|
[1]
|
Mota, B., Gobron, N., Morgan, O., Cappucci, F., Lanconelli, C. and Robustelli, M. (2021) Cross-ECV Consistency at Global Scale: LAI and FAPAR Changes. Remote Sensing of Environment, 263, Article 112561. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tian, L., Qu, Y. and Qi, J. (2021) Estimation of Forest LAI Using Discrete Airborne Lidar: A Review. Remote Sensing, 13, Article 2408. [Google Scholar] [CrossRef]
|
|
[3]
|
Shao, G., Han, W., Zhang, H., Liu, S., Wang, Y., Zhang, L., et al. (2021) Mapping Maize Crop Coefficient Kc Using Random Forest Algorithm Based on Leaf Area Index and UAV-Based Multispectral Vegetation Indices. Agricultural Water Management, 252, Article 106906. [Google Scholar] [CrossRef]
|
|
[4]
|
George, J., Yang, W., Kobayashi, H., Biermann, T., Carrara, A., Cremonese, E., et al. (2021) Method Comparison of Indirect Assessments of Understory Leaf Area Index (LAIu): A Case Study across the Extended Network of ICOS Forest Ecosystem Sites in Europe. Ecological Indicators, 128, Article 107841. [Google Scholar] [CrossRef]
|
|
[5]
|
Alton, P.B. (2016) The Sensitivity of Models of Gross Primary Productivity to Meteorological and Leaf Area Forcing: A Comparison between a Penman-Monteith Ecophysiological Approach and the MODIS Light-Use Efficiency Algorithm. Agricultural and Forest Meteorology, 218, 11-24. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, J.M., Rich, P.M., Gower, S.T., Norman, J.M. and Plummer, S. (1997) Leaf Area Index of Boreal Forests: Theory, Techniques, and Measurements. Journal of Geophysical Research: Atmospheres, 102, 29429-29443. [Google Scholar] [CrossRef]
|
|
[7]
|
Chason, J.W., Baldocchi, D.D. and Huston, M.A. (1991) A Comparison of Direct and Indirect Methods for Estimating Forest Canopy Leaf Area. Agricultural and Forest Meteorology, 57, 107-128. [Google Scholar] [CrossRef]
|
|
[8]
|
陈立敏, 李爱农, 边金虎, 等. 山地森林叶面积指数地面测量方法及其不确定性分析[J]. 遥感技术与应用, 2025, 40(5): 1067-1079.
|
|
[9]
|
刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856.
|
|
[10]
|
Song, Y. and Ryu, Y. (2015) Seasonal Changes in Vertical Canopy Structure in a Temperate Broadleaved Forest in Korea. Ecological Research, 30, 821-831. [Google Scholar] [CrossRef]
|
|
[11]
|
Biudes, M.S., Machado, N.G., Danelichen, V.H.d.M., Souza, M.C., Vourlitis, G.L. and Nogueira, J.D.S. (2013) Ground and Remote Sensing-Based Measurements of Leaf Area Index in a Transitional Forest and Seasonal Flooded Forest in Brazil. International Journal of Biometeorology, 58, 1181-1193. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vose, J.M., Clinton, B.D., Sullivan, N.H. and Bolstad, P.V. (1995) Vertical Leaf Area Distribution, Light Transmittance, and Application of the Beer-Lambert Law in Four Mature Hardwood Stands in the Southern Appalachians. Canadian Journal of Forest Research, 25, 1036-1043. [Google Scholar] [CrossRef]
|
|
[13]
|
