湘东北万古金矿床钨矿化流体来源与演化机制
The Source and Evolution Mechanism of Tungsten Mineralized Fluid in the Wangu Gold Deposit in Northeastern Hunan
DOI: 10.12677/ag.2026.162013, PDF, HTML, XML,   
作者: 吴圣刚:湖南黄金天岳矿业有限公司,湖南 岳阳;陈孝刚, 陈俊辉, 贺 坤, 庄益纯, 穆家乐, 黄浩南, 李 成:湖南黄金洞矿业有限责任公司,湖南 岳阳
关键词: 白钨矿成矿物理化学环境成矿流体来源万古金矿床Scheelite Physical and Chemical Environment for Mineralization Source of Ore-Forming Fluids Wangu Gold Deposit
摘要: 万古金矿床位于湘东北长沙–平江金矿带北西部,赋存于新元古界冷家溪群变质板岩中,受到NE向深大断裂和近EW向韧性剪切带联合控制,金资源量约85 t,主要发育石英–硫化物脉、蚀变岩和构造角砾岩型矿化。根据野外地质调研和显微岩相学观察,该矿床热液作用分为三个阶段:(1) 石英–白钨矿阶段(成矿早期);(2) 石英–含金硫化物阶段(成矿期);(3) 石英–碳酸盐阶段(成矿晚期)。白钨矿是万古金矿床早期热液活动的产物,呈现黄白色附着于乳白色贫金石英脉中,基于显微镜下和阴极发光结构特征,将白钨矿分为两个世代:① Sch1,发育较早且分布广泛,阴极发光强度相对较弱;② Sch2,发育较晚且分布较少,阴极发光强度略强。微区原位微量元素分析表明,两个世代白钨矿均具有δEu > 1和δCe > 1的特征,且稀土配分模式显示显著的正Eu异常,反映二者均沉淀于还原环境,其中Sch2形成的氧逸度高于Sch1。万古金矿床白钨矿晶体表面均匀,未见振荡环带,兼具高Sr、低Mo含量及与变质流体相关的稀土配分模式,这些特征均与全球典型造山型金矿床中变质成因白钨矿的地球化学行为一致。综上,万古金矿床白钨矿的地球化学组成支持其钨成矿流体主要来源于深部变质流体的认识。
Abstract: The Wangu Gold Deposit is located in the northwestern part of the Changsha-Pingjiang gold belt in northeastern Hunan. It is hosted in the metamorphic slate of the Neoproterozoic Lengjiaxi Group and is jointly controlled by NE-trending deep faults and approximately EW-trending ductile shear zones. With gold resources totaling approximately 85 tons, the deposit mainly exhibits quartz-sulfide veins, altered rock and tectonic breccia-type mineralization. Based on field geological work and microscopic petrographic observations, the hydrothermal process in this deposit can be divided into three stages: (1) quartz-scheelite stage (pre-gold); (2) quartz-sulfide-gold stage (syn-gold); and (3) quartz-carbonate stage (post-gold). Scheelite is a product of the early hydrothermal process in the Wangu Gold Deposit, appearing yellowish-white and attached to milky quartz veins. Based on microscopic and cathodoluminescence (CL) structural characteristics, the scheelite can be divided into two generations: ① Sch1, which formed earlier and is widely distributed, exhibiting relatively weak CL intensity; and ② Sch2, which formed later and is less abundant, showing slightly stronger CL intensity. Microscale in-situ trace element analyses reveal that both generations of scheelite exhibit δEu > 1 and δCe > 1, with rare earth element (REE) distribution patterns showing significant positive Eu anomalies. These features indicate that both generations precipitated in a reducing environment, with the oxygen fugacity during the formation of Sch2 being higher than that of Sch1. The scheelite crystals in the Wangu Gold Deposit have smooth surfaces with no oscillatory zoning. They are characterized by high Sr content, low Mo content, and REE distribution patterns associated with metamorphic fluids. These features are consistent with the geochemical behavior of metamorphic-origin scheelite found in typical global orogenic gold deposits. In summary, the geochemical composition of the scheelite in the Wangu Gold Deposit supports the interpretation that the tungsten mineralization fluid primarily originated from deep-seated metamorphic fluids.
文章引用:吴圣刚, 陈孝刚, 陈俊辉, 贺坤, 庄益纯, 穆家乐, 黄浩南, 李成. 湘东北万古金矿床钨矿化流体来源与演化机制[J]. 地球科学前沿, 2026, 16(2): 126-136. https://doi.org/10.12677/ag.2026.162013

