|
[1]
|
Chen, J. (2021) The Interaction of Flotation Reagents with Metal Ions in Mineral Surfaces: A Perspective from Coordination Chemistry. Minerals Engineering, 171, Article 107067. [Google Scholar] [CrossRef]
|
|
[2]
|
唐鸿鹄, 符义昕, 华中宝, 等. 我国高海拔地区典型硫化矿浮选技术现状[J]. 工程科学学报, 2025, 47(6): 1175-1190.
|
|
[3]
|
徐宏祥, 庞增瑞, 黎全, 等. 矿浆难免离子对铅锌硫化矿分离的影响研究进展[J]. 矿产综合利用, 2024, 45(1): 128-134.
|
|
[4]
|
邱廷省, 张宝红, 张卫星, 等. 毒砂与黄铁矿分离技术现状及研究进展[J]. 矿山机械, 2013, 41(4): 1-5.
|
|
[5]
|
Yuan, Z., Lu, J., Liu, J., Li, L. and Wang, S. (2017) Enhancement of Pentlandite Surface Magnetism and Implications for Its Separation from Serpentine via Magnetic Separation. Transactions of Nonferrous Metals Society of China, 27, 204-210. [Google Scholar] [CrossRef]
|
|
[6]
|
Hu, Y., Sun, W. and Wang, D. (2009) Electrochemistry of Flotation of Sulphide Minerals. Springer.
|
|
[7]
|
Ekmekçi, Z. and Demirel, H. (1997) Effects of Galvanic Interaction on Collectorless Flotation Behaviour of Chalcopyrite and Pyrite. International Journal of Mineral Processing, 52, 31-48. [Google Scholar] [CrossRef]
|
|
[8]
|
Shackleton, N.J., Malysiak, V. and O’Connor, C.T. (2007) Surface Characteristics and Flotation Behaviour of Platinum and Palladium Tellurides. Minerals Engineering, 20, 1232-1245. [Google Scholar] [CrossRef]
|
|
[9]
|
张洋, 崔毅琦, 蓝卓越, 等. 组合捕收剂强化回收普朗含泥微细粒硫化铜矿试验及机理分析[J]. 矿产保护与利用, 2023, 43(2): 27-34.
|
|
[10]
|
田毛毛, 宋振国. 铁介质磨矿对硫化铜镍矿石典型矿物浮选行为的影响[J]. 有色金属(选矿部分), 2024(12): 103-111.
|
|
[11]
|
Bruckard, W.J., Sparrow, G.J. and Woodcock, J.T. (2011) A Review of the Effects of the Grinding Environment on the Flotation of Copper Sulphides. International Journal of Mineral Processing, 100, 1-13. [Google Scholar] [CrossRef]
|
|
[12]
|
陈康康, 宋振国, 冯艳, 等. 磨矿过程对硫化铜镍矿石浮选的影响[J]. 有色金属(选矿部分), 2024(2): 56-61.
|
|
[13]
|
Ahn, J.H. and Gebhardt, J.E. (1991) Effect of Grinding Media-Chalcopyrite Interaction on the Self-Induced Flotation of Chalcopyrite. International Journal of Mineral Processing, 33, 243-262. [Google Scholar] [CrossRef]
|
|
[14]
|
Huang, G.Z. and Grano, S. (2008) Electrochemical Interaction of Bornite with Grinding Media and Its Effect on Flotation. Mineral Processing and Extractive Metallurgy, 117, 214-220. [Google Scholar] [CrossRef]
|
|
[15]
|
Wei, Y. and Sandenbergh, R.F. (2006) Effects of Grinding Environment on the Flotation of Rosh Pinah Complex Pb/Zn Ore. Minerals Engineering, 20, 264-272. [Google Scholar] [CrossRef]
|
|
[16]
|
Nooshabadi, A.J. and Rao, K.H. (2015) Effect of Grinding Environment on Galena Flotation. The Open Mineral Processing Journal, 8, 1-6. [Google Scholar] [CrossRef]
|
|
[17]
|
Iwasaki, I., Reid, K.J., Lex, H.A. and Smith, K.A. (1983) Effect of Autogenous and Ball Mill Grinding on Sulfide Flota-tion. Mining Engineering, 35, 1184-1190. https://api.semanticscholar.org/CorpusID:136041951
|
|
[18]
|
刘书杰, 何发钰, 宋磊. 磨矿方式对黄铜矿表面性质及浮选行为的影响[J]. 有色金属(选矿部分), 2010(6): 35-40.