Chen, J.M. and Cihlar, J. (1995) Plant Canopy Gap-Size Analysis Theory for Improving Optical Measurements of Leaf-Area Index. Applied Optics, 34, 6211-6222. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., et al. (2004) Review of Methods for in Situ Leaf Area Index Determination: Part I. Theories, Sensors and Hemispherical Photography. Agricultural and Forest Meteorology, 121, 19-35. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, J.M. and Black, T.A. (1991) Measuring Leaf Area Index of Plant Canopies with Branch Architecture. Agricultural and Forest Meteorology, 57, 1-12. [Google Scholar] [CrossRef]
|
|
[16]
|
Chen, J.M. (1996) Optically-Based Methods for Measuring Seasonal Variation of Leaf Area Index in Boreal Conifer Stands. Agricultural and Forest Meteorology, 80, 135-163. [Google Scholar] [CrossRef]
|
|
[17]
|
Leblanc, S.G., Chen, J.M., Fernandes, R., Deering, D.W. and Conley, A. (2005) Methodology Comparison for Canopy Structure Parameters Extraction from Digital Hemispherical Photography in Boreal Forests. Agricultural and Forest Meteorology, 129, 187-207. [Google Scholar] [CrossRef]
|
|
[18]
|
Pisek, J., Lang, M., Nilson, T., Korhonen, L. and Karu, H. (2011) Comparison of Methods for Measuring Gap Size Distribution and Canopy Nonrandomness at Järvselja RAMI (Radiation Transfer Model Intercomparison) Test Sites. Agricultural and Forest Meteorology, 151, 365-377. [Google Scholar] [CrossRef]
|
|
[19]
|
Walter, J.N., Fournier, R.A., Soudani, K. and Meyer, E. (2003) Integrating Clumping Effects in Forest Canopy Structure: An Assessment through Hemispherical Photographs. Canadian Journal of Remote Sensing, 29, 388-410. [Google Scholar] [CrossRef]
|
|
[20]
|
Fang, H., Li, W., Wei, S. and Jiang, C. (2014) Seasonal Variation of Leaf Area Index (LAI) over Paddy Rice Fields in NE China: Intercomparison of Destructive Sampling, LAI-2200, Digital Hemispherical Photography (DHP), and Accupar Methods. Agricultural and Forest Meteorology, 198, 126-141. [Google Scholar] [CrossRef]
|
|
[21]
|
Stenberg, P. (1996) Correcting LAI-2000 Estimates for the Clumping of Needles in Shoots of Conifers. Agricultural and Forest Meteorology, 79, 1-8. [Google Scholar] [CrossRef]
|
|
[22]
|
Stenberg, P., Mõttus, M., Rautiainen, M. and Sievänen, R. (2014) Quantitative Characterization of Clumping in Scots Pine Crowns. Annals of Botany, 114, 689-694. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
蔡雯洁, 沙晋明. 基于地理环境要素的叶面积指数遥感定量反演[J]. 亚热带资源与环境学报, 2019, 14(2): 55-64.
|
|
[24]
|
包广道, 刘婷, 张忠辉, 等. 长白山区4种针叶林有效叶面积指数遥感精细反演及空间分布规律[J]. 林业科学, 2024, 60(5): 127-138.
|
|
[25]
|
李聪慧, 李宝银, 毛振伟, 等. 毛竹向杉木林扩张不同阶段叶面积指数地面高光谱遥感模型研究[J]. 光谱学与光谱分析, 2024, 44(8): 2365-2371.
|
|
[26]
|
唐少飞, 田庆久, 徐凯健, 等. Sentinel-2卫星落叶松林龄信息反演[J]. 遥感学报, 2020, 24(12): 1511-1524.
|
|
[27]
|
付波霖, 孙军, 李雨阳, 等. 基于多光谱影像和机器学习算法的红树林树种LAI估算[J]. 农业工程学报, 2022, 38(7): 218-228.
|
|
[28]
|
焦亚辉, 颜安, 赵英, 等. 基于无人机影像的沙棘树高提取及叶面积指数反演方法比较[J]. 新疆农业大学学报, 2020, 43(4): 241-251.
|
|
[29]
|
贺敏, 闻建光, 游冬琴, 等. 山地森林叶面积指数(LAI)遥感估算研究进展[J]. 遥感学报, 2022, 26(12): 2451-2472.
|
|
[30]
|
何金有, 贾炜玮, 张小勇, 等. 应用PROSAIL模型对森林冠层叶面积指数遥感估测[J]. 东北林业大学学报, 2023, 51(11): 86-94.
