免疫细胞表型与子痫前期的因果关联:一项两样本孟德尔随机化的研究
Causal Association between Immune Cell Phenotypes and Preeclampsia: A Two-Sample Mendelian Randomization Study
DOI: 10.12677/md.2026.161018, PDF, HTML, XML,    科研立项经费支持
作者: 梁唯聪:西安医学院研究生处,陕西 西安;西安市人民医院(西安市第四医院)妇产科,陕西 西安;梁天赐:西安医学院研究生处,陕西 西安;西安医学院第一附属医院肿瘤内科,陕西 西安;王炜业:沧州市人民医院神经内科,河北 沧州;张皓凯:商洛市中心医院呼吸内科,河北 商洛;张欣文:西安市人民医院(西安市第四医院)妇产科,陕西 西安
关键词: 子痫前期免疫细胞孟德尔随机化遗传学Preeclampsia Immune Cells Mendelian Randomization Genetics
摘要: 背景:子痫前期(Preeclampsia, PE)是导致孕产妇及围产儿死亡的主要原因之一,其病理机制尚未完全阐明。越来越多的证据表明,免疫系统失调在其发病过程中扮演着关键角色,但免疫细胞表型与PE之间是否存在确切的因果关系尚不清楚。方法:本研究采用两样本孟德尔随机化分析(Mendelian Randomization, MR),系统探究731种免疫细胞表型(包括中位荧光强度、相对计数和绝对计数)与PE之间的因果关系。工具变量(Instrumental Variables, IVs)选自大规模免疫细胞特征全基因组关联研究(Genome-Wide Association Studies, GWAS)。主要分析采用逆方差加权法(Inverse Variance Weighted, IVW),并通过加权中位数法、MR-Egger回归等多种方法进行敏感性分析以评估结果的稳健性。结果:两样本MR分析共发现6种免疫细胞表型与PE风险存在显著因果关联。其中,3种表型为风险因素,包括HLA DR+ NK细胞相对计数(OR = 1.101, 95% CI: 1.027~1.180)、CD14+CD16−单核细胞上CD16的表达水平(OR = 1.113, 95% CI: 1.042~1.189)及CD14−CD16+单核细胞上PD-L1的表达水平(OR = 1.107, 95% CI: 1.027~1.194)。另外3种表型为保护因素,包括CD62L−髓系树突状细胞占比(OR = 0.931, 95% CI: 0.887~0.977)、CD62L−CD86+髓系树突状细胞占比(OR = 0.921, 95% CI: 0.869~0.976)及粒细胞的侧向散射强度(OR = 0.912, 95% CI: 0.851~0.978)。结论:本研究通过遗传学证据揭示了特定的免疫细胞表型是PE发病的因果风险因素。这些发现为理解子痫前期的免疫病理机制提供了新的见解,并提示相关免疫细胞通路或可作为未来预防和干预的潜在靶点。
Abstract: Background: Preeclampsia (PE) is a leading cause of maternal and perinatal mortality, and its pathological mechanisms remain incompletely understood. Growing evidence suggests that immune system dysregulation plays a key role in its pathogenesis. However, whether a definitive causal relationship exists between immune cell phenotypes and PE is still unclear. Methods: This study employed two-sample Mendelian Randomization (MR) analysis to systematically investigate the causal relationships between 731 immune cell phenotypes (including median fluorescence intensity, relative count, and absolute count) and PE. Instrumental Variables (IVs) were selected from large-scale Genome-Wide Association Studies (GWAS) on immune cell characteristics. The primary analysis utilized the Inverse Variance Weighted (IVW) method, supplemented by sensitivity analyses, including the weighted median method and MR-Egger regression, to evaluate the robustness of the findings. Results: The two-sample MR analysis identified six immune cell phenotypes with significant causal associations with PE risk. Among them, three phenotypes were identified as risk factors: HLA DR+ NK cell relative count (OR = 1.101, 95% CI: 1.027~1.180), CD16 expression level on CD14+CD16− monocytes (OR = 1.113, 95% CI: 1.042~1.189), and PD-L1 expression level on CD14−CD16+ monocytes (OR = 1.107, 95% CI: 1.027~1.194). The other three phenotypes were protective factors: CD62L− myeloid dendritic cell proportion (OR = 0.931, 95% CI: 0.887~0.977), CD62L−CD86+ myeloid dendritic cell proportion (OR = 0.921, 95% CI: 0.869~0.976), and side scatter intensity of granulocytes (OR = 0.912, 95% CI: 0.851~0.978). Conclusion: This study provides genetic evidence suggesting that specific immune cell phenotypes are causal risk factors for the development of PE. These findings offer new insights into the immunopathological mechanisms of preeclampsia and suggest that relevant immune cell pathways may serve as potential targets for future prevention and intervention.
文章引用:梁唯聪, 梁天赐, 王炜业, 张皓凯, 张欣文. 免疫细胞表型与子痫前期的因果关联:一项两样本孟德尔随机化的研究[J]. 医学诊断, 2026, 16(1): 132-141. https://doi.org/10.12677/md.2026.161018

