|
[1]
|
McNestry, C., Killeen, S.L., Crowley, R.K. and McAuliffe, F.M. (2023) Pregnancy Complications and Later Life Women’s Health. Acta Obstetricia et Gynecologica Scandinavica, 102, 523-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yang, M., Wang, M. and Li, N. (2024) Advances in Pathogenesis of Preeclampsia. Archives of Gynecology and Obstetrics, 309, 1815-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Michalczyk, M., Celewicz, A., Celewicz, M., Woźniakowska-Gondek, P. and Rzepka, R. (2020) The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediators of Inflammation, 2020, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Roberts, J.M. (2024) Preeclampsia Epidemiology(ies) and Pathophysiology(ies). Best Practice & Research Clinical Obstetrics & Gynaecology, 94, Article ID: 102480. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ives, C.W., Sinkey, R., Rajapreyar, I., Tita, A.T.N. and Oparil, S. (2020) Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76, 1690-1702. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chaemsaithong, P., Sahota, D.S. and Poon, L.C. (2022) First Trimester Preeclampsia Screening and Prediction. American Journal of Obstetrics and Gynecology, 226, S1071-S1097.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Brownfoot, F. and Rolnik, D.L. (2024) Prevention of Preeclampsia. Best Practice & Research Clinical Obstetrics & Gynaecology, 93, Article ID: 102481. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ghesquiere, L., Guerby, P., Marchant, I., Kumar, N., Zare, M., Foisy, M., et al. (2023) Comparing Aspirin 75 to 81 mg vs 150 to 162 mg for Prevention of Preterm Preeclampsia: Systematic Review and Meta-Analysis. American Journal of Obstetrics & Gynecology MFM, 5, Article 101000. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Di Martino, D.D., Sabattini, E., Parasiliti, M., Viscioni, L., Zaccone, E., Cerri, S., et al. (2025) Exploring New Predictors for Hypertensive Disorders of Pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology, 100, Article ID: 102598. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Deer, E., Herrock, O., Campbell, N., Cornelius, D., Fitzgerald, S., Amaral, L.M., et al. (2023) The Role of Immune Cells and Mediators in Preeclampsia. Nature Reviews Nephrology, 19, 257-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Melchiorre, K., Giorgione, V. and Thilaganathan, B. (2022) The Placenta and Preeclampsia: Villain or Victim? American Journal of Obstetrics and Gynecology, 226, S954-S962. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chang, K.J., Seow, K.M. and Chen, K.H. (2023) Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. International Journal of Environmental Research and Public Health, 20, Article 2994. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Miller, D., Motomura, K., Galaz, J., Gershater, M., Lee, E.D., Romero, R., et al. (2022) Cellular Immune Responses in the Pathophysiology of Preeclampsia. Journal of Leukocyte Biology, 111, 237-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Gardikioti, A., Venou, T., Gavriilaki, E., Vetsiou, E., Mavrikou, I., Dinas, K., et al. (2022) Molecular Advances in Preeclampsia and HELLP Syndrome. International Journal of Molecular Sciences, 23, Article 3851. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Torres-Torres, J., Espino-y-Sosa, S., Martinez-Portilla, R., Borboa-Olivares, H., Estrada-Gutierrez, G., Acevedo-Gallegos, S., et al. (2024) A Narrative Review on the Pathophysiology of Preeclampsia. International Journal of Molecular Sciences, 25, Article 7569. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rana, S., Burke, S.D. and Karumanchi, S.A. (2022) Imbalances in Circulating Angiogenic Factors in the Pathophysiology of Preeclampsia and Related Disorders. American Journal of Obstetrics and Gynecology, 226, S1019-S1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Verlohren, S., Brennecke, S.P., Galindo, A., Karumanchi, S.A., Mirkovic, L.B., Schlembach, D., et al. (2022) Clinical Interpretation and Implementation of the sFlt-1/PlGF Ratio in the Prediction, Diagnosis and Management of Preeclampsia. Pregnancy Hypertension, 27, 42-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Redman, C.W.G., Staff, A.C. and Roberts, J.M. (2022) Syncytiotrophoblast Stress in Preeclampsia: The Convergence Point for Multiple Pathways. American Journal of Obstetrics and Gynecology, 226, S907-S927. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sanderson, E. (2021) Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor Perspectives in Medicine, 11, a038984. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Birney, E. (2022) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1036-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cao, Z., Wu, T., Fang, Y., Sun, F., Ding, H., Zhao, L., et al. (2024) Dissecting Causal Relationships between Immune Cells, Plasma Metabolites, and COPD: A Mediating Mendelian Randomization Study. Frontiers in Immunology, 15, Article 1406234. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dudbridge, F. (2021) Polygenic Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 11, a039586. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Deng, X., Li, X., Huang, G., Zhang, J., Xu, T., Feng, Y., et al. (2025) HMGB1 Promotes Immune Abnormalities in Preeclampsia by Recruiting Monocyte/decidual Macrophages and Inducing M1 Polarization. Biology of Reproduction, 112, 1273-1288. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Vishnyakova, P., Kuznetsova, M., Poltavets, A., Fomina, M., Kiseleva, V., Muminova, K., et al. (2022) Distinct Gene Expression Patterns for CD14++ and CD16++ Monocytes in Preeclampsia. Scientific Reports, 12, Article No. 15469. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kurmanova, A., Nurmakova, A., Salimbayeva, D., Urazbayeva, G., Kurmanova, G., Kravtsova, N., et al. (2025) Systemic and Local Immunological Markers in Preeclampsia. Diagnostics, 15, Article 1644. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wei, R., Lai, N., Zhao, L., Zhang, Z., Zhu, X., Guo, Q., et al. (2021) Dendritic Cells in Pregnancy and Pregnancy-Associated Diseases. Biomedicine & Pharmacotherapy, 133, Article ID: 110921. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Aslanian-Kalkhoran, L., Mehdizadeh, A., Aghebati-Maleki, L., Danaii, S., Shahmohammadi-Farid, S. and Yousefi, M. (2024) The Role of Neutrophils and Neutrophil Extracellular Traps (NETs) in Stages, Outcomes and Pregnancy Complications. Journal of Reproductive Immunology, 163, Article ID: 104237. [Google Scholar] [CrossRef] [PubMed]
|