|
[1]
|
Alengebawy, A., Abdelkhalek, S.T., Qureshi, S.R. and Wang, M. (2021) Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics, 9, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Foureaux, A.F.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S. and Amaral, M.C.S. (2020) Direct Contact Membrane Distillation as an Alternative to the Conventional Methods for Value-Added Compounds Recovery from Acidic Effluents: A Review. Separation and Purification Technology, 236, Article ID: 116251. [Google Scholar] [CrossRef]
|
|
[3]
|
Zhang, L., Tan, X., Chen, H., Liu, Y. and Cui, Z. (2022) Effects of Agriculture and Animal Husbandry on Heavy Metal Contamination in the Aquatic Environment and Human Health in Huangshui River Basin. Water, 14, Article No. 549. [Google Scholar] [CrossRef]
|
|
[4]
|
刘静, 李树先, 朱江, 等. 浅谈几种重金属元素对人体的危害及其预防措施[J]. 中国资源综合利用, 2018, 36(3): 182-184.
|
|
[5]
|
Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J. and Huang, Z. (2018) Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. Journal of Water Process Engineering, 26, 289-300. [Google Scholar] [CrossRef]
|
|
[6]
|
Yadav, S. and Kamsonlian, S. (2023) A Review of Electrochemical Methods for Treatment of Wastewater. Materials Today: Proceedings, 78, 36-39. [Google Scholar] [CrossRef]
|
|
[7]
|
Zhang, Y., Luo, J., Zhang, H., Li, T., Xu, H., Sun, Y., et al. (2022) Synthesis and Adsorption Performance of Three-Dimensional Gels Assembled by Carbon Nanomaterials for Heavy Metal Removal from Water: A Review. Science of The Total Environment, 852, Article ID: 158201. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yan, L., Yang, X., Zeng, H., Zhao, Y., Li, Y., He, X., et al. (2023) Nanocomposite Hydrogel Engineered Hierarchical Membranes for Efficient Oil/Water Separation and Heavy Metal Removal. Journal of Membrane Science, 668, Article ID: 121243. [Google Scholar] [CrossRef]
|
|
[9]
|
Biswal, B.K. and Balasubramanian, R. (2023) Use of Biochar as a Low-Cost Adsorbent for Removal of Heavy Metals from Water and Wastewater: A Review. Journal of Environmental Chemical Engineering, 11, Article ID: 110986. [Google Scholar] [CrossRef]
|
|
[10]
|
Foong, S.Y., Chan, Y.H., Chin, B.L.F., Lock, S.S.M., Yee, C.Y., Yiin, C.L., et al. (2022) Production of Biochar from Rice Straw and Its Application for Wastewater Remediation—An Overview. Bioresource Technology, 360, Article ID: 127588. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
王胜凡, 梅立永, 王磊, 等. 重金属废水处理方法与比较[J]. 广东化工, 2017, 44(22): 99-100.
|
|
[12]
|
Wang, Y., Li, H. and Lin, S. (2022) Advances in the Study of Heavy Metal Adsorption from Water and Soil by Modified Biochar. Water, 14, Article No. 3894. [Google Scholar] [CrossRef]
|
|
[13]
|
陈坦, 周泽宇, 孟瑞红, 等. 改性污泥基生物炭的性质与重金属吸附效果[J]. 环境科学, 2019, 40(4): 1842-1848.
|
|
[14]
|
楚颖超, 李建宏, 吴蔚东. 椰纤维生物炭对Cd(Ⅱ)、As(Ⅲ)、Cr(Ⅲ)和Cr(Ⅵ)的吸附[J]. 环境工程学报, 2015, 9(5): 2165-2170.
|
|
[15]
|
Yu, S., Zhang, W., Dong, X., Wang, F., Yang, W., Liu, C., et al. (2024) A Review on Recent Advances of Biochar from Agricultural and Forestry Wastes: Preparation, Modification and Applications in Wastewater Treatment. Journal of Environmental Chemical Engineering, 12, Article ID: 111638. [Google Scholar] [CrossRef]
|
|
[16]
|
Lan, W., Zhao, X., Wang, Y., Jin, X., Ji, J., Cheng, Z., et al. (2024) Research Progress of Biochar Modification Technology and Its Application in Environmental Remediation. Biomass and Bioenergy, 184, Article ID: 107178. [Google Scholar] [CrossRef]
|
|
[17]
|
赵迎新, 麻泽浩, 杨知凡, 等. 污泥生物炭催化高级氧化过程进展[J]. 化工进展, 2021, 40(7): 3984-3994.