1. 引言

白钨矿是多种热液矿床中常见的副矿物,广泛见于矽卡岩型、斑岩型、造山型金矿及与侵入岩相关的金矿床等环境中[1]-[5]。由于其在结晶过程中可容纳较高含量的稀土元素(REE)、Sr、Mo、Pb等微量元素,白钨矿已成为重要的地球化学“指针矿物”,被广泛用于反演成矿流体的物理化学条件、示踪成矿流体来源及制约矿床成因机制等研究。

万古金矿床位于江南造山带中部,金资源量约85 t,同时还伴生具有经济价值和指示意义的钨和锑矿化,体现该矿床多期次、多阶段流体叠加成矿的复杂热液过程。前人在该区域完成了大量研究工作,其中,关于成矿流体性质与来源,Chen et al. (2024) [6]和Mupenge et al. (2026) [7]认为黄金洞矿床的钨矿化流体为深部变质成因,Yin et al. (2025) [8]通过对万古矿床白钨矿的地球化学特征及流体包裹体分析,提出该矿床的钨矿化与岩浆热液活动密切相关。这两种观点的差异,不仅揭示了区域成矿流体的多样性与复杂性,也为深入解析万古金矿床的成矿机制提供了重要线索。

因此,深入厘定万古金矿床白钨矿的成因与指示意义,仍是亟待厘清的核心问题。本研究旨在通过白钨矿的阴极发光(CL)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微量元素分析,探讨万古金矿床中白钨矿结构特征,进一步限定成矿物理化学条件,揭示成矿流体的来源与演化过程,最终为矿床的成矿模型与勘查方向提供理论依据。

2. 地质背景

2.1. 区域地质背景

长沙–平江金矿带位于江南造山带中段,是该区域重要的金多金属成矿带[9] [10] (图1),带内矿床主要赋存于新元古界冷家溪群浅变质板岩中,其成矿作用主要受三条NNE向深大断裂与三条NEE-EW向韧性剪切带的联合控制[12]-[14]。该区自新元古代以来直至中生代,经历了多期构造运动、岩浆活动和变质作用,形成了复杂的构造–热演化历史,为区内多金属大规模成矿提供了有利的地质背景[15] [16]

Figure 1. (a) Structural location of the Jiangnan Orogenic belt; (b) Regional geological map of Changsha-Pingjiang Gold Belt (according to [11])

1. (a) 江南造山带构造位置;(b) 长沙–平江金矿带区域地质图(据[11])

2.2. 矿床地质背景

万古金矿床位于长沙–平江断裂上盘北西向,已探明金资源量约85吨,矿体主要赋存于冷家溪群变质板岩中[17] [18]。矿区构造主要由NE向和NWW向两组断裂构成:其中NWW向断裂形成较早,倾向NE,倾角约40˚~60˚,是矿区主要的控矿构造;NE向断裂形成较晚,与长沙–平江断裂走向平行,在矿区内呈近似等间距分布,并常切割早期NWW向断裂及矿脉[19] (图2)。矿区内未出露花岗岩,但较大的正航磁和低重力异常表明其深部可能存在隐伏侵入体[12] [20]

Figure 2. Geological map of the Wangu Gold Deposit (according to [21])

2. 万古金矿床地质图(据[21])

Figure 3. (a) Field photos of scheelite; (b) quartz-scheelite veins under fluorescent lamps; (c) Microscopic photographs of scheelite ore; (d) CL photograph of scheelite; Abbreviation: Apy: Arsenopyrite; Qtz: Quartz; Sch: Scheelite

