,通过招募p300促进H3K27ac在DACT1启动子区富集,抑制Wnt/β-catenin通路[30];ELDR等lncRNA通过形成hnRNPL/KAT6A复合物调控IHH基因的组蛋白修饰,加速软骨细胞衰老[31]。这些发现揭示非编码RNA作为表观遗传调控媒介的核心作用,为OA诊断及治疗提供新靶点[32]

4. 代谢与表观遗传的协同作用机制

4.1. 代谢酶的双重功能

代谢酶在细胞中兼具基础代谢与表观遗传调控双重功能,这一特性在OA软骨退变及软骨肉瘤中尤为显著。糖酵解关键酶PKM2可在软骨细胞中发生核转位,作为蛋白激酶直接磷酸化组蛋白H3第11位苏氨酸(H3T11),激活炎症相关基因表达,且该非经典功能独立于糖酵解活性,通过改变染色质可及性调控转录[33];其酶活性状态与表观调控功能呈动态平衡——低活性二聚体易通过入核发挥激酶作用,高活性四聚体则驻留胞浆参与糖酵解[34],而在炎症微环境中IL-1β可诱导PKM2核转位,通过磷酸化H3T11促进MMP-13、ADAMTS-5等软骨降解酶的表达[35]。在软骨肉瘤中,异柠檬酸脱氢酶IDH1/2突变产生的致癌代谢物2-羟基戊二酸(2-HG)竞争性抑制α-KG依赖性双加氧酶(如TET/JMJD家族),导致全基因组DNA高甲基化及组蛋白去甲基化受阻,进而沉默SOX9等软骨保护基因并激活促纤维化通路[36]。此外,ATP柠檬酸裂解酶通过将线粒体柠檬酸转化为核内乙酰-CoA,为组蛋白乙酰转移酶提供底物以连接三羧酸循环与染色质乙酰化[37],机械应力刺激下其活性升高可促进H3K27ac在软骨合成基因启动子区富集,增强II型胶原表达[38]。这些机制共同揭示代谢酶通过非经典功能桥接代谢状态与表观遗传调控,驱动关节疾病进展。

4.2. 代谢物作为表观遗传调节剂

细胞内代谢物动态变化通过塑造表观遗传景观形成代谢–表观遗传反馈环路,在OA病理中发挥核心作用:SAM作为通用甲基供体,其水平波动直接影响DNA及组蛋白甲基化状态,软骨细胞分化时甲硫氨酸代谢重编程致SAM/SAH比率下降,引发SOX9启动子区DNA低甲基化及增强子区H3K27me3去甲基化,从而激活软骨特异性基因表达[39];NAD+/NADH比例通过调节Sirtuin去乙酰化酶活性调控线粒体功能,NAD+依赖的SIRT1去乙酰化PGC-1α可促进线粒体生物合成,而NADH积累会抑制SIRT3活性导致SOD2乙酰化增加、抗氧化防御能力下降[40],OA中炎症介导的NAD+耗竭进一步降低SIRT1活性,致NF-κB通路过度乙酰化及持续炎症反应[41]α-KG与琥珀酸的比例作为表观遗传修饰酶的分子开关,通过调控JmjC去甲基酶及TET蛋白活性决定染色质重塑方向,IDH突变产生的2-HG通过提高琥珀酸/α-KG比例抑制TET介导的DNA去甲基化,使COL2A1等软骨基质基因启动子区保持高甲基化状态[42];乙酰-CoA作为组蛋白乙酰化的直接底物,其浓度与H3K9ac水平呈正相关,缺氧条件下丙酮酸脱氢酶激酶抑制PDH活性减少乙酰-CoA生成,导致软骨细胞中促炎基因位点的组蛋白低乙酰化和转录抑制[43]。这些代谢物通过调控甲基化、乙酰化等表观遗传修饰,构成代谢与表观遗传的协同网络,驱动OA软骨退变,见表1

Table 1. Epigenetic modifications corresponding to key metabolites

1. 关键代谢物所对应的表观遗传修饰

代谢物

表观遗传修饰改变

参考文献

SAM/SAH比率

DNA甲基化、组蛋白甲基化

[39]