|
|
[18]
|
Tomczyk, A., Sokołowska, Z. and Boguta, P. (2020) Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215. [Google Scholar] [CrossRef]
|
|
[19]
|
袁浩然, 鲁涛, 黄宏宇, 等. 市政污泥热解制备生物炭实验研究[J]. 化工学报, 2012, 63(10): 3310-3315.
|
|
[20]
|
Zhang, X., Zhang, P., Yuan, X., Li, Y. and Han, L. (2020) Effect of Pyrolysis Temperature and Correlation Analysis on the Yield and Physicochemical Properties of Crop Residue Biochar. Bioresource Technology, 296, Article ID: 122318. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Das, S.K., Ghosh, G.K., Avasthe, R.K. and Sinha, K. (2021) Compositional Heterogeneity of Different Biochar: Effect of Pyrolysis Temperature and Feedstocks. Journal of Environmental Management, 278, Article ID: 111501. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., et al. (2022) Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio‐Oil. Combustion and Flame, 242, Article ID: 112142. [Google Scholar] [CrossRef]
|
|
[23]
|
Wu, F., Chen, L., Hu, P., Zhou, X., Zhou, H., Wang, D., et al. (2022) Comparison of Properties, Adsorption Performance and Mechanisms to Cd(II) on Lignin-Derived Biochars under Different Pyrolysis Temperatures by Microwave Heating. Environmental Technology & Innovation, 25, Article ID: 102196. [Google Scholar] [CrossRef]
|
|
[24]
|
Liu, T., Liu, Z., Zheng, Q., Lang, Q., Xia, Y., Peng, N., et al. (2018) Effect of Hydrothermal Carbonization on Migration and Environmental Risk of Heavy Metals in Sewage Sludge during Pyrolysis. Bioresource Technology, 247, 282-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H. and Chen, H. (2014) Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy & Fuels, 28, 5119-5127. [Google Scholar] [CrossRef]
|
|
[26]
|
Tag, A.T., Duman, G., Ucar, S. and Yanik, J. (2016) Effects of Feedstock Type and Pyrolysis Temperature on Potential Applications of Biochar. Journal of Analytical and Applied Pyrolysis, 120, 200-206. [Google Scholar] [CrossRef]
|
|
[27]
|
Chen, L., Hu, J., He, Y., Wang, H., Deng, Q., Mi, B., et al. (2024) Microwave-Assisted Pyrolysis of Waste Lignin to Prepare Biochar for Cu2+ Highly-Efficient Adsorption: Performance, Kinetics and Mechanism Resolution. Separation and Purification Technology, 342, Article ID: 127070. [Google Scholar] [CrossRef]
|
|
[28]
|
王程, 张玉全, 李治军, 等. 微波热裂解-KOH活化制备杏壳活性炭及其对甲基橙的吸附性能[J]. 化工新型材料, 2020, 48(3): 207-212.
|
|
[29]
|
焦勇. 猪粪水热炭的制备及其对水体亚甲基蓝的去除研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2023.