1. 引言

子痫前期(Preeclampsia, PE)是妊娠期一种以高血压和多系统功能障碍为特征的进行性综合征,其诊断基于妊娠20周后出现高血压,并伴有蛋白尿、母体器官损害或子宫胎盘功能不全等表现[1]。该病起病急、危害重,是导致全球孕产妇及围产儿死亡与远期并发症的主要疾病之一[2]。流行病学数据显示,其发病率约为2%~8%,每年造成近7万孕产妇死亡,带来深远的健康与社会负担[3]。病因与发病机制尚未完全明确,目前广泛接受的“两阶段理论”认为[4]:第一阶段为妊娠早期胎盘螺旋动脉重铸障碍,导致胎盘缺血缺氧;第二阶段则由缺血缺氧的胎盘释放多种因子进入母体循环,引发全身性内皮细胞功能障碍和系统性炎症免疫反应。在临床管理上,当前策略仍以监测、对症降压和适时终止妊娠为主[5]。在筛查与预防方面,目前已可基于母体特征、血压及胎盘生长因子(PlGF)等指标进行联合筛查,并据此对高危人群(如孕16周前)采取阿司匹林预防性治疗及补充钙剂等措施,显著降低了早发型PE的风险[6] [7]。然而,这些策略对于占病例多数的晚发型PE,其预防与治疗效果仍不理想[8] [19]。且连接上游胎盘病因与下游母体临床表现的精确分子通路,尤其是免疫反应与代谢调控之间的交互作用,仍是当前研究的薄弱环节。

母胎界面免疫失调在该病发生中具有重要意义[10]。其在初孕、更换伴侣或赠卵妊娠中高发,提示针对父源抗原的免疫适应障碍可能是重要病因[11] [12]。从机制上看,滋养细胞HLA-G介导的对蜕膜NK细胞的调控是维持免疫耐受的核心,该机制异常可阻碍螺旋动脉重铸,诱发胎盘缺血[13]。早在临床症状显现前,母血中即可出现胎盘源性因子的改变,包括血管生成相关蛋白(如sFlt-1、PlGF)、促炎细胞因子及细胞外囊泡等[14] [15],这些因子被认为是诱发全身血管内皮炎症与损伤的直接原因[16]。近年来,研究进一步揭示,炎症小体通路(如NLRP3、NLRP7)的异常以及半乳糖凝集素家族的表达变化,可直接参与母胎免疫稳态的破坏[17];而来源于滋养层的细胞外囊泡则作为信号传递体,将抗血管生成及促凋亡成分靶向输送至母体血管内皮,加速血管病变进程[18]

孟德尔随机化(Mendelian Randomization, MR)是一种利用单核苷酸多态性(Single Nucleotide Polymorphism, SNP)作为工具变量(Instrumental Variables, IVs)来推断暴露与结局间因果关系的流行病学方法[19]。其基本原理遵循孟德尔独立分配律,即基因型在配子形成时随机分配,这一机制类似于随机对照试验(RCT)中的随机分组,因而能有效规避传统观察性研究中常见的混杂偏倚与反向因果问题[20]。基于这一方法学优势,本研究拟通过两样本MR方法,系统解析免疫细胞表型与PE之间的潜在因果关联。研究成果预期将深化对“免疫–代谢”交互轴的理解,并为早期预警生物标志物的发现与精准防治策略的制定提供潜在靶点与理论依据。