NAD+/NADH比例

蛋白质去乙酰化(Sirtuin家族)

[40]

α-KG/琥珀酸比例

DNA去甲基化(TET酶)、组蛋白去甲基化(JmjC酶)

[42]

乙酰-CoA

组蛋白乙酰化

[43]

4.3. 应激信号通路的整合作用

多种应激信号通过代谢–表观遗传网络加剧软骨退变:缺氧通过稳定HIF-1α上调糖酵解酶(PKM2, LDHA),糖酵解增强致α-KG减少,进一步稳定HIF-1α并抑制TET介导的DNA去甲基化,形成促分解代谢的正反馈环路[44];机械应力通过YAP/TAZ通路促进GLUT1表达(增加葡萄糖摄取),同时募集p300至RUNX2启动子区,通过H3K27ac修饰促进软骨细胞肥大分化[45];炎症微环境中IL-1β通过NF-κB诱导糖酵解酶(HK2, PFKM)表达,同时招募DNA甲基转移酶至miR-140启动子区,致其高甲基化沉默,削弱对ADAMTS-5的抑制[46];氧化应激消耗NADPH改变GSH/GSSG比例,影响组蛋白去甲基酶KDM4A活性,导致H3K9me2异常积累及衰老基因表达[47]。这些应激信号的交叉对话构成OA中复杂的代谢–表观遗传调控层级,见图1

Figure 1. Molecular mechanism diagram of the “metabolic-epigenetic synergy network”

1. “代谢–表观遗传协同网络”的分子机制图

5. 靶向代谢–表观遗传网络的干预策略

5.1. 代谢调节剂的应用

靶向代谢通路的调节剂是干预代谢–表观遗传网络的基础策略,通过直接纠正OA软骨细胞失调的代谢状态,间接影响依赖代谢物供应的表观遗传酶活性以恢复正常基因表达谱。例如,经典AMPK激活剂二甲双胍作用超越单纯降糖,可通过激活AMPK并抑制mTOR信号通路改善线粒体功能、减少ROS产生[48],更重要的是其激活AMPK能调控SIRT1等表观遗传调节因子活性,在OA模型中通过AMPK/SIRT1信号轴发挥抗炎和软骨保护作用,提示可能通过调节SIRT1介导的组蛋白去乙酰化等表观遗传修饰起效[49]。直接干预糖酵解是另一途径,糖酵解抑制剂2-脱氧-D-葡萄糖(2-DG)可限制OA软骨细胞异常能量供应,研究显示其在实体瘤中与组蛋白去乙酰化酶抑制剂(HDACi)联合应用可产生协同抗肿瘤效应(HDACi上调糖酵解,2-DG抑制HK2阻断该通路),这为OA治疗提供新思路——联合糖酵解抑制剂与表观遗传药物或能同时切断异常能量供应与纠正表观遗传失调[50]。最后,鉴于ROS积累是诱导DNA/组蛋白修饰异常的关键因素,抗氧化剂N-乙酰半胱氨酸(NAC)通过补充谷胱甘肽前体清除ROS,可能减少ROS介导的异常DNA甲基化、组蛋白修饰等表观遗传改变,延缓软骨细胞衰老凋亡,为基础性代谢–表观遗传干预手段[51]。这些策略通过代谢–表观遗传双重调控为OA提供综合干预方案。

5.2. 表观遗传药物的开发

直接靶向表观遗传修饰酶是干预代谢–表观遗传网络的另一核心方向,旨在直接逆转OA软骨异常基因沉默/激活状态。常见药物包括DNMT抑制剂(如5-氮杂胞苷)、HDAC抑制剂(如曲古抑菌素A),体外实验显示其可恢复软骨细胞表型、上调软骨特异性基因[52],但临床因缺乏关节靶向性导致全身副作用而受限,需开发关节精准递送系统[53]。CRISPR/dCas9表观遗传编辑技术通过dCas9融合表观效应域(如TET1、p300),定点编辑目标基因启动子甲基化/乙酰化状态,精准调控基因表达,为OA基因特异性治疗提供工具[54]。此外,miRNA作为代谢与表观遗传的连接节点,其模拟物/拮抗剂也展现出治疗潜力,如miR-140模拟物可补充OA软骨中缺失的miR-140,通过调节下游靶基因发挥软骨保护作用[55]。这些表观遗传药物从不同层面为OA代谢–表观遗传网络干预提供多样化精准策略,见图2