|
|
[30]
|
Wu, J., Yang, J., Huang, G., Xu, C. and Lin, B. (2020) Hydrothermal Carbonization Synthesis of Cassava Slag Biochar with Excellent Adsorption Performance for Rhodamine B. Journal of Cleaner Production, 251, Article ID: 119717. [Google Scholar] [CrossRef]
|
|
[31]
|
Hawryluk-Sidoruk, M., Raczkiewicz, M., Krasucka, P., Duan, W., Mašek, O., Zarzycki, R., et al. (2024) Effect of Biochar Chemical Modification (Acid, Base and Hydrogen Peroxide) on Contaminants Content Depending on Feedstock and Pyrolysis Conditions. Chemical Engineering Journal, 481, Article ID: 148329. [Google Scholar] [CrossRef]
|
|
[32]
|
Zhao, S., Ta, N. and Wang, X. (2017) Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material. Energies, 10, Article No. 1293. [Google Scholar] [CrossRef]
|
|
[33]
|
Franciski, M.A., Peres, E.C., Godinho, M., Perondi, D., Foletto, E.L., Collazzo, G.C., et al. (2018) Development of CO2 Activated Biochar from Solid Wastes of a Beer Industry and Its Application for Methylene Blue Adsorption. Waste Management, 78, 630-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Rajapaksha, A.U., Vithanage, M., Ahmad, M., Seo, D., Cho, J., Lee, S., et al. (2015) Enhanced Sulfamethazine Removal by Steam-Activated Invasive Plant-Derived Biochar. Journal of Hazardous Materials, 290, 43-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xiang, W., Wan, Y., Zhang, X., Tan, Z., Xia, T., Zheng, Y., et al. (2020) Adsorption of Tetracycline Hydrochloride onto Ball-Milled Biochar: Governing Factors and Mechanisms. Chemosphere, 255, Article ID: 127057. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cao, G., Sun, J., Chen, M., Sun, H. and Zhang, G. (2021) Co-Transport of Ball‐Milled Biochar and Cd2+ in Saturated Porous Media. Journal of Hazardous Materials, 416, Article ID: 125725. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
朱建龙, 孙荣, 周佳燕, 等. 磷酸改性板蓝根药渣污泥基生物炭的制备及其对含铅废水的处理研究[J]. 给水排水, 2024, 60(1): 57-65.
|
|
[38]
|
赵啟超, 白红娟, 韩群英, 等. 低温热解磷酸改性花生壳生物炭的制备及对水中Cr(Ⅵ)的去除[J]. 中北大学学报(自然科学版), 2024, 45(4): 503-512.
|
|
[39]
|
周树烽, 陈成广, 刘允初, 等. KOH改性污泥生物碳及对富营养化水体吸附研究[J]. 环境科学与技术, 2017, 40(8): 43-49.
|
|
[40]
|
高璐瑶, 刘邦海, 代鑫, 等. 碱改性污泥生物炭活化过氧乙酸降解磺胺甲恶唑[J]. 工业水处理, 2024(11): 132-141.
|
|
[41]
|
徐大勇, 张苗, 杨伟伟, 等. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166.
|
|
[42]
|
Dong, F., Yan, L., Zhou, X., Huang, S., Liang, J., Zhang, W., et al. (2021) Simultaneous Adsorption of Cr(VI) and Phenol by Biochar-Based Iron Oxide Composites in Water: Performance, Kinetics and Mechanism. Journal of Hazardous Materials, 416, Article ID: 125930. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, C., Diao, Z., Huo, W., Kong, L. and Du, J. (2018) Simultaneous Removal of Cu2+ and Bisphenol a by a Novel Biochar-Supported Zero Valent Iron from Aqueous Solution: Synthesis, Reactivity and Mechanism. Environmental Pollution, 239, 698-705. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Tan, Y., Wan, X., Ni, X., Wang, L., Zhou, T., Sun, H., et al. (2022) Efficient Removal of Cd(II) from Aqueous Solution by Chitosan Modified Kiwi Branch Biochar. Chemosphere, 289, Article ID: 133251. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fan, S., Fan, X., Wang, S., Li, B., Zhou, N. and Xu, H. (2023) Effect of Chitosan Modification on the Properties of Magnetic Porous Biochar and Its Adsorption Performance towards Tetracycline and Cu2+. Sustainable Chemistry and Pharmacy, 33, Article ID: 101057. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhang, Y., Zheng, Y., Yang, Y., Huang, J., Zimmerman, A.R., Chen, H., et al. (2021) Mechanisms and Adsorption Capacities of Hydrogen Peroxide Modified Ball Milled Biochar for the Removal of Methylene Blue from Aqueous Solutions. Bioresource Technology, 337, Article ID: 125432. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, Y., Wan, Y.S., Zheng, Y.L., et al. (2023) Potassium Permanganate Modification of Hydrochar Enhances Sorption of Pb(II), Cu(II), and Cd(II). Bioresource Technology, 386, Article ID: 129482.