3. (a) 白钨矿野外照片;(b) 荧光灯下的石英–白钨矿脉;(c) 白钨矿显微镜下照片;(d) 白钨矿阴极发光照片;矿物缩写:Apy:毒砂;Qtz:石英;Sch:白钨矿

矿体多呈脉状产出,厚度变化较大,从几十厘米至一、两米不等。石英脉上下盘常见蚀变板岩,板岩中普遍发育浸染状黄铁矿和毒砂,伴随绢云母与石英的广泛发育。矿床围岩经历了多类蚀变作用,主要包括黄铁矿化、毒砂化、硅化、绢云母化、白钨矿化及白云母化等(图3)。

根据脉体穿插关系与矿物共生组合特征,万古金矿床热液作用可分为三个期次:(1) 成矿早期:石英–白钨矿阶段;(2) 成矿期:石英–含金硫化物阶段,主要硫化物包括毒砂、黄铁矿、闪锌矿、方铅矿、黄铜矿等;(3) 成矿晚期:石英–碳酸盐阶段,碳酸盐矿物以方解石为主。

2.3. 钨矿石特征

万古金矿床主要发育石英–硫化物脉型、蚀变岩型及构造角砾岩型三类矿石,其中前两者在矿区内分布广泛,构造角砾岩型矿石则相对较少。白钨矿在矿床中主要赋存于乳白色石英脉内,以块状构造产出,主要以它形呈局部聚集状分布,常见与金属硫化物(如黄铁矿、毒砂等)密切共生,反映了热液成矿阶段中钨矿化的特定空间与矿物组合特征。

3. 样品采集及分析测试

3.1. 样品采集

在精细的岩相学和矿相学基础上,挑选具体代表性的白钨矿样品,在中国地质科学院地质研究所进行白钨矿CL观察和拍照,在中国科学院地球物理化学研究所(贵阳)矿床地球化学国家重点实验室开展白钨矿LA-ICP-MS微量元素点分析。

3.2. 阴极发光

实验分析在中国地质科学院地质研究所进行,使用FEI Helios NanoLab FIB-SEM平台和Gatan MonoCL 4系统连接FEI NOVA nanoSEM 450扫描电子显微镜(SEM) (Hillsboro, OR, USA),配备Oxford X-Max 50探测器[22]

3.3. LA-ICP-MS微量元素分析

分析在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS完成。激光剥蚀系统为GeoLasPro 193 nm ArF准分子激光器。实验采用安捷伦公司生产的Agilent 7900电感耦合等离子体质谱(ICP-MS)进行微量元素测试。激光剥蚀过程中采用氦气载气、氩气为补偿气,并加入少量氮气提高灵敏度,三者在进入ICP之前通过一个T型接头混合。样品仓为标配的剥蚀池,其中加入树脂制作的模具来获得一个较小体积的取样空间,以降低记忆效应,提高冲洗效率。单个样品的信号采集包括大约20 s的空白信号、30 s取样时间、40 s左右信号衰减至背景值的时间。分析过程中,激光工作参数一般为频率5~6 Hz,能量密度3~5 J/cm2,束斑44 μm。在测试之前用SRM612对ICP-MS性能进行优化,使仪器达到最佳的灵敏度和电离效率(U/Th ≈ 1)、尽可能小的氧化物产率(ThO/Th < 0.3%)和低的背景值。数据采用软件ICPMSDataCal完成样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算[23]

4. 分析结果

4.1. 阴极发光(CL)

阴极发光图像识别出该矿床存在两类白钨矿:早世代白钨矿呈暗色发光特征,晚世代则显示明亮发光。二者均为白钨矿颗粒中不同世代的产物,常呈它形结构,晶体表面质地均一,未见明显裂隙或孔隙发育。该现象可能反映了成矿流体成分或物理化学条件的阶段性变化,也为识别不同成矿期次提供了重要微观依据。