Figure 2. Potential therapeutic targets and intervention strategies

2. 潜在治疗靶点及干预策略

5.3. 联合治疗策略的优化

鉴于代谢与表观遗传调控的复杂性及相互依赖性,单一靶点干预效果有限,优化联合治疗策略至关重要。需关注代谢干预与表观遗传调节的时序组合(如先用二甲双胍改善代谢状态,再用HDAC抑制剂,协同增效,类似癌症序贯治疗[56]);同时,纳米载体(脂质体、聚合物纳米粒)可设计为关节微环境响应或靶向软骨细胞,提高关节局部药物浓度、减少全身副作用[57];此外,类器官和关节芯片技术(用患者来源细胞或iPSCs构建)能模拟体内关节环境[58],高通量筛选个性化药物组合,为精准治疗奠定基础。整合时序给药、靶向递送及个性化模型筛选,将推动靶向代谢–表观遗传网络的OA疗法从实验室走向临床。

6. 结论

OA软骨退变的研究已进入“代谢–表观遗传协同调控”的新时代,其核心是“代谢异常与表观遗传修饰的双向对话”。未来需通过联合干预(代谢酶–表观调控因子双靶点)、精准技术(纳米载体、CRISPR-dCas9)与类器官/人工智能(人类化模型、多组学分析),解决代谢干预的“剂量–时空”控制与治疗矛盾,推动OA治疗从“对症”向“对因”转变。同时,基础转临床时需遵循“级联验证”,避免“粗暴干预”,确保治疗的安全性与有效性。