|
|
[31]
|
Zhao, D., Yang, G., Xu, T., Yu, F., Zhang, C., Cheng, Z., et al. (2025) Dynamic Maize True Leaf Area Index Retrieval with KGCNN and TL and Integrated 3D Radiative Transfer Modeling for Crop Phenotyping. Plant Phenomics, 7, Article 100004. [Google Scholar] [CrossRef]
|
|
[32]
|
Le Saint, T., Nabucet, J., Hubert-Moy, L. and Adeline, K. (2024) Estimation of Urban Tree Chlorophyll Content and Leaf Area Index Using Sentinel-2 Images and 3D Radiative Transfer Model Inversion. Remote Sensing, 16, Article 3867. [Google Scholar] [CrossRef]
|
|
[33]
|
Jiang, Y., Zhang, Z., He, H., Zhang, X., Feng, F., Xu, C., et al. (2024) Research on Leaf Area Index Inversion Based on LESS 3D Radiative Transfer Model and Machine Learning Algorithms. Remote Sensing, 16, Article 3627. [Google Scholar] [CrossRef]
|
|
[34]
|
Fan, W., Wu, J., Zheng, G., Zhang, Q., Xu, X., Du, H., et al. (2025) Retrieving the Leaf Area Index of Dense and Highly Clumped Moso Bamboo Canopies from Sentinel-2 MSI Data. Remote Sensing, 17, Article 1891. [Google Scholar] [CrossRef]
|
|
[35]
|
Wang, Y. and Fang, H. (2020) Estimation of LAI with the Lidar Technology: A Review. Remote Sensing, 12, Article 3457. [Google Scholar] [CrossRef]
|
|
[36]
|
Zhai, C., Ding, M., Ren, Z., Bao, G., Liu, T., Zhang, Z., et al. (2023) A Lidar-Driven Effective Leaf Area Index Inversion Method of Urban Forests in Northeast China. Forests, 14, Article 2084. [Google Scholar] [CrossRef]
|
|
[37]
|
Li, Z., Zhang, Z., Dian, Y., Cai, S. and Chen, Z. (2025) Multi-Scale LAI Estimation Integrating Lidar Penetration Index and Point Cloud Texture Features. Forests, 16, Article 1321. [Google Scholar] [CrossRef]
|
|
[38]
|
Yin, T., Qi, J., Cook, B.D., Morton, D.C., Wei, S. and Gastellu-Etchegorry, J. (2019) Modeling Small-Footprint Airborne Lidar-Derived Estimates of Gap Probability and Leaf Area Index. Remote Sensing, 12, Article 4. [Google Scholar] [CrossRef]
|
|
[39]
|
Sun, J., Jiang, W., Fu, B., Yao, H. and Li, H. (2025) Synergistic Hyperspectral and SAR Imagery Retrieval of Mangrove Leaf Area Index Using Adaptive Ensemble Learning and Deep Learning Algorithms. International Journal of Digital Earth, 18, Article 2497488. [Google Scholar] [CrossRef]
|
|
[40]
|
Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., et al. (2002) Global Products of Vegetation Leaf Area and Fraction Absorbed PAR from Year One of MODIS Data. Remote Sensing of Environment, 83, 214-231. [Google Scholar] [CrossRef]
|
|
[41]
|
Claverie, M., Matthews, J., Vermote, E. and Justice, C. (2016) A 30+ Year AVHRR LAI and FAPAR Climate Data Record: Algorithm Description and Validation. Remote Sensing, 8, Article 263. [Google Scholar] [CrossRef]
|
|
[42]
|
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., et al. (2007) LAI, Fapar and Fcover CYCLOPES Global Products Derived from Vegetation. Remote Sensing of Environment, 110, 275-286. [Google Scholar] [CrossRef]
|
|
[43]
|
Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., et al. (2013) GEOV1: LAI and FAPAR Essential Climate Variables and FCOVER Global Time Series Capitalizing over Existing Products. Part1: Principles of Development and Production. Remote Sensing of Environment, 137, 299-309. [Google Scholar] [CrossRef]
|
|
[44]
|
Yuan, H., Dai, Y., Xiao, Z., Ji, D. and Shangguan, W. (2011) Reprocessing the MODIS Leaf Area Index Products for Land Surface and Climate Modelling. Remote Sensing of Environment, 115, 1171-1187. [Google Scholar] [CrossRef]
|
|
[45]
|
Liu, R., Chen, J.M., Liu, J., Deng, F. and Sun, R. (2007) Application of a New Leaf Area Index Algorithm to China’s Landmass Using MODIS Data for Carbon Cycle Research. Journal of Environmental Management, 85, 649-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., et al. (2014) Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-Series MODIS Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing, 52, 209-223. [Google Scholar] [CrossRef]
|
|
[47]
|
Li, X., Lu, H., Yu, L. and Yang, K. (2018) Comparison of the Spatial Characteristics of Four Remotely Sensed Leaf Area Index Products over China: Direct Validation and Relative Uncertainties. Remote Sensing, 10, Article 148. [Google Scholar] [CrossRef]
|
|
[48]
|
喻樾, 张方敏, 陈镜明. 国产叶面积指数产品在中国区域的一致性检验[J]. 遥感技术与应用, 2023, 38(5): 1239-1249.
|
|
[49]
|
Ma, H., Wang, Q., Li, W., Chen, Y., Xu, J., Ma, Y., et al. (2025) The First Gap-Free 20 M 5-Day LAI/FAPAR Products over China (2018-2023) from Integrated Landsat-8/9 and Sentinel-2 Analysis Ready Data. Remote Sensing of Environment, 331, Article 115048. [Google Scholar] [CrossRef]
|
|
[50]
|
Zhen, J., Mao, D., Wang, Y., Wang, J., