|
[1]
|
Mandal, S., Pal, J., Subramanian, R. and Das, P. (2020) Amplified Fluorescence of Mg2+ Selective Red-Light Emitting Carbon Dot in Water and Direct Evaluation of Creatine Kinase Activity. Nano Research, 13, 2770-2776. [Google Scholar] [CrossRef]
|
|
[2]
|
Ji, C., Zhou, Y., Leblanc, R.M. and Peng, Z. (2020) Recent Developments of Carbon Dots in Biosensing: A Review. ACS Sensors, 5, 2724-2741. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ghosh, S., Ali, H. and Jana, N.R. (2019) Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol. ACS Sustainable Chemistry & Engineering, 7, 12629-12637. [Google Scholar] [CrossRef]
|
|
[4]
|
Miao, S., Liang, K., Zhu, J., Yang, B., Zhao, D. and Kong, B. (2020) Hetero-Atom-Doped Carbon Dots: Doping Strategies, Properties and Applications. Nano Today, 33, Article ID: 100879. [Google Scholar] [CrossRef]
|
|
[5]
|
Gao, M., Zeng, J., Liang, K., Zhao, D. and Kong, B. (2020) Interfacial Assembly of Mesoporous Silica‐Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials, 30, Article ID: 1906950. [Google Scholar] [CrossRef]
|
|
[6]
|
Kong, B., Tang, J., Zhang, Y., Jiang, T., Gong, X., Peng, C., et al. (2015) Incorporation of Well-Dispersed Sub-5-nm Graphitic Pencil Nanodots into Ordered Mesoporous Frameworks. Nature Chemistry, 8, 171-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Holá, K., Sudolská, M., Kalytchuk, S., Nachtigallová, D., Rogach, A.L., Otyepka, M., et al. (2017) Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 11, 12402-12410. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ghosh, S., Ghosh, A., Ghosh, G., Marjit, K. and Patra, A. (2021) Deciphering the Relaxation Mechanism of Red-Emitting Carbon Dots Using Ultrafast Spectroscopy and Global Target Analysis. The Journal of Physical Chemistry Letters, 12, 8080-8087. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xu, Q., Kuang, T., Liu, Y., Cai, L., Peng, X., Sreenivasan Sreeprasad, T., et al. (2016) Heteroatom-Doped Carbon Dots: Synthesis, Characterization, Properties, Photoluminescence Mechanism and Biological Applications. Journal of Materials Chemistry B, 4, 7204-7219. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kong, J., Wei, Y., Zhou, F., Shi, L., Zhao, S., Wan, M., et al. (2024) Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules, 29, Article No. 2002. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qu, S., Zhou, D., Li, D., Ji, W., Jing, P., Han, D., et al. (2016) Toward Efficient Orange Emissive Carbon Nanodots through Conjugated Sp2‐Domain Controlling and Surface Charges Engineering. Advanced Materials, 28, 3516-3521. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Rajakumar, G., Zhang, X., Gomathi, T., Wang, S., Azam Ansari, M., Mydhili, G., et al. (2020) Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes, 8, Article No. 355. [Google Scholar] [CrossRef]
|
|
[13]
|
Yadav, P.K., Chandra, S., Kumar, V., Kumar, D. and Hasan, S.H. (2023) Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts, 13, Article No. 422. [Google Scholar] [CrossRef]
|
|
[14]
|
Zhan, Y., Shang, B., Chen, M. and Wu, L. (2019) One‐Step Synthesis of Silica‐Coated Carbon Dots with Controllable Solid‐State Fluorescence for White Light‐Emitting Diodes. Small, 15, Article ID: 1901161. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, X., Zhang, S., Kulinich, S.A., Liu, Y. and Zeng, H. (2014) Engineering Surface States of Carbon Dots to Achieve Controllable Luminescence for Solid-Luminescent Composites and Sensitive Be2+ Detection. Scientific Reports, 4, 2584-2860. [Google Scholar] [CrossRef]
|
|
[16]
|
Raabe, G. and Michl, J. (1985) Multiple Bonding to Silicon. Chemical Reviews, 85, 419-509. [Google Scholar] [CrossRef]
|
|
[17]
|