NOTES

*通讯作者。

参考文献

[1] Wang, Y., Chen, L. and Liu-Bryan, R. (2021) Mitochondrial Biogenesis, Activity, and DNA Isolation in Chondrocytes. In: Haqqi, T.M. and Lefebvre, V., Eds., Methods in Molecular Biology, Springer, 195-213. [Google Scholar] [CrossRef] [PubMed]
[2] Guo, P., Alhaskawi, A., Adel Abdo Moqbel, S. and Pan, Z. (2025) Recent Development of Mitochondrial Metabolism and Dysfunction in Osteoarthritis. Frontiers in Pharmacology, 16, Article 1538662. [Google Scholar] [CrossRef] [PubMed]
[3] Lafont, J.E., Moustaghfir, S., Durand, A. and Mallein-Gerin, F. (2023) The Epigenetic Players and the Chromatin Marks Involved in the Articular Cartilage during Osteoarthritis. Frontiers in Physiology, 14, Article 1070241. [Google Scholar] [CrossRef] [PubMed]
[4] Henry, Ó.C. and O’Neill, L.A.J. (2025) Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. European Journal of Immunology, 55, e202451381. [Google Scholar] [CrossRef] [PubMed]
[5] Li, Z., Munim, M.B., Sharygin, D.A., Bevis, B.J. and Vander Heiden, M.G. (2024) Understanding the Warburg Effect in Cancer. Cold Spring Harbor Perspectives in Medicine, 15, a041532. [Google Scholar] [CrossRef] [PubMed]
[6] Kocianova, E., Piatrikova, V. and Golias, T. (2022) Revisiting the Warburg Effect with Focus on Lactate. Cancers, 14, Article 6028. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, H., Liu, S., Fu, S., Zhao, Q., Wang, Y., Yuan, Y., et al. (2025) Novel Insight into the Warburg Effect: Sweet Temptation. Critical Reviews in Oncology/Hematology, 214, Article ID: 104844. [Google Scholar] [CrossRef] [PubMed]
[8] Liu, N., Li, M., Liu, T., Wang, J., Zhang, B. and Zhang, M. (2025) Disorders of Glucose Metabolism and Impaired Energy Metabolism in Pfkma and Pfkmb Knockout Zebrafish. General and Comparative Endocrinology, 372, Article ID: 114787. [Google Scholar] [CrossRef] [PubMed]
[9] Yang, Y., Gao, Y., Xiong, Y., Gong, Y., Lu, J., Zhang, Y., et al. (2024) Research Progress of Warburg Effect in Hepatocellular Carcinoma. Frontiers in Bioscience-Landmark, 29, Article 178. [Google Scholar] [CrossRef] [PubMed]
[10] Zhu, X., Xuan, Z., Chen, J., Li, Z., Zheng, S. and Song, P. (2020) How DNA Methylation Affects the Warburg Effect. International Journal of Biological Sciences, 16, 2029-2041. [Google Scholar] [CrossRef] [PubMed]
[11] Putilina, M.V. (2022) Mitokhondrial’naya Disfunktsiya. S.S. Korsakova Korsakov Journal of Neurology and Psychiatry, 122, 48-53. [Google Scholar] [CrossRef] [PubMed]
[12] Palma, F.R., Gantner, B.N., Sakiyama, M.J., Kayzuka, C., Shukla, S., Lacchini, R., et al. (2024) ROS Production by Mitochondria: Function or Dysfunction? Oncogene, 43, 295-303. [Google Scholar] [CrossRef] [PubMed]
[13] Halmos, T. and Suba, I. (2022) Mitochondrialis diszfunkció okozta betegségek. Orvosi Hetilap, 163, 1383-1393. [Google Scholar] [CrossRef] [PubMed]
[14] De Roover, A., Escribano-Núñez, A., Monteagudo, S. and Lories, R. (2023) Fundamentals of Osteoarthritis: Inflammatory Mediators in Osteoarthritis. Osteoarthritis and Cartilage, 31, 1303-1311. [Google Scholar] [CrossRef] [PubMed]
[15] Vaupel, P. and Multhoff, G. (2021) Revisiting the Warburg Effect: Historical Dogma versus Current Understanding. The Journal of Physiology, 599, 1745-1757. [Google Scholar] [CrossRef] [PubMed]
[16] Chen, D., Zhou, X., Yan, P., Yang, C., Li, Y., Han, L., et al. (2022) Lipid Metabolism Reprogramming in Colorectal Cancer. Journal of Cellular Biochemistry, 124, 3-16. [Google Scholar] [CrossRef] [PubMed]