|
|
[48]
|
Wang, L., Chen, H., Wu, J., Huang, L., Brookes, P.C., Mazza Rodrigues, J.L., et al. (2021) Effects of Magnetic Biochar-Microbe Composite on Cd Remediation and Microbial Responses in Paddy Soil. Journal of Hazardous Materials, 414, Article ID: 125494. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, Y., Xing, B., Ding, Y., Han, X. and Wang, S. (2020) A Critical Review of the Production and Advanced Utilization of Biochar via Selective Pyrolysis of Lignocellulosic Biomass. Bioresource Technology, 312, Article ID: 123614. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kumar, M., Xiong, X., Wan, Z., Sun, Y., Tsang, D.C.W., Gupta, J., et al. (2020) Ball Milling as a Mechanochemical Technology for Fabrication of Novel Biochar Nanomaterials. Bioresource Technology, 312, Article ID: 123613. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
洪晶, 代勇勇, 聂启军, 等. 改性生物炭吸附废水中重金属离子的研究进展[J]. 生物工程学报, 2024, 40(12): 4467-4479.
|
|
[52]
|
龙威, 陈秋灵, 钟展业. 酸改性碳材料吸附溶液中U(Ⅵ) [J]. 化工环保, 2022, 42(4): 459-465.
|
|
[53]
|
彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10): 1637-1644.
|
|
[54]
|
Alsawy, T., Rashad, E., El-Qelish, M. and Mohammed, R.H. (2022) A Comprehensive Review on the Chemical Regeneration of Biochar Adsorbent for Sustainable Wastewater Treatment. NPJ Clean Water, 5, Article No. 29. [Google Scholar] [CrossRef]
|
|
[55]
|
Ye, Q., Li, Q. and Li, X. (2022) Removal of Heavy Metals from Wastewater Using Biochars: Adsorption and Mechanisms. Environmental Pollutants and Bioavailability, 34, 385-394. [Google Scholar] [CrossRef]
|
|
[56]
|
陈荔英, 许椐洋, 黄一绥, 等. 生物炭负载纳米铁绿色制备及去除水溶液中Cr(Ⅵ)研究[J]. 化学工程与装备, 2022(6): 1-3.
|
|
[57]
|
伍荣军, 张军, 王晟亦, 等. 生物沥浸改性后污泥基生物炭对Pb2+和Cd2+的吸附[J]. 中国给水排水, 2020, 36(1): 80-86.
|
|
[58]
|
Khandgave, S.S. and Sreedhar, I. (2023) A Mini-Review on Engineered Biochars as Emerging Adsorbents in Heavy Metal Removal. Materials Today: Proceedings, 72, 19-26. [Google Scholar] [CrossRef]
|
|
[59]
|
Qi, G., Pan, Z., Zhang, X., Wang, H., Chang, S., Wang, B., et al. (2024) Novel Pretreatment with Hydrogen Peroxide Enhanced Microwave Biochar for Heavy Metals Adsorption: Characterization and Adsorption Performance. Chemosphere, 346, Article ID: 140580. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
陈坦, 韩融, 王洪涛, 等. 污泥基生物炭对重金属的吸附作用[J]. 清华大学学报(自然科学版), 2014, 54(8): 1062-1067.
|
|
[61]
|
Zhang, J., Hu, X., Yan, J., Long, L. and Xue, Y. (2020) Crayfish Shell Biochar Modified with Magnesium Chloride and Its Effect on Lead Removal in Aqueous Solution. Environmental Science and Pollution Research, 27, 9582-9588. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
金冠宇, 李卫华, 杨厚云. 污泥基生物炭对重金属Cd~(2+)的吸附性能[J]. 安徽建筑大学学报, 2020, 28(4): 21-27.
|
|
[63]
|
Wang, H., Chen, Q., Xia, H., Liu, R. and Zhang, Y. (2024) Enhanced Complexation and Electrostatic Attraction through Fabrication of Amino-or Hydroxyl-Functionalized Fe/Ni-Biochar Composite for the Adsorption of Pb(II) and Cd(II). Separation and Purification Technology, 328, Article ID: 125074. [Google Scholar] [CrossRef]
|
|
[64]
|
Wijeyawardana, P., Nanayakkara, N., Law, D., Gunasekara, C., Karunarathna, A. and Pramanik, B.K. (2024) Evaluating the Performance of Cement-Modified Biochar Adsorbent for Cu, Pb and Zn Removal from Urban Stormwater. Process Safety and Environmental Protection, 186, 1419-1431. [Google Scholar] [CrossRef]
|
|
[65]
|
柳超颖. 污泥基生物炭的改性及其吸附水体中Cr(Ⅵ)的性能研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2018.