2. 材料和方法

2.1. 研究设计

Figure 1. Design flowchart

1. 设计流程图

本研究采用两样本MR方法,系统评估731种免疫细胞表型与PE之间的因果关系。分析严格遵循MR的三大核心假设——关联性、独立性及排他性假设(详见图1),以确保因果推断的有效性与可靠性。

2.2. 数据来源

2.2.1. 免疫细胞数据

731项免疫细胞特征的GWAS汇总数据获取自IEU OpenGWAS数据库。该数据集基于一项对3757名欧洲裔个体的研究,涵盖了约2200万个SNPs对包括B细胞、细胞毒性T细胞、成熟T细胞、单核细胞、髓系细胞、TBNK (即B细胞、自然杀伤细胞、T细胞)及调节性T细胞在内的731项免疫细胞性状的影响[21]

2.2.2. 子痫前期数据

PE的GWAS数据由Sakaue等学者的一项名为“对220种深层表型的全球遗传关联图谱”的研究提供[22]。该研究共纳入264,887名欧洲血统的个体,并对24,165,538个SNP位点进行了分析,包含2355例PE患者和264,887例对照人群。

2.3. 工具变量(IVs)的选择

为构建有效且可靠的IVs,我们严格遵循了以下筛选流程。首先,基于暴露因素的全基因组关联研究(Genome-Wide Association Studies, GWAS)数据,对所有SNPs进行关联分析,选取与暴露显著相关的SNPs (显著性阈值设定为P < 1 × 105)作为候选IVs [23]。随后,为消除由连锁不平衡可能引起的偏倚,我们以窗口距离10,000 kb、判定阈值R2 < 0.001为标准,剔除了彼此高度连锁的SNPs,从而确保所保留的IVs在遗传上相互独立。

在此基础上,进一步排除了具有回文结构及等位基因信息缺失的SNPs,以保证暴露与结局数据中对应等位基因的方向一致、可比。对于在结局数据中缺失的目标SNPs,则通过LDproxy Tool参照1000 Genomes欧洲人群参考面板,选用高度连锁(R2 > 0.8)的代理SNP进行替换,以最大程度保留遗传信息并维持分析的有效样本量。

最后,为评估所选IVs的强度、避免弱IVs偏倚,我们计算了每个SNP的F统计量,并仅保留F > 10的强工具变量IVs进入后续的MR分析。该多层次筛选流程旨在全面确保IVs满足关联性、独立性及排他性三大核心假设,从而支撑后续因果推断的稳健性与可靠性。

2.4. 统计学分析

本研究依托R Studio (版本4.5.0),行双样本MR分析,使用如下R包:TwoSampleMR (版本0.6.22)、VariantAnnotation (版本1.54.1)和ieugwasr (版本1.1.0)。在两样本MR中,我们采用了五种MR方法,包括MR Egger、加权中位数、IVW、简单模式与加权模式,并以IVW法作为主要评估因果效应估计的依据。同时,引入贝叶斯加权孟德尔随机化(Bayesian Weighted Mendelian Randomization, BWMR)方法[24],通过马尔可夫链蒙特卡洛抽样生成因果效应的后验分布,其中贝叶斯加权算法结构以P < 0.05作为统计学差异的判断标准,提供效应大小的概率解释,在贝叶斯框架下对传统频率学MR结果进行补充验证。上述方法统计学显著性的阈值均设定为P < 0.01。

结论可靠性的评估通过多种敏感性方法进行:首先,通过Cochran’s Q检验分别评估IVW与MR-Egger模型中的异质性。其次,利用“MR-PRESSO”软件包进行MR-Egger截距检验及全局异常值检测,以识别并校正潜在的水平多效性。此外,通过绘制散点图直观观察五种MR方法(包括IVW、MR-Egger、加权中位数等)拟合线的一致性,进一步验证因果估计的稳健性。同时,采用留一法分析,依次剔除单个SNP后重复MR分析,并通过留一法图展示结果稳定性,确保结论不受单个遗传IV的过度影响。综合上述分析,本研究结果在不同模型与敏感性检验中均表现一致,支持所得因果关系的可靠性。