[17] Li, X., Han, T., Zheng, S. and Wu, G. (2021) Hepatic Glucose Metabolism and Its Disorders in Fish. In: Wu, G., Ed., Advances in Experimental Medicine and Biology, Springer International Publishing, 207-236. [Google Scholar] [CrossRef] [PubMed]
[18] Li, S., Yuan, H., Li, L., Li, Q., Lin, P. and Li, K. (2025) Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants, 14, Article 201. [Google Scholar] [CrossRef] [PubMed]
[19] Cai, Z., Long, T., Zhao, Y., Lin, R. and Wang, Y. (2022) Epigenetic Regulation in Knee Osteoarthritis. Frontiers in Genetics, 13, Article 942982. [Google Scholar] [CrossRef] [PubMed]
[20] Kehayova, Y.S., Watson, E., Wilkinson, J.M., Loughlin, J. and Rice, S.J. (2021) Genetic and Epigenetic Interplay within a colgalt2 Enhancer Associated with Osteoarthritis. Arthritis & Rheumatology, 73, 1856-1865. [Google Scholar] [CrossRef] [PubMed]
[21] Ball, H., Alejo, A., Kronk, T., Alejo, A. and Safadi, F. (2022) Epigenetic Regulation of Chondrocytes and Subchondral Bone in Osteoarthritis. Life, 12, Article 582. [Google Scholar] [CrossRef] [PubMed]
[22] Mei, Z., Yilamu, K., Ni, W., Shen, P., Pan, N., Chen, H., et al. (2025) Chondrocyte Fatty Acid Oxidation Drives Osteoarthritis via SOX9 Degradation and Epigenetic Regulation. Nature Communications, 16, Article No. 4892. [Google Scholar] [CrossRef] [PubMed]
[23] Arias, C. and Salazar, L.A. (2021) Autophagy and Polyphenols in Osteoarthritis: A Focus on Epigenetic Regulation. International Journal of Molecular Sciences, 23, Article 421. [Google Scholar] [CrossRef] [PubMed]
[24] Kan, T., Li, H., Hou, L., Cui, J., Wang, Y., Sun, L., et al. (2024) Matrix Stiffness Aggravates Osteoarthritis Progression through H3K27me3 Demethylation Induced by Mitochondrial Damage. iScience, 27, Article ID: 110507. [Google Scholar] [CrossRef] [PubMed]
[25] Xu, W., Huang, Q. and Huang, A. (2022) Emerging Role of EZH2 in Rheumatic Diseases: A Comprehensive Review. International Journal of Rheumatic Diseases, 25, 1230-1238. [Google Scholar] [CrossRef] [PubMed]
[26] Yan, S., Lu, T., Yang, H., Ma, L., Zhang, Y. and Li, D. (2024) Decreased Histone H3K9 Dimethylation in Synergy with DNA Demethylation of Spi-1 Binding Site Contributes to ADAMTS-5 Expression in Articular Cartilage of Osteoarthritis Mice. Journal of Cellular Physiology, 239, e31444. [Google Scholar] [CrossRef] [PubMed]
[27] Núñez-Carro, C., Blanco-Blanco, M., Villagrán-Andrade, K.M., Blanco, F.J. and de Andrés, M.C. (2023) Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals, 16, Article 156. [Google Scholar] [CrossRef] [PubMed]
[28] Ghafouri-Fard, S., Poulet, C., Malaise, M., Abak, A., Mahmud Hussen, B., Taheriazam, A., et al. (2021) The Emerging Role of Non-Coding RNAs in Osteoarthritis. Frontiers in Immunology, 12, Article 773171. [Google Scholar] [CrossRef] [PubMed]
[29] Cao, G., Pei, Y., Li, P., Liu, P., Deng, Y., Gao, Y., et al. (2021) New Perspectives on the Roles of Circular RNAs in Osteoarthritis Development and Progression (Review). Experimental and Therapeutic Medicine, 22, Article No. 1471. [Google Scholar] [CrossRef] [PubMed]
[30] Zhang, Z., Yang, P., Wang, C. and Tian, R. (2022) LncRNA CRNDE Hinders the Progression of Osteoarthritis by Epigenetic Regulation of Dact1. Cellular and Molecular Life Sciences, 79, Article No. 405. [Google Scholar] [CrossRef] [PubMed]
[31] Ji, M., Li, Z., Hu, X.Y., Zhang, W.T., Zhang, H.X. and Lu, J. (2023) Dynamic Chromatin Accessibility Tuning by the Long Noncoding RNA ELDR Accelerates Chondrocyte Senescence and Osteoarthritis. The American Journal of Human Genetics, 110, 606-624. [Google Scholar] [CrossRef] [PubMed]