|
|
[19]
|
Feng, D. and Aldrich, C. (2000) A Comparison of the Flotation of Ore from the Merensky Reef after Wet and Dry Grinding. International Journal of Mineral Processing, 60, 115-129. [Google Scholar] [CrossRef]
|
|
[20]
|
Huang, G. and Grano, S. (2006) Galvanic Interaction between Grinding Media and Arsenopyrite and Its Effect on Flotation. International Journal of Mineral Processing, 78, 182-197. [Google Scholar] [CrossRef]
|
|
[21]
|
平晓朵, 朱纪朋. 小庙岭选矿厂大型球磨机磨矿介质优化试验[J]. 现代矿业, 2024, 40(1): 200-202.
|
|
[22]
|
Hu, H., Chen, Q., Yin, Z., Zhang, P. and Wang, G. (2004) Effect of Grinding Atmosphere on the Leaching of Mechanically Activated Pyrite and Sphalerite. Hydrometallurgy, 72, 79-86. [Google Scholar] [CrossRef]
|
|
[23]
|
Chimonyo, W., Wiese, J., Corin, K. and O’Connor, C. (2017) The Use of Oxidising Agents for Control of Electrochemical Potential in Flotation. Minerals Engineering, 109, 135-143. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, D. (1992) Development of Flotation Theory. Science Press.
|
|
[25]
|
Guo, H. and Yen, W. (2004) Selective Flotation of Enargite from Chalcopyrite by Electrochemical Control. Minerals Engineering, 18, 605-612. [Google Scholar] [CrossRef]
|
|
[26]
|
Gebhardt, J.E. and Richardson, P.E. (1987) Differential Flotation of a Chalcocite-Pyrite Particle Bed by Electrochemical Control. Mining, Metallurgy & Exploration, 4, 140-145. [Google Scholar] [CrossRef]
|
|
[27]
|
王荣生, 徐晓军, 张文彬. 通电电化学预处理黄铜矿的浮选[J]. 矿冶, 1999, 8(3): 19-23.
|
|
[28]
|
芦荫芝. 探讨铜锌分离电化学新工艺[J]. 国外金属矿选矿, 1994(1): 1-3, 14.
|
|
[29]
|
Plackowski, C., Bruckard, W.J. and Nguyen, A.V. (2014) Surface Characterisation, Collector Adsorption and Flotation Response of Enargite in a Redox Potential Controlled Environment. Minerals Engineering, 65, 61-73. [Google Scholar] [CrossRef]
|
|
[30]
|
王越, 杨世亮, Nagaraj D.R. 电位控制法在国内铜钼分离工艺中的应用探索[J]. 有色金属(选矿部分), 2017(3): 11-15.