3. 结果

3.1. 免疫细胞与子痫前期之间的因果关系

Figure 2. The causal relationship between the characteristics of six immune cells and preeclampsia (PE): (A) Expression of CD16 on monocytes (CD14+CD16+); (B) Proportion of CD62L−CD86+ myeloid DCs; (C) Proportion of CD62L− myeloid DCs; (D) Proportion of HLA DR+ NK cells; (E) Expression of PD-L1 on monocytes (CD14−CD16+); (F) SSC-A of granulocytes

2. 6种免疫细胞特征与子痫前期(PE)的因果关系:(A) 单核细胞(CD14+CD16+)上CD16表达;(B) CD62L−CD86+髓系DC占比;(C) CD62L−髓系DC占比;(D) HLA DR+ NK细胞占比;(E) 单核细胞(CD14−CD16+)上PD-L1表达;(F) 粒细胞的SSC-A

五种MR方法(IVW、MR-Egger、加权中位数等)的散点图在趋势上表现出一致性(图2),进一步支持了因果估计的稳健性。在此基础上,以IVW为主要分析结果,并经由BWMR方法进行外部验证,同时经过错误发现率(False Discovery Rate, FDR)校正后,本研究最终确定了6种与子痫前期存在显著因果关联的免疫细胞特征。其中,3种为保护性因素,包括CD62L−髓系DC占比(IVW: OR = 0.931, 95% CI: 0.887~0.977)、CD62L−CD86+髓系DC占比(IVW: OR = 0.921, 95% CI: 0.869~0.976)及粒细胞的SSC-A (IVW: OR = 0.912, 95% CI: 0.851~0.978);另外3种为危险因素,包括HLA DR+ NK细胞相对计数(IVW: OR = 1.101, 95% CI: 1.027~1.180)、单核细胞(CD14+CD16+)上CD16表达(IVW: OR = 1.113, 95% CI: 1.042~1.189)及CD14−CD16+单核细胞上PD-L1的表达水平(IVW: OR = 1.107, 95% CI: 1.027~1.194)。详细结果见图3

Figure 3. Causal effects of immune cells and preeclampsia

3. 免疫细胞与子痫前期的因果效应

3.2. 敏感性分析

Table 1. Sensitivity analysis (immune cells)

1. 敏感性分析(免疫细胞)

免疫细胞

结局

异质性检验

多效性检验

MR PRESSO P

Q

P

截距

P

单核细胞(CD14+CD16+)的CD16表达

PE

20.739

0.537

0.010

0.542

0.607

单核细胞(CD14−CD16+)的PD-L1表达

PE

13.198

0.828

−0.019

0.394

0.835

HLA DR+ NK细胞占比

PE

24.961

0.352

0.024

0.108

0.385

CD62L−髓系DC占比

PE

16.411

0.902

0.015

0.295

0.908

CD62L−CD86+髓系DC占比

PE

12.394

0.826

0.010

0.498

0.847

粒细胞的SSC-A

PE

36.326

0.086

0.007

0.669

0.089

敏感性分析进一步支持了上述因果关联的可靠性。首先,所有显著的免疫细胞表型与PE之间的关联均未检测到明显的统计异质性(Cochran’s Q检验,所有P > 0.05)或水平多效性(MR-Egger截距法及MR-PRESSO全局检验,所有P > 0.05),具体结果见表1。其次,基于五种不同MR方法(IVW、MR-Egger、加权中位数等)绘制的散点图中,各拟合线在趋势上表现出一致性,进一步印证了因果估计的稳健性。最后,留一法分析显示,依次剔除单个IV后,合并效应量的估计值始终稳定在整体置信区间(Confidence Interval, CI)内,始终位于参考线的一侧(图4),表明结果未受到个别强效应SNP的过度驱动,结论具有较好的稳定性。