|
|
[66]
|
Poonam, Bharti, S.K. and Kumar, N. (2018) Kinetic Study of Lead (Pb2+) Removal from Battery Manufacturing Wastewater Using Bagasse Biochar as Biosorbent. Applied Water Science, 8, 1-13. [Google Scholar] [CrossRef]
|
|
[67]
|
Sanka, P.M., Rwiza, M.J. and Mtei, K.M. (2020) Removal of Selected Heavy Metal Ions from Industrial Wastewater Using Rice and Corn Husk Biochar. Water, Air, & Soil Pollution, 231, 37-43. [Google Scholar] [CrossRef]
|
|
[68]
|
Mazurek, K., Drużyński, S., Kiełkowska, U., Bielicka, A. and Gluzińska, J. (2023) Application of Sulphate and Magnesium Enriched Waste Rapeseed Cake Biochar for Recovery of Cu(II) and Zn(II) from Industrial Wastewater Generated in Sulphuric Acid Plants. Hydrometallurgy, 216, Article ID: 106014. [Google Scholar] [CrossRef]
|
|
[69]
|
Banerjee, S., Mukherjee, S., LaminKa-ot, A., Joshi, S.R., Mandal, T. and Halder, G. (2016) Biosorptive Uptake of Fe2+, Cu2+ and As5+ by Activated Biochar Derived from Colocasia Esculenta: Isotherm, Kinetics, Thermodynamics, and Cost Estimation. Journal of Advanced Research, 7, 597-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Mathabatha, T.I.K., Matheri, A.N. and Belaid, M. (2022) Peanut Shell-Derived Biochar as a Low-Cost Adsorbent to Extract Cadmium, Chromium, Lead, Copper, and Zinc (Heavy Metals) from Wastewater: Circular Economy Approach. Circular Economy and Sustainability, 3, 1045-1064. [Google Scholar] [CrossRef]
|
|
[71]
|
Liang, H., Feng, X., Zuo, X., Zhu, Z., Yang, S., Zhu, B., et al. (2023) Facile Fabrication of Highly Porous Mgo-Modified Biochar Derived from Agricultural Residue for Efficient Cd(II) Removal from Wastewater. Inorganic Chemistry Communications, 154, Article ID: 110900. [Google Scholar] [CrossRef]
|
|
[72]
|
Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y., et al. (2017) Biochars with Excellent Pb(II) Adsorption Property Produced from Fresh and Dehydrated Banana Peels via Hydrothermal Carbonization. Bioresource Technology, 232, 204-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Bandara, T., Xu, J., Potter, I.D., Franks, A., Chathurika, J.B.A.J. and Tang, C. (2020) Mechanisms for the Removal of Cd(II) and Cu(II) from Aqueous Solution and Mine Water by Biochars Derived from Agricultural Wastes. Chemosphere, 254, Article ID: 126745. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Ntuli, T.D. and Pakade, V.E. (2019) Hexavalent Chromium Removal by Polyacrylic Acid-Grafted Macadamia Nutshell Powder through Adsorption-Reduction Mechanism: Adsorption Isotherms, Kinetics and Thermodynamics. Chemical Engineering Communications, 207, 279-294. [Google Scholar] [CrossRef]
|
|
[75]
|
Das, S.K., Ghosh, G.K. and Avasthe, R. (2021) Conversion of Crop, Weed and Tree Biomass into Biochar for Heavy Metal Removal and Wastewater Treatment. Biomass Conversion and Biorefinery, 13, 4901-4914. [Google Scholar] [CrossRef]
|
|
[76]
|
Khadem, M., Husni Ibrahim, A., Mokashi, I., Hasan Fahmi, A., Noeman Taqui, S., Mohanavel, V., et al. (2022) Removal of Heavy Metals from Wastewater Using Low-Cost Biochar Prepared from Jackfruit Seed Waste. Biomass Conversion and Biorefinery, 13, 14447-14456. [Google Scholar] [CrossRef]
|