[32] Shakeri, M., Aminian, A., Mokhtari, K., Bahaeddini, M., Tabrizian, P., Farahani, N., et al. (2024) Unraveling the Molecular Landscape of Osteoarthritis: A Comprehensive Review Focused on the Role of Non-Coding RNAs. PathologyResearch and Practice, 260, Article ID: 155446. [Google Scholar] [CrossRef] [PubMed]
[33] Jiang, Y., Wang, T., Sheng, D., Han, C., Xu, T., Zhang, P., et al. (2022) Aurora A-Mediated Pyruvate Kinase M2 Phosphorylation Promotes Biosynthesis with Glycolytic Metabolites and Tumor Cell Cycle Progression. Journal of Biological Chemistry, 298, Article ID: 102561. [Google Scholar] [CrossRef] [PubMed]
[34] Wang, R., Chen, P., Chen, Y., Chen, Y., Chu, Y., Chien, C., et al. (2024) Hydrogen Sulfide Coordinates Glucose Metabolism Switch through Destabilizing Tetrameric Pyruvate Kinase M2. Nature Communications, 15, Article No. 7463. [Google Scholar] [CrossRef] [PubMed]
[35] Akhter, N., Kochumon, S., Hasan, A., Wilson, A., Nizam, R., Al Madhoun, A., et al. (2022) IFN-γ and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. Journal of Inflammation Research, 15, 4291-4302. [Google Scholar] [CrossRef] [PubMed]
[36] Micaily, I., Roche, M., Ibrahim, M.Y., Martinez-Outschoorn, U. and Mallick, A.B. (2021) Metabolic Pathways and Targets in Chondrosarcoma. Frontiers in Oncology, 11, Article 772263. [Google Scholar] [CrossRef] [PubMed]
[37] Wang, P., Chen, L., Xiong, Y. and Ye, D. (2024) Metabolite Regulation of Epigenetics in Cancer. Cell Reports, 43, Article ID: 114815. [Google Scholar] [CrossRef] [PubMed]
[38] Zhang, Y., Zhang, S., Sun, H. and Xu, L. (2025) The Pathogenesis and Therapeutic Implications of Metabolic Reprogramming in Renal Cell Carcinoma. Cell Death Discovery, 11, Article No. 186. [Google Scholar] [CrossRef] [PubMed]
[39] Tee, T., Ruiter, T.J.J., Wu, S., Zhang, W., Schenau, D.v.I., Rodionova, M., et al. (2025) S-Adenosylmethionine Addiction Confers Sensitivity to Methionine Restriction in KMT2A-Rearranged Acute Lymphoblastic Leukemia. Haematologica, 110, 2620-2634. [Google Scholar] [CrossRef] [PubMed]
[40] Zhang, C., Meng, Y. and Han, J. (2024) Emerging Roles of Mitochondrial Functions and Epigenetic Changes in the Modulation of Stem Cell Fate. Cellular and Molecular Life Sciences, 81, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
[41] Bigio, B., Azam, S., Mathé, A.A. and Nasca, C. (2024) The Neuropsychopharmacology of Acetyl-L-Carnitine (LAC): Basic, Translational and Therapeutic Implications. Discover Mental Health, 4, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
[42] Wu, M., Shi, L., Dubrot, J., Merritt, J., Vijay, V., Wei, T., et al. (2022) Mutant IDH Inhibits IFNγ-TET2 Signaling to Promote Immunoevasion and Tumor Maintenance in Cholangiocarcinoma. Cancer Discovery, 12, 812-835. [Google Scholar] [CrossRef] [PubMed]
[43] Huo, M., Zhang, J., Huang, W. and Wang, Y. (2021) Interplay among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer. Frontiers in Cell and Developmental Biology, 9, Article 793428. [Google Scholar] [CrossRef] [PubMed]
[44] Yue, Y., Liu, B., Xu, Q., Chen, Z., Wang, J., Zhao, Y., et al. (2025) Reciprocal Control of Metabolic and Chromatin Regulators Improves Rice Tolerance to Heat. Nature Communications, 16, Article No. 10698. [Google Scholar] [CrossRef
[45] Liu, T., Yu, S., Zhang, L., Ji, W., Wang, G., Wang, N., et al. (2025) Yes-Associated Protein 1 in Cancer: Bridging Mechanical Transduction and Epigenetic Regulation. Cancer Biology & Therapy, 26, Article ID: 2562726. [Google Scholar] [CrossRef