Figure 4. Scatter plot of immune cell characteristics versus PE: (A) Expression of CD16 on monocytes (CD14+CD16+); (B) Proportion of CD62L−CD86+ myeloid DCs; (C) Proportion of CD62L− myeloid DCs; (D) Proportion of HLA DR+ NK cells; (E) Expression of PD-L1 on monocytes (CD14−CD16+); (F) SSC-A of granulocytes

4. 免疫细胞性状与PE间的留一图:(A) 单核细胞(CD14+CD16+)上CD16表达;(B) CD62L−CD86+髓系DC占比;(C) CD62L−髓系DC占比;(D) HLA DR+ NK细胞占比;(E) 单核细胞(CD14−CD16+)上PD-L1表达;(F) 粒细胞的SSC-A

4. 讨论

本研究采用两样本MR为分析框架,系统评估免疫细胞与PE之间的因果关系。基于IVW等MR方法,最终识别有6种免疫细胞表型与PE之间存在因果关系。具体而言,这些特征包括:1种NK细胞、1种粒细胞、2种DC以及2种单核细胞。其中,单核细胞(CD14+CD16+)的CD16表达、单核细胞(CD14−CD16+)的PD-L1表达与HLA DR+ NK细胞占比被识别为PE的危险因素。现有研究发现,坏死细胞释放的HMGB1可通过募集单核细胞并诱导其向M1表型极化,从而促进PE的发生[25]。Vishnyakova等学者报道,在迟发型PE患者中,CD14++CD16+单核细胞比例较正常妊娠显著增加,这进一步支持了单核细胞作为PE潜在干预靶点的可能性[26]。NK细胞在妊娠早期螺旋动脉重铸中扮演关键角色,其功能异常易引发胎盘源性疾病如PE。Kurmanova等人的研究显示,相较于健康孕妇,PE患者外周血中HLA DR+ NK细胞的比例显著升高,证实该表型是PE的危险因素[27]

另一方面,CD62L−髓系DC占比、CD62L−CD86+髓系DC占比与粒细胞的SSC-A对PE表现出保护作用。DC在妊娠免疫耐受中至关重要,其通过呈递父源/胎儿抗原以诱导调节性T细胞(Treg)活化[28]。尽管目前尚无研究直接证实DC与PE间的明确因果联系,但我们的发现提供了新的遗传学证据。本研究鉴别的粒细胞表型(SSC-A on granulocyte)同样作为保护性因素。研究表明,粒细胞在妊娠过程中如同一把“双刃剑”:它们既是维持妊娠和支持分娩的必要元素,也可能在功能失调时形成中性粒细胞胞外诱捕网(NETs),引发过度炎症与组织损伤,从而驱动PE、流产和早产等妊娠并发症[29]

本研究基于遗传学角度,创新性地采用两样本MR方法,系统剖析了免疫细胞与PE之间的因果关系,为理解该疾病的免疫学机制提供了新的证据与视角,并提示了潜在的干预靶点。然而,本研究仍存在若干局限。首先,免疫细胞与PE的因果关联仅在欧洲人群中评估,由于种族差异可能影响免疫特征与疾病间的关系,当前结果在推广至其他人群时需谨慎解读。其次,尽管采用MR设计能够有效降低混杂偏倚,但结果仍可能受到IVs选择及样本量的影响。此外,本研究初步提示血浆代谢物在二者间可能存在中介作用,但所有已识别的关联仍需后续实验进一步验证,以明确其生物学机制及临床意义。

5. 结论

本研究系统评估了免疫细胞与PE之间的因果关联,共识别出6种与疾病风险存在显著因果关系的免疫细胞表型。这些发现从遗传学角度证实了特定免疫细胞在子痫前期发病机制中的关键作用,不仅为该疾病的病理机制阐释提供了新视角,也为开发新的治疗策略奠定了理论基础。