|
|
[31]
|
Chen, Y., Truong, V.N.T., Bu, X. and Xie, G. (2020) A Review of Effects and Applications of Ultrasound in Mineral Flotation. Ultrasonics Sonochemistry, 60, Article 104739. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Aldrich, C. and Feng, D. (1999) Effect of Ultrasonic Preconditioning of Pulp on the Flotation of Sulphide Ores. Minerals Engineering, 12, 701-707. [Google Scholar] [CrossRef]
|
|
[33]
|
Videla, A.R., Morales, R., Saint-Jean, T., Gaete, L., Vargas, Y. and Miller, J.D. (2016) Ultrasound Treatment on Tailings to Enhance Copper Flotation Recovery. Minerals Engineering, 99, 89-95. [Google Scholar] [CrossRef]
|
|
[34]
|
Misra, M., Raichur, A.M. and Lan, A.P. (2003) Improved Flotation of Arsenopyrite by Ultrasonic Pretreatment. Mining, Metallurgy & Exploration, 20, 93-97. [Google Scholar] [CrossRef]
|
|
[35]
|
Newell, A.J.H., Bradshaw, D.J. and Harris, P.J. (2006) The Effect of Heavy Oxidation Upon Flotation and Potential Remedies for Merensky Type Sulfides. Minerals Engineering, 19, 675-686. [Google Scholar] [CrossRef]
|
|
[36]
|
Sahyoun, S., Kingman, S.W. and Rowson, N.A. (2005) The Influence of Microwave Pre-Treatment on Copper Flotation. Journal of the Southern African Institute of Mining and Metallurgy, 105, 7-13. https://api.semanticscholar.org/CorpusID:67819778
|
|
[37]
|
Can, N.M. and Bayraktar, I. (2007) Effect of Microwave Treatment on the Flotation and Magnetic Separation Properties of Pyrite, Chalcopyrite, Galena and Sphalerite. Mining, Metallurgy & Exploration, 24, 185-192. [Google Scholar] [CrossRef]
|
|
[38]
|
da Silva, G.R. and Waters, K.E. (2018) The Effects of Microwave Irradiation on the Floatability of Chalcopyrite, Pentlandite and Pyrrhotite. Advanced Powder Technology, 29, 3049-3061. [Google Scholar] [CrossRef]
|
|
[39]
|
Marion, C., Jordens, A., Maloney, C., Langlois, R. and Waters, K.E. (2015) Effect of Microwave Radiation on the Processing of a Cu‐Ni Sulphide Ore. The Canadian Journal of Chemical Engineering, 94, 117-127. [Google Scholar] [CrossRef]
|
|
[40]
|
王有为, 赵冠飞. 超声波对含镍硫化矿物浮选的影响[J]. 矿山机械, 2022, 50(9): 38-43.
|
|
[41]
|
王志杰, 李育彪, 王洪铎, 等. 微波预处理对铜钼硫化矿海水浮选的影响机理[J]. 金属矿山, 2020(2): 19-23.
|
|
[42]
|
Hendaa, R., Hermasa, A., Gedyeb, R. and Islamc, M.R. (2005) Microwave Enhanced Recovery of Nickel-Copper Ore: Communition and Floatability Aspects. Journal of Microwave Power and Electromagnetic Energy, 40, 7-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
孙文举, 印万忠, 姚金, 等. 低温氢等离子体重构对赤铁矿表面特性和可浮性的影响[J]. 工程科学学报, 2025, 47(9): 1793-1803.
|
|
[44]
|
May, F., Gock, E., Vogt, V. and Brüser, V. (2012) Plasma-Modification of Sulfides for Optimizing Froth-Flotation Properties. Minerals Engineering, 35, 67-74. [Google Scholar] [CrossRef]
|
|
[45]
|
May, F., Hamann, S., Quade, A. and Brüser, V. (2017) Froth Flotation Improvement by Plasma Pretreatment of Sulfide Minerals. Minerals Engineering, 113, 95-101. [Google Scholar] [CrossRef]
|
|
[46]
|
Ran, J., Qiu, X., Hu, Z., Liu, Q., Song, B. and Yao, Y. (2019) Enhance Flotation Separation of Arsenopyrite and Pyrite by Low-Temperature Oxygen Plasma Surface Modification. Applied Surface Science, 480, 1136-1146. [Google Scholar] [CrossRef]
|
|
[47]
|
Hirajima, T., Miki, H., Suyantara, G.P.W., Matsuoka, H., Elmahdy, A.M., Sasaki, K., et al. (2017) Selective Flotation of Chalcopyrite and Molybdenite with H2O2 Oxidation. Minerals Engineering, 100, 83-92. [Google Scholar] [CrossRef]
|
|
[48]
|
Suyantara, G.P.W., Hirajima, T., Miki, H., Sasaki, K., Yamane, M., Takida, E., et al. (2018) Effect of Fenton-Like Oxidation Reagent on Hydrophobicity and Floatability of Chalcopyrite and Molybdenite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 554, 34-48. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, D., Jiao, F., Qin, W. and Wang, X. (2018) Effect of Surface Oxidation on the Flotation Separation of Chalcopyrite and Galena Using Sodium Humate as Depressant. Separation Science and Technology, 53, 961-972. [Google Scholar] [CrossRef]
|
|
[50]
|
Khoso, S.A., Hu, Y., Lü, F., Gao, Y., Liu, R. and Sun, W. (2019) Xanthate Interaction and Flotation Separation of H2O2-Treated Chalcopyrite and Pyrite. Transactions of Nonferrous Metals Society of China, 29, 2604-2614. [Google Scholar] [CrossRef]
|
|
[51]
|
符海桃, 童雄, 谢贤, 等. 铜锌硫化矿分离技术研究进展[J]. 世界有色金属, 2023(20): 1-3.