4.2. 白钨矿微量元素特征

白钨矿2个世代微量元素分析数据(见表1图4)。白钨矿中Sr含量较高,其中Sch1为3453~5425 ppm (平均4686 ppm),Sch2为3590~5364 ppm (平均4325 ppm);Mo含量发育较少,Sch1为bdl-0.14 (平均0.0476 ppm),Sch2为bdl-0.084 (平均0.045 ppm);Na含量较低,Sch1为0.37~117.76 ppm (平均为24.59 ppm),Sch1为1.93~18.66 ppm(平均为6.84 ppm);Sch1的REE含量为20.05~60.46 ppm (平均为38.23 ppm),Sch2的REE含量为7.54~22.02 ppm (平均为13.33 ppm);Sch1的Y含量为19.9~63.2 ppm (平均为41.1 ppm),Sch2的Y含量为10.6~20.8 ppm (平均为15.6 ppm)。

Table 1. Trace elements of different generations scheelite in the Wangu gold deposit (ppm)

1. 万古金矿床不同世代白钨矿微量元素(ppm)

世代

Sch1

Sch1

Sch1

Sch1

Sch1

Sch1

Sch1

Sch1

Sch1

Na

5.16

16.0

44.7

6.57

2.07

0.37

10.07

118

27.4

Mn

1.58

0.82

1.25

0.86

0.48

0.90

1.68

0.82

1.22

Sr

4909

4924

5254

5245

5425

5206

3795

3453

3853

Nb

1.85

1.80

2.22

1.79

1.67

1.85

2.18

2.08

1.86

Mo

bdl

0.11

bdl

bdl

bdl

bdl

0.14

0.050

0.11

Y

53.4

47.4

35.6

24.7

20.4

19.9

59.3

63.2

40.4

La

0.83

0.73

0.68

0.56

0.59

0.56

0.58

0.61

0.98

Ce

3.56

3.14

2.67

2.46

2.03

2.12

2.95

3.79

3.50

Pr

0.73

0.63

0.55

0.48

0.39

0.32

0.69

0.92

0.53

Nd

4.66

4.57

4.57

3.23

2.09

2.13

5.12

5.86

3.11

Sm

3.98

3.67

4.13

2.39

1.73

1.93

5.27

5.11

1.97

Eu

9.63

10.3

7.17

4.18

3.66

3.95

8.91

8.86

7.44

Gd

5.20

5.18

6.75

4.28

2.75

3.04

11.1

8.38

4.15

Tb

0.81

0.66

0.99

0.64

0.45

0.45

1.89

1.45

0.62

Dy

4.38

4.45

5.48

3.66

2.57

2.70

11.5

8.89

3.63

Ho

0.77

0.73

0.98

0.68

0.50

0.51

2.11

1.58

0.75

Er

2.53

2.42

2.57

1.99

1.46

1.49

5.45

4.59

2.20

Tm

0.47

0.45

0.41

0.27

0.23

0.22

0.70

0.68

0.40

Yb

3.65

3.34

2.18

1.68

1.43

1.28

3.71

3.89

2.95

Lu

0.47

0.44

0.30

0.18

0.18

0.16

0.41

0.43

0.35

REE

41.68

40.65

39.44

26.67

20.05

20.85

60.46

55.04

32.57

U

2.88

2.71

1.16

0.55

0.95

0.84

0.48

1.77

1.63

Th

0.20

0.16

0.15

0.10

0.12

0.11

0.030

0.21

0.35

Pb

23.3234

20.2387

bdl

12.8116

12.5192

11.4648

10.3376

13.3852

18.325

世代

Sch1

Sch1

Sch2

Sch2

Sch2

Sch2

Sch2

Sch2

Sch2

Na

20.4

19.9

2.52

2.39

18.7

6.54

10.8

1.93

5.01

Mn

2.68

1.58

1.49

0.42

0.73

0.72

1.06

1.98

1.11

Sr

4592

4468

3590

3782

4256

4333

4794

4149

5364

Nb

1.89

2.16

2.03

2.03

2.04

2.00

1.82

1.88

1.92

Mo

0.11

bdl

bdl

bdl

bdl

bdl

0.026

0.084

0.025

Y

55.8

32.4

10.6

12.4

20.8

17.3

15.5

11.5

20.8

La

0.92

0.69

0.61

0.53

0.49

0.29

0.71

0.58

0.58

Ce

3.89

2.43

1.23

1.37

1.65

1.51

1.84

1.31

2.15

Pr

0.79

0.48

0.18

0.19

0.25

0.31

0.25

0.16

0.41

Nd

5.37

3.31

0.60

0.75

1.54

2.41

0.94

0.64

2.13

Sm

4.57

2.61

0.28

0.26

1.08

1.77

0.31

0.29

1.86

Eu

11.5

11.0

0.82

1.09

2.64

3.52

2.65

0.67

4.28

Gd

7.21

3.81

0.55

0.83

2.00

2.93

1.05

0.70

2.98

Tb

1.03

0.52

0.12

0.14

0.33

0.49

0.18

0.13

0.49

Dy

5.73

3.17

0.99

1.21

2.01

2.64

1.50

1.11

2.98

Ho

1.02

0.59

0.23

0.24

0.42

0.46

0.31

0.22

0.56

Er

3.16

1.78

0.70

0.85

1.28

1.23

1.11

0.83

1.64

Tm

0.51

0.33

0.14

0.13

0.24

0.19

0.15

0.17

0.22

Yb

3.79

2.12

0.97

1.00

1.49

1.18

1.18

1.02

1.55

Lu

0.54

0.26

0.14

0.14

0.22

0.13

0.16

0.13

0.19

REE

50.01

33.09

7.54

8.73

15.65

19.08

12.34

7.97

22.02

U

2.45

1.66

0.34

0.37

0.85

0.015

0.53

0.34

0.92

Th

0.32

0.13

0.055

0.075

0.12

0.012

0.065

0.049

0.11

Pb

24.823

20.0653

15.5277

17.039

26.0597

8.6786

bdl

bdl

12.0097

注:bdl为低于检出限。

5. 讨论

5.1. 白钨矿结构特征

白钨矿是岩浆热液成矿系统中常见的矿物[24] [25]。斑岩型及矽卡岩型矿床中白钨矿阴极发光图像常显示其具有清晰的振荡环带结构,这种环带通常与Mo元素含量的韵律性变化密切相关[26] [27]。然而,在典型造山型金矿床中,白钨矿由于晶格缺陷不发育、杂质与微量元素掺入有限,其晶体结构一般较为均一,阴极发光下常呈现均匀的发光特征,缺乏振荡环带现象[24] [28] [29]

在万古金矿床中,白钨矿的阴极发光图像显示出两种发光强度略有差异的结构:早期形成的白钨矿(Sch1)发光较暗,而晚期形成的白钨矿(Sch2)发光相对较亮,并以充填或包裹形式围绕或穿插早期白钨矿产出。这一现象暗示了成矿过程中流体性质或成分的阶段性变化,也为分析该矿床白钨矿的成因提供了重要信息[29] [30]

Figure 4. The content of trace elements in different generations of scheelite deposits in the Wangu Gold Deposit

4. 万古金矿床白钨矿不同世代微量元素含量

5.2. 成矿物理化学条件

针对万古金矿床白钨矿的微量元素分析表明,δEu与Na含量无显著相关性,表明Eu3+的可占点位较少,Eu2+更易进入矿物晶格(图6(c))。此外,白钨矿的稀土配分模式中Eu异常特征可有效指示成矿环境的氧化还原状态:正Eu异常指示还原环境,负Eu异常则指示氧化环境[6] [8] (图5)。本矿床所有白钨矿样品均显示明显的正Eu异常,表明其形成于还原条件。值得关注的是,晚期白钨矿(Sch2)的Eu异常强度低于早期白钨矿(Sch1),说明两者虽均在还原环境中沉淀,但Sch2形成时体系的还原程度相对较低,这与δEu-δCe以及EuN-Eu*指示的结果相吻合(图6(a)图6(b))。

Figure 5. Diagram of rare earth distribution patterns of different generations in scheelite deposits of the Wangu Gold Deposit