基金项目

西安市科技计划项目(24YXYJ0026)。

参考文献

[1] McNestry, C., Killeen, S.L., Crowley, R.K. and McAuliffe, F.M. (2023) Pregnancy Complications and Later Life Women’s Health. Acta Obstetricia et Gynecologica Scandinavica, 102, 523-531. [Google Scholar] [CrossRef] [PubMed]
[2] Yang, M., Wang, M. and Li, N. (2024) Advances in Pathogenesis of Preeclampsia. Archives of Gynecology and Obstetrics, 309, 1815-1823. [Google Scholar] [CrossRef] [PubMed]
[3] Michalczyk, M., Celewicz, A., Celewicz, M., Woźniakowska-Gondek, P. and Rzepka, R. (2020) The Role of Inflammation in the Pathogenesis of Preeclampsia. Mediators of Inflammation, 2020, 1-9. [Google Scholar] [CrossRef] [PubMed]
[4] Roberts, J.M. (2024) Preeclampsia Epidemiology(ies) and Pathophysiology(ies). Best Practice & Research Clinical Obstetrics & Gynaecology, 94, Article ID: 102480. [Google Scholar] [CrossRef] [PubMed]
[5] Ives, C.W., Sinkey, R., Rajapreyar, I., Tita, A.T.N. and Oparil, S. (2020) Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76, 1690-1702. [Google Scholar] [CrossRef] [PubMed]
[6] Chaemsaithong, P., Sahota, D.S. and Poon, L.C. (2022) First Trimester Preeclampsia Screening and Prediction. American Journal of Obstetrics and Gynecology, 226, S1071-S1097.e2. [Google Scholar] [CrossRef] [PubMed]
[7] Brownfoot, F. and Rolnik, D.L. (2024) Prevention of Preeclampsia. Best Practice & Research Clinical Obstetrics & Gynaecology, 93, Article ID: 102481. [Google Scholar] [CrossRef] [PubMed]
[8] Ghesquiere, L., Guerby, P., Marchant, I., Kumar, N., Zare, M., Foisy, M., et al. (2023) Comparing Aspirin 75 to 81 mg vs 150 to 162 mg for Prevention of Preterm Preeclampsia: Systematic Review and Meta-Analysis. American Journal of Obstetrics & Gynecology MFM, 5, Article 101000. [Google Scholar] [CrossRef] [PubMed]
[9] Di Martino, D.D., Sabattini, E., Parasiliti, M., Viscioni, L., Zaccone, E., Cerri, S., et al. (2025) Exploring New Predictors for Hypertensive Disorders of Pregnancy. Best Practice & Research Clinical Obstetrics & Gynaecology, 100, Article ID: 102598. [Google Scholar] [CrossRef] [PubMed]
[10] Deer, E., Herrock, O., Campbell, N., Cornelius, D., Fitzgerald, S., Amaral, L.M., et al. (2023) The Role of Immune Cells and Mediators in Preeclampsia. Nature Reviews Nephrology, 19, 257-270. [Google Scholar] [CrossRef] [PubMed]
[11] Melchiorre, K., Giorgione, V. and Thilaganathan, B. (2022) The Placenta and Preeclampsia: Villain or Victim? American Journal of Obstetrics and Gynecology, 226, S954-S962. [Google Scholar] [CrossRef] [PubMed]
[12] Chang, K.J., Seow, K.M. and Chen, K.H. (2023) Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. International Journal of Environmental Research and Public Health, 20, Article 2994. [Google Scholar] [CrossRef] [PubMed]
[13] Miller, D., Motomura, K., Galaz, J., Gershater, M., Lee, E.D., Romero, R., et al. (2022) Cellular Immune Responses in the Pathophysiology of Preeclampsia. Journal of Leukocyte Biology, 111, 237-260. [Google Scholar] [CrossRef] [PubMed]
[14] Gardikioti, A., Venou, T., Gavriilaki, E., Vetsiou, E., Mavrikou, I., Dinas, K., et al. (2022) Molecular Advances in Preeclampsia and HELLP Syndrome. International Journal of Molecular Sciences, 23, Article 3851. [Google Scholar] [CrossRef] [PubMed]