|
|
[52]
|
Behera, S.K. and Mulaba-Bafubiandi, A.F. (2016) Microbes Assisted Mineral Flotation a Future Prospective for Mineral Processing Industries: A Review. Mineral Processing and Extractive Metallurgy Review, 38, 96-105. [Google Scholar] [CrossRef]
|
|
[53]
|
Yelloji Rao, M.K., Natarajan, K.A. and Somasundaran, P. (1992) Effect of Biotreatment with Thiobacillus Ferrooxidans on the Floatability of Sphalerite and Galena. Mining, Metallurgy & Exploration, 9, 95-100. [Google Scholar] [CrossRef]
|
|
[54]
|
Vasanthakumar, B., Ravishankar, H. and Subramanian, S. (2013) Microbially Induced Selective Flotation of Sphalerite from Galena Using Mineral-Adapted Strains of Bacillus Megaterium. Colloids and Surfaces B: Biointerfaces, 112, 279-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Sarvamangala, H., Natarajan, K.A. and Girisha, S.T. (2013) Microbially-Induced Pyrite Removal from Galena Using Bacillus Subtilis. International Journal of Mineral Processing, 120, 15-21. [Google Scholar] [CrossRef]
|
|
[56]
|
Vilinska, A. and Rao, K.H. (2008) Leptosririllum Ferrooxidans-Sulfide Mineral Interactions with Reference to Bioflotation Nad Bioflocculation. Transactions of Nonferrous Metals Society of China, 18, 1403-1409. [Google Scholar] [CrossRef]
|
|
[57]
|
Farahat, M. and Hirajima, T. (2012) Hydrophilicity of Ferroplasma Acidiphilum and Its Effect on the Depression of Pyrite. Minerals Engineering, 36, 242-247. [Google Scholar] [CrossRef]
|
|
[58]
|
Patra, P. and Natarajan, K.A. (2003) Microbially-Induced Flocculation and Flotation for Pyrite Separation from Oxide Gangue Minerals. Minerals Engineering, 16, 965-973. [Google Scholar] [CrossRef]
|
|
[59]
|
Patra, P. and Natarajan, K.A. (2004) Microbially Induced Flotation and Flocculation of Pyrite and Sphalerite. Colloids and Surfaces B: Biointerfaces, 36, 91-99. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
曾睿, 罗思强, 张相钰, 等. 难处理金精矿高压氧化预处理试验研究[J]. 中国有色冶金, 2014, 43(6): 75-78.
|
|
[61]
|
Tang, X., Chen, Y., Liu, K., Zeng, G., Peng, Q. and Li, Z. (2019) Selective Flotation Separation of Molybdenite and Chalcopyrite by Thermal Pretreatment under Air Atmosphere. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, Article 123958. [Google Scholar] [CrossRef]
|