|
[1]
|
陈祚伶. 古新世-始新世极热事件碳循环研究进展[J]. 科学通报, 2022, 67(15): 1704-1714.
|
|
[2]
|
张少华, 纪伟强, 陈厚彬, 等. 显生宙大规模岩浆活动对温室期发育的制约[J]. 矿物岩石地球化学通报, 2023, 42(5): 1042-1061+961+964.
|
|
[3]
|
金思敏. 古新世-始新世极热事件期间的火山活动和水文气候[D]: [博士学位论文]. 武汉: 中国地质大学, 2023.
|
|
[4]
|
陈祚伶, 丁仲礼. 古新世-始新世极热事件研究进展[J]. 第四纪研究, 2011, 31(6): 937-950.
|
|
[5]
|
胡修棉, 李娟, 韩中, 等. 中新生代两类极热事件的环境变化、生态效应与驱动机制[J]. 中国科学: 地球科学, 2020, 50(8): 1023-1043.
|
|
[6]
|
赵梦婷, 邱煜丹, 马明明. 白垩纪晚期-古近纪早期热事件研究进展[J]. 第四纪研究, 2022, 42(2): 512-528.
|
|
[7]
|
Gibbs, S.J., Bown, P.R., Sessa, J.A., Bralower, T.J. and Wilson, P.A. (2006) Nannoplankton Extinction and Origination across the Paleocene-Eocene Thermal Maximum. Science, 314, 1770-1773. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
罗星宇, 王平, 罗才蓉, 等. 古新世-始新世极热事件(PETM)的陆相记录: 现状与展望[J]. 地质论评, 2023, 69(5): 1899-1918.
|
|
[9]
|
王阳, 张涵宇, 朱炎铭, 等. 渤海湾盆地临清坳陷西部山西组-太原组海陆过渡相泥页岩沉积环境及有机质富集[J]. 古地理学报, 2024, 26(5): 1090-1107.
|
|
[10]
|
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J.S.S., et al. (2006) Subtropical Arctic Ocean Temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 441, 610-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
谭先锋, 蒋威, 王敦繁, 等. 古新世-始新世极热气候下陆相沉积系统响应与油气效应研究进展[J]. 重庆科技大学学报(自然科学版), 2025, 27(1): 44-57.
|
|
[12]
|
丁婷, 刘成林, 郭福生, 等. 北美板块海相钾盐沉积特征、控制因素及其对中国找钾启示[J]. 盐湖研究, 2022, 30(3): 122-130.
|
|
[13]
|
Li, W., Tan, X., Jiang, W., Dong, X., Wang, D., Luo, L., et al. (2025) Organic Matter Accumulation and Carbon Sequestration in the Paleocene-Eocene Thermal Maximum: Insights from the Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Journal of Asian Earth Sciences, 288, Article ID: 106606. [Google Scholar] [CrossRef]
|
|
[14]
|
王永达, 杨石岭, 沈冰, 等. 地球深部过程与极热和极冷事件[J]. 科学通报, 2024, 69(2): 215-229.
|
|
[15]
|
Dickens, G.R. (2011) Down the Rabbit Hole: Toward Appropriate Discussion of Methane Release from Gas Hydrate Systems during the Paleocene-Eocene Thermal Maximum and Other Past Hyperthermal Events. Climate of the Past, 7, 831-846. [Google Scholar] [CrossRef]
|
|
[16]
|
Cohen, A.S. and Coe, A.L. (2007) The Impact of the Central Atlantic Magmatic Province on Climate and on the Sr-and Os-Isotope Evolution of Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 374-390. [Google Scholar] [CrossRef]
|
|
[17]
|
Jones, M.T., Jerram, D.A., Svensen, H.H. and Grove, C. (2016) The Effects of Large Igneous Provinces on the Global Carbon and Sulphur Cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 4-21. [Google Scholar] [CrossRef]
|
|
[18]
|
Berndt, C., Planke, S., Alvarez Zarikian, C.A., Frieling, J., Jones, M.T., Millett, J.M., et al. (2023) Shallow-Water Hydrothermal Venting Linked to the Palaeocene-Eocene Thermal Maximum. Nature Geoscience, 16, 803-809. [Google Scholar] [CrossRef]
|
|
[19]
|
Jiang, S., Cui, Y., Wang, Y., De Palma, M., Naafs, B.D.A., Jiang, J., et al. (2025) Millennial-Timescale Thermogenic CO2 Release Preceding the Paleocene-Eocene Thermal Maximum. Nature Communications, 16, Article No. 5375. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kender, S., Bogus, K., Pedersen, G.K., Dybkjær, K., Mather, T.A., Mariani, E., et al. (2021) Paleocene/Eocene Carbon Feedbacks Triggered by Volcanic Activity. Nature Communications, 12, Article No. 5186. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hovikoski, J., Fyhn, M.B.W., Nøhr-Hansen, H., Hopper, J.R., Andrews, S., Barham, M., et al. (2021) Paleocene-Eocene Volcanic Segmentation of the Norwegian-Greenland Seaway Reorganized High-Latitude Ocean Circulation. Communications Earth & Environment, 2, Article No. 172. [Google Scholar] [CrossRef]