Pham, X., Park, S., Ham, K., Kyeong, S., Son, B.S., Kim, J., et al. (2021) Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. International Journal of Molecular Sciences, 22, Article No. 10116. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dixit, C.K., Bhakta, S., Kumar, A., Suib, S.L. and Rusling, J.F. (2016) Fast Nucleation for Silica Nanoparticle Synthesis Using a Sol-Gel Method. Nanoscale, 8, 19662-19667. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, C., Wang, H., Xue, Y., Xue, Z., Liu, H., Xie, X., et al. (2016) Structure, Rheological, Thermal Conductive and Electrical Insulating Properties of High-Performance Hybrid Epoxy/Nanosilica/AgNWs Nanocomposites. Composites Science and Technology, 128, 207-214. [Google Scholar] [CrossRef]
|
|
[20]
|
Ye, L., Zhang, Y., Song, C., Li, Y. and Jiang, B. (2017) A Simple Sol-Gel Method to Prepare Superhydrophilic Silica Coatings. Materials Letters, 188, 316-318. [Google Scholar] [CrossRef]
|
|
[21]
|
Cannavale, A., Fiorito, F., Manca, M., Tortorici, G., Cingolani, R. and Gigli, G. (2010) Multifunctional Bioinspired Sol-Gel Coatings for Architectural Glasses. Building and Environment, 45, 1233-1243. [Google Scholar] [CrossRef]
|
|
[22]
|
Harris, M.T., Brunson, R.R. and Byers, C.H. (1990) The Base-Catalyzed Hydrolysis and Condensation Reactions of Dilute and Concentrated TEOS Solutions. Journal of Non-Crystalline Solids, 121, 397-403. [Google Scholar] [CrossRef]
|
|
[23]
|
Ziaei-Azad, H. and Semagina, N. (2014) Bimetallic Catalysts: Requirements for Stabilizing PVP Removal Depend on the Surface Composition. Applied Catalysis A: General, 482, 327-335. [Google Scholar] [CrossRef]
|
|
[24]
|
Jadhav, S.V., Nikam, D.S., Khot, V.M., Thorat, N.D., Phadatare, M.R., Ningthoujam, R.S., et al. (2013) Studies on Colloidal Stability of PVP-Coated LSMO Nanoparticles for Magnetic Fluid Hyperthermia. New Journal of Chemistry, 37, 3121-3130. [Google Scholar] [CrossRef]
|
|
[25]
|
Lu, G., Li, S., Guo, Z., Farha, O.K., Hauser, B.G., Qi, X., et al. (2012) Imparting Functionality to a Metal-Organic Framework Material by Controlled Nanoparticle Encapsulation. Nature Chemistry, 4, 310-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Koczkur, K.M., Mourdikoudis, S., Polavarapu, L. and Skrabalak, S.E. (2015) Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Transactions, 44, 17883-17905. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sun, M.Y., Han, Y., Yuan, X., Jing, P.T., Zhang, L., Zhao, J.L. and Zheng, Y.J. (2020) Efficient Full-Color Emitting Carbon-Dot-Based Composite Phosphors by Chemical Dispersion. Nanoscale, 10, 1622-1630.
|
|
[28]
|
Wang, S.J., Colec, I.S., Zhao, D.Y. and Li, Q. (2012) The Duo Roles of Functional Groups in the Photoluminescence of Graphene Quantum Dots, RSC Publishing.
|
|
[29]
|
Zhu, J., Zhao, H., Yang, Y., Wu, W., Hu, L., Wei, Y., et al. (2024) Photo-Stimulus-Responsive Dual-Emitting Fluorescence of Spiropyran-Encapsulated Carbon Dots-Functionalized Silicon Dioxide for Dynamic Information Encryption. Science China Materials, 67, 680-689. [Google Scholar] [CrossRef]
|
|
[30]
|
Cohen Stuart, M.A., Fleer, G.J. and Bijsterbosch, B.H. (1982) The Adsorption of Poly(Vinyl Pyrrolidone) Onto Silica. I. Adsorbed Amount. Journal of Colloid and Interface Science, 90, 310-320. [Google Scholar] [CrossRef]
|
|
[31]
|
Van de Steeg, H.G.M., Cohen Stuart, M.A., De Keizer, A. and Bijsterbosch, B.H. (1992) Polyelectrolyte Adsorption: A Subtle Balance of Forces. Langmuir, 8, 2538-2546. [Google Scholar] [CrossRef]
|
|
[32]
|
Gun’ko, V.M., Zarko, V.I., Voronin, E.F., Goncharuk, E.V., Andriyko, L.S., Guzenko, N.V., et al. (2006) Successive Interaction of Pairs of Soluble Organics with Nanosilica in Aqueous Media. Journal of Colloid and Interface Science, 300, 20-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ai, L., Yang, Y., Wang, B., Chang, J., Tang, Z., Yang, B., et al. (2021) Insights into Photoluminescence Mechanisms of Carbon Dots: Advances and Perspectives. Science Bulletin, 66, 839-856. [Google Scholar] [CrossRef] [PubMed]
|