[46] Li, S., Wu, R., Wang, L., Dina Kuo, H., Sargsyan, D., Zheng, X., et al. (2021) Triterpenoid Ursolic Acid Drives Metabolic Rewiring and Epigenetic Reprogramming in Treatment/Prevention of Human Prostate Cancer. Molecular Carcinogenesis, 61, 111-121. [Google Scholar] [CrossRef] [PubMed]
[47] Zheng, X. and Sawalha, A.H. (2022) The Role of Oxidative Stress in Epigenetic Changes Underlying Autoimmunity. Antioxidants & Redox Signaling, 36, 423-440. [Google Scholar] [CrossRef] [PubMed]
[48] Vivero, A., Espinoza, S., Álvarez-Indo, J., Catalán-Aguilera, J., Llontop, N., Jara, C., et al. (2025) The Adverse Effect of a Hypercaloric High-Fat Diet Feeding on Hypothalamic Cellular Energy Homeostasis Is Attenuated by a Hypoglycemiant. Journal of Neuroendocrinology, 37, e70099. [Google Scholar] [CrossRef
[49] El-Haddad, M.E., El-Refaie, W.M., Hammad, G.O. and EL-Massik, M.A. (2025) Intra-articular Metformin-Curcumin Cationic PLGA Nanoparticles Rejuvenate Articular Structure in MIA Induced Osteoarthritis Model via Modulating the Crosstalk between Mir93, TNFAIP3/TLR/NF-κB and AMPK/SIRT1 Trajectories. International Journal of Biological Macromolecules, 315, Article ID: 144482. [Google Scholar] [CrossRef] [PubMed]
[50] Liu, Q., Hao, B., Zhang, M., Liu, Z., Huang, Y., Zhao, X., et al. (2022) An Integrative Proteome-Based Pharmacologic Characterization and Therapeutic Strategy Exploration of SAHA in Solid Malignancies. Journal of Proteome Research, 21, 953-964. [Google Scholar] [CrossRef] [PubMed]
[51] Roy, P., Kandel, R., Sawant, N. and Singh, K.P. (2024) Estrogen-Induced Reactive Oxygen Species, through Epigenetic Reprogramming, Causes Increased Growth in Breast Cancer Cells. Molecular and Cellular Endocrinology, 579, Article ID: 112092. [Google Scholar] [CrossRef] [PubMed]
[52] Atri, S., Nasoohi, N. and Hodjat, M. (2020) Azacitidine, as a DNMT Inhibitor Decreases hTERT Gene Expression and Telomerase Activity More Effective Compared with HDAC Inhibitor in Human Head and Neck Squamous Cell Carcinoma Cell Lines. Current Molecular Pharmacology, 14, 60-67. [Google Scholar] [CrossRef] [PubMed]
[53] Zhang, Y., Wang, H., Zhan, Z., Gan, L. and Bai, O. (2025) Mechanisms of HDACs in Cancer Development. Frontiers in Immunology, 16, Article 1529239. [Google Scholar] [CrossRef] [PubMed]
[54] Zahraei, M., Azimi, Y., Karimipour, M., Rahimi-Jamnani, F., Valizadeh, V. and Azizi, M. (2025) CRISPR/dCas9-TET1-Mediated Epigenetic Editing Reactivates miR-200c in Breast Cancer Cells. Scientific Reports, 15, Article No. 31739. [Google Scholar] [CrossRef
[55] Matboli, M., Hossam, N., Farag, D., Hassan, M., Shehata, H., Aboelhussein, M., et al. (2024) MiRNAs: Possible Regulators of Toll Like Receptors and Inflammatory Tumor Microenvironment in Colorectal Cancer. BMC Cancer, 24, Article No. 824. [Google Scholar] [CrossRef] [PubMed]
[56] Hu, Y., Liu, W., Fang, W., Dong, Y., Zhang, H. and Luo, Q. (2024) Tumor Energy Metabolism: Implications for Therapeutic Targets. Molecular Biomedicine, 5, Article No. 63. [Google Scholar] [CrossRef] [PubMed]
[57] Nguyen, T. and Duong, V. (2025) Advancements in Nanocarrier Systems for Nose-to-Brain Drug Delivery. Pharmaceuticals, 18, Article 615. [Google Scholar] [CrossRef] [PubMed]
[58] Coxon, J., Linder, E., Sweet, C., Magness, S. and Green, L. (2025) Replicating Host-Microbiome Interactions: Harnessing Organ-on-a-Chip and Organoid Technologies to Model Vaginal and Lung Physiology. Annual Review of Biomedical Engineering, 27, 403-423. [Google Scholar] [CrossRef] [PubMed]