5. 万古金矿床白钨矿不同世代稀土配分模式图

5.3. 成矿流体来源

前人研究表明,变质成因与岩浆成因的白钨矿在Sr含量上存在显著差异:岩浆成因的白钨矿Sr含量通常较低,二者差异可达到两个数量级。这一差异主要受成矿过程中Sr元素的地球化学行为控制:在岩浆体系中,随着岩浆演化,含钙矿物的结晶会不断消耗流体中的Sr,导致晚期岩浆热液中Sr贫化,因此岩浆成因的白钨矿往往具有较低的Sr含量;而在变质环境中,富钙围岩(如碳酸盐岩)在变质脱水或流体–岩石反应过程中可释放大量Sr进入成矿流体,使得变质成因的白钨矿通常具有较高的Sr含量。

Figure 6. Illustration of trace elements related to scheelite in the Wangu Gold Deposit (a, b after [7]; d after [32])

6. 万古金矿床白钨矿微量元素相关图解(a,b图据[7];d图据[32])

万古金矿床白钨矿晶体表面均一,未见振荡环带结构,高Sr低Mo含量以及稀土元素配分模式(图3图5图6),均与世界范围内以变质流体为主的造山型金矿床中的白钨矿特征一致[31] [32]。故此认为,万古金矿床白钨矿的地球化学组成支持其钨成矿流体以变质流体为主导的认识。

6. 结论

1) 根据岩相学和矿相学证据,识别出万古金矿床具3期热液作用,(1) 成矿早期:石英–白钨矿阶段;(2) 成矿期:石英–含金硫化物阶段;(3) 成矿晚期:石英–碳酸盐阶段。