[15] Torres-Torres, J., Espino-y-Sosa, S., Martinez-Portilla, R., Borboa-Olivares, H., Estrada-Gutierrez, G., Acevedo-Gallegos, S., et al. (2024) A Narrative Review on the Pathophysiology of Preeclampsia. International Journal of Molecular Sciences, 25, Article 7569. [Google Scholar] [CrossRef] [PubMed]
[16] Rana, S., Burke, S.D. and Karumanchi, S.A. (2022) Imbalances in Circulating Angiogenic Factors in the Pathophysiology of Preeclampsia and Related Disorders. American Journal of Obstetrics and Gynecology, 226, S1019-S1034. [Google Scholar] [CrossRef] [PubMed]
[17] Verlohren, S., Brennecke, S.P., Galindo, A., Karumanchi, S.A., Mirkovic, L.B., Schlembach, D., et al. (2022) Clinical Interpretation and Implementation of the sFlt-1/PlGF Ratio in the Prediction, Diagnosis and Management of Preeclampsia. Pregnancy Hypertension, 27, 42-50. [Google Scholar] [CrossRef] [PubMed]
[18] Redman, C.W.G., Staff, A.C. and Roberts, J.M. (2022) Syncytiotrophoblast Stress in Preeclampsia: The Convergence Point for Multiple Pathways. American Journal of Obstetrics and Gynecology, 226, S907-S927. [Google Scholar] [CrossRef] [PubMed]
[19] Sanderson, E. (2021) Multivariable Mendelian Randomization and Mediation. Cold Spring Harbor Perspectives in Medicine, 11, a038984. [Google Scholar] [CrossRef] [PubMed]
[20] Birney, E. (2022) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. [Google Scholar] [CrossRef] [PubMed]
[21] Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1036-1045. [Google Scholar] [CrossRef] [PubMed]
[22] Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. [Google Scholar] [CrossRef] [PubMed]
[23] Cao, Z., Wu, T., Fang, Y., Sun, F., Ding, H., Zhao, L., et al. (2024) Dissecting Causal Relationships between Immune Cells, Plasma Metabolites, and COPD: A Mediating Mendelian Randomization Study. Frontiers in Immunology, 15, Article 1406234. [Google Scholar] [CrossRef] [PubMed]
[24] Dudbridge, F. (2021) Polygenic Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 11, a039586. [Google Scholar] [CrossRef] [PubMed]
[25] Deng, X., Li, X., Huang, G., Zhang, J., Xu, T., Feng, Y., et al. (2025) HMGB1 Promotes Immune Abnormalities in Preeclampsia by Recruiting Monocyte/decidual Macrophages and Inducing M1 Polarization. Biology of Reproduction, 112, 1273-1288. [Google Scholar] [CrossRef] [PubMed]
[26] Vishnyakova, P., Kuznetsova, M., Poltavets, A., Fomina, M., Kiseleva, V., Muminova, K., et al. (2022) Distinct Gene Expression Patterns for CD14++ and CD16++ Monocytes in Preeclampsia. Scientific Reports, 12, Article No. 15469. [Google Scholar] [CrossRef] [PubMed]
[27] Kurmanova, A., Nurmakova, A., Salimbayeva, D., Urazbayeva, G., Kurmanova, G., Kravtsova, N., et al. (2025) Systemic and Local Immunological Markers in Preeclampsia. Diagnostics, 15, Article 1644. [Google Scholar] [CrossRef] [PubMed]
[28] Wei, R., Lai, N., Zhao, L., Zhang, Z., Zhu, X., Guo, Q., et al. (2021) Dendritic Cells in Pregnancy and Pregnancy-Associated Diseases. Biomedicine & Pharmacotherapy, 133, Article ID: 110921. [Google Scholar] [CrossRef] [PubMed]
[29] Aslanian-Kalkhoran, L., Mehdizadeh, A., Aghebati-Maleki, L., Danaii, S., Shahmohammadi-Farid, S. and Yousefi, M. (2024) The Role of Neutrophils and Neutrophil Extracellular Traps (NETs) in Stages, Outcomes and Pregnancy Complications. Journal of Reproductive Immunology, 163, Article ID: 104237. [Google Scholar] [CrossRef] [PubMed]