|
|
[22]
|
Meissner, K.J. and Bralower, T.J. (2017) Volcanism Caused Ancient Global Warming. Nature, 548, 531-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jones, S.M., Hoggett, M., Greene, S.E. and Dunkley Jones, T. (2019) Large Igneous Province Thermogenic Greenhouse Gas Flux Could Have Initiated Paleocene-Eocene Thermal Maximum Climate Change. Nature Communications, 10, Article No. 5547. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gutjahr, M., Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., et al. (2017) Very Large Release of Mostly Volcanic Carbon during the Palaeocene-Eocene Thermal Maximum. Nature, 548, 573-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B., Myklebust, R., Rasmussen Eidem, T., et al. (2004) Release of Methane from a Volcanic Basin as a Mechanism for Initial Eocene Global Warming. Nature, 429, 542-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Higgins, J.A. and Schrag, D.P. (2006) Beyond Methane: Towards a Theory for the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 245, 523-537. [Google Scholar] [CrossRef]
|
|
[27]
|
Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., et al. (2005) Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308, 1611-1615. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Liu, X., Sun, X., Sun, W., Hao, Y. and Huang, J. (2025) A Link between the Paleoenvironment and PETM via Trace Element Proxies in Southwest Atlantic Sediments. Global and Planetary Change, 248, 104774. [Google Scholar] [CrossRef]
|
|
[29]
|
Frieling, J., Svensen, H.H., Planke, S., Cramwinckel, M.J., Selnes, H. and Sluijs, A. (2016) Thermogenic Methane Release as a Cause for the Long Duration of the PETM. Proceedings of the National Academy of Sciences, 113, 12059-12064. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhu, M., Ding, Z., Wang, X., Chen, Z., Jiang, H., Dong, X., et al. (2010) High-Resolution Carbon Isotope Record for the Paleocene-Eocene Thermal Maximum from the Nanyang Basin, Central China. Chinese Science Bulletin, 55, 3606-3611. [Google Scholar] [CrossRef]
|
|
[31]
|
Kirtland Turner, S., Hull, P.M., Kump, L.R. and Ridgwell, A. (2017) A Probabilistic Assessment of the Rapidity of PETM Onset. Nature Communications, 8, Article No. 353. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Storey, M., Duncan, R.A. and Swisher, C.C. (2007) Paleocene-Eocene Thermal Maximum and the Opening of the Northeast Atlantic. Science, 316, 587-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zeebe, R.E., Zachos, J.C. and Dickens, G.R. (2009) Carbon Dioxide Forcing Alone Insufficient to Explain Palaeocene-Eocene Thermal Maximum Warming. Nature Geoscience, 2, 576-580. [Google Scholar] [CrossRef]
|
|
[34]
|
金思敏, David B. Kemp, 张仲石, 等. 古新世-始新世极热事件期间的浊积岩沉积对气候变化和天文旋回的响应[J]. 第四纪研究, 2024, 44(5): 1225-1234.
|
|
[35]
|
李明松, 姚炜琪, 沈俊, 等. 古新世-始新世极热事件时期轨道尺度海洋脱氧的时空演化[J]. 中国基础科学, 2024, 26(3): 24-30.
|
|
[36]
|
王建, 周新郢, 李小强. 古新世-始新世暖期北半球野火演化研究[J]. 第四纪研究, 2024, 44(1): 1-16.
|
|
[37]
|
杨晨, 林雯洁, 金思敏, 等. 汞示踪古新世-始新世极热事件火山沉积记录研究进展[J]. 沉积学报, 2025, 43(6): 1935-1951.
|
|
[38]
|
王学婷, 陈祚伶, 崔琳琳, 等. 中国大陆古新世-始新世极热事件时期野火的时空演变[J]. 中国科学: 地球科学, 2025, 55(2): 524-536.
|
|
[39]
|
赵玉龙, 刘志飞. 古新世-始新世最热事件对地球表层循环的影响及其触发机制[J]. 地球科学进展, 2007(4): 341-349.
|
|
[40]
|
马昌前, 邹博文, 黄贵治. 火山喷发机制、气候效应及火山地球工程[J]. 地球科学, 2022, 47(11): 4114-4121.
|