2) 万古金矿床中的白钨矿均形成于还原环境,但早期白钨矿(Sch1)沉淀时的还原程度高于晚期白钨矿(Sch2),表明白钨矿的沉淀过程主要受体系氧逸度的控制。

3) 万古金矿床钨成矿流体为深源变质流体。

致 谢

论文完成得益于与中国地质大学(北京)和中南大学相关研究人员的探讨。

参考文献

[1] Ghaderi, M., Palin, J.M., Campbell, I.H. and Sylvester, P.J. (1999) Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94, 423-437. [Google Scholar] [CrossRef
[2] Brugger, J., Lahaye, Y., Costa, S., Lambert, D. and Bateman, R. (2000) Inhomogeneous Distribution of REE in Scheelite and Dynamics of Archaean Hydrothermal Systems (mt. Charlotte and Drysdale Gold Deposits, Western Australia). Contributions to Mineralogy and Petrology, 139, 251-264. [Google Scholar] [CrossRef
[3] Poulin, R.S., Kontak, D.J., McDonald, A. and McCLenaghan, M.B. (2018) Assessing Scheelite as an Ore-Deposit Discriminator Using Its Trace-Element and REE Chemistry. The Canadian Mineralogist, 56, 265-302. [Google Scholar] [CrossRef
[4] Miranda, A.C.R., Beaudoin, G. and Rottier, B. (2022) Scheelite Chemistry from Skarn Systems: Implications for Ore-Forming Processes and Mineral Exploration. Mineralium Deposita, 57, 1469-1497. [Google Scholar] [CrossRef
[5] Zhang, Z., Xie, G. and Olin, P. (2023) Tungsten Mineralization in the Caojiaba Tungsten Deposit, Southern China: Constraints from Scheelite In-Situ Trace Elements and Sr Isotope Evidence. Ore Geology Reviews, 158, Article ID: 105496. [Google Scholar] [CrossRef
[6] Chen, Z., Zhang, L., Sun, X., Sun, S., Shen, G., Yu, T., et al. (2024) Tungsten Mineralization in the Huangjindong Gold Deposit, Southern China: Insights from Scheelite Texture, In-Situ Trace Elements and Sr Isotope Compositions. Ore Geology Reviews, 166, Article ID: 105960. [Google Scholar] [CrossRef
[7] Mupenge, P.M., Zhai, D., Song, X., Zhao, Q., Zhao, G., Liu, J., et al. (2026) Trace Element Geochemistry of Scheelite: Implications for W Mineralization and Fluid Evolution of the Huangjindong Au-(W) Deposit, South China. Journal of Asian Earth Sciences, 295, Article ID: 106857. [Google Scholar] [CrossRef
[8] Yin, F., Li, W., Xie, G., Cai, L., Zhou, Y., Wu, J., et al. (2025) Genesis of the Wangu Au Deposit in the Jiangnan Orogenic Belt: Constraints from Texture, Trace Element, and In-Situ Sr Isotope of Scheelite. Ore Geology Reviews, 176, Article ID: 106375. [Google Scholar] [CrossRef
[9] Zhang, L., Yang, L., Groves, D.I., Liu, Y., Sun, S., Qi, P., et al. (2018) Geological and Isotopic Constraints on Ore Genesis, Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Ore Geology Reviews, 99, 264-281. [Google Scholar] [CrossRef
[10] Wang, J., Zhang, L., Yang, L., Sun, S., Li, R., Gao, X., et al. (2025) Ore-Forming Fluid Evolution and Gold Precipitation Mechanism at Huangjindong Gold Deposit, Southern China: Insights from Fluid Inclusions and Trace Elements in Quartz. Ore Geology Reviews, 178, Article ID: 106444. [Google Scholar] [CrossRef
[11] Xu, D., Deng, T., Chi, G., Wang, Z., Zou, F., Zhang, J., et al. (2017) Gold Mineralization in the Jiangnan Orogenic Belt of South China: Geological, Geochemical and Geochronological Characteristics, Ore Deposit-Type and Geodynamic Setting. Ore Geology Reviews, 88, 565-618. [Google Scholar] [CrossRef
[12] 文志林, 邓腾, 董国军, 等. 湘东北万古金矿床控矿构造特征与控矿规律研究[J]. 大地构造与成矿学, 2016, 40(2): 281-294.
[13] Zhang, L., Yang, L., Groves, D.I., Sun, S., Liu, Y., Wang, J., et al. (2019) An Overview of Timing and Structural Geometry of Gold, Gold-Antimony and Antimony Mineralization in the Jiangnan Orogen, Southern China. Ore Geology Reviews, 115, Article ID: 103173. [Google Scholar] [CrossRef
[14] Zhang, L., Groves, D.I., Yang, L., Sun, S., Weinberg, R.F., Wang, J., et al. (2019) Utilization of Pre-Existing Competent and Barren Quartz Veins as Hosts to Later Orogenic Gold Ores at Huangjindong Gold Deposit, Jiangnan Orogen, Southern China. Mineralium Deposita, 55, 363-380. [Google Scholar] [CrossRef
[15] Wang, Y., He, C., Tang, J., Huizenga, J.M., Wang, L. and Lang, X. (2023) Metal Source and Hydrothermal Evolution of the Jiaoxi Quartz Vein-Type Tungsten Deposit (Tibet): Insights from Textural and Compositional Variations of Wolframite and Scheelite. American Mineralogist, 108, 1258-1274. [Google Scholar] [CrossRef
[16] 孟庆秀, 张健, 耿建珍, 等. 湘中地区冷家溪群和板溪群锆石U-Pb年龄、Hf同位素特征及对华南新元古代构造演化的意义[J]. 中国地质, 2013, 40(1): 191-216.
[17] Deng, T., Xu, D., Chi, G., Wang, Z., Jiao, Q., Ning, J., et al. (2017) Geology, Geochronology, Geochemistry and Ore Genesis of the Wangu Gold Deposit in Northeastern Hunan Province, Jiangnan Orogen, South China. Ore Geology Reviews, 88, 619-637. [Google Scholar] [CrossRef
[18] 沈关文, 张良, 孙思辰, 等. 江南造山带万古金矿床含金硫化物组构与金沉淀机制[J]. 岩石学报, 2022, 38(1): 91-108.
[19] Shen, G., Zhang, L., Sun, S., Chen, Z., Yu, T., He, K., et al. (2024) Metallogenic Mechanism of the Wangu Gold Deposit, Jiangnan Orogenic Belt: Constraints from the Textures and Geochemical Compositions of Gold-Bearing Pyrite. Ore Geology Reviews, 168, Article ID: 106031. [Google Scholar] [CrossRef
[20] 毛景文, 李延河, 李红艳, 等. 湖南万古金矿床地幔流体成矿的氦同位素证据[J]. 地质论评, 1997, 43(6): 646-649.
[21] 毛景文, 李红艳, 徐珏, 等. 湖南万古地区金矿地质与成因[M]. 北京: 原子能出版社, 1997.
[22] Liu, J.C., Wang, Y.T., Mao, J.W., Jian, W., Hu, Q., Wei, R., et al. (2022) Episodic Au-Mo Mineralization Events in the Xiaoqinling District, Southern Margin of the North China Craton. Ore Geology Reviews, 149, Article ID: 105096. [Google Scholar] [CrossRef
[23] Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., et al. (2010) Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55, 1535-1546. [Google Scholar] [CrossRef
[24] Poulin, R.S., McDonald, A.M., Kontak, D.J. and McClenaghan, M.B. (2016) On the Relationship between Cathodoluminescence and the Chemical Composition of Scheelite from Geologically Diverse Ore-Deposit Environments. The Canadian Mineralogist, 54, 1147-1173. [Google Scholar] [CrossRef
[25] Zhan, Q., Gao, X., Meng, L. and Zhao, T. (2021) Ore Genesis and Fluid Evolution of the Sandaozhuang Supergiant W-Mo Skarn Deposit, Southern Margin of the North China Craton: Insights from Scheelite, Garnet and Clinopyroxene Geochemistry. Ore Geology Reviews, 139, Article ID: 104551. [Google Scholar] [CrossRef
[26] Ji, Y., Xie, G., Romer, R.L., Li, W., Zhu, Q. and Fu, B. (2024) Scheelite Composition Fingerprints Pulsed Flow of Magmatic Fluid in the Fujiashan W Skarn Deposit, Eastern China. American Mineralogist, 109, 747-763. [Google Scholar] [CrossRef
[27] Weng, G., Liu, J., Carranza, E.J.M., Zhai, D., Wang, J., Wang, H., et al. (2024) Scheelite Texture and Geochemistry as a Recorder of Nature and Timing of Metallogenesis: An Example from the Zhaishang Au-Sb-W Deposit, Western Qinling, Central China. Contributions to Mineralogy and Petrology, 179, 14. [Google Scholar] [CrossRef
[28] Sprunt, E.S., Dengler, L.A. and Sloan, D. (1978) Effects of Metamorphism on Quartz Cathodoluminescence. Geology, 6, 305-308. [Google Scholar] [CrossRef
[29] Zhao, Q., Zhai, D., Hong, J., Mathur, R., Wang, H., Zhang, H., et al. (2023) Scheelite U-Pb Geochronology and Trace Element Geochemistry Fingerprint W Mineralization in the Giant Zhuxi W Deposit, South China. American Mineralogist, 108, 1781-1793. [Google Scholar] [CrossRef
[30] Di, H., Shao, Y.J., Xiong, Y.Q., Zheng, H., Fang, X. and Fang, W. (2024) Scheelite as a Microtextural and Geochemical Tracer of Multistage Ore-Forming Processes in Skarn Mineralization: A Case Study from the Giant Xintianling W Deposit, South China. Gondwana Research, 136, 104-125. [Google Scholar] [CrossRef
[31] Sciuba, M., Beaudoin, G., Grzela, D. and Makvandi, S. (2019) Trace Element Composition of Scheelite in Orogenic Gold Deposits. Mineralium Deposita, 55, 1149-1172. [Google Scholar] [CrossRef
[32] 李博, 邹少浩, 许德如, 等. 白钨矿中微量元素的研究进展及其在矿床成因方面的应用[J]. 大地构造与成矿学, 2024, 48(6): 1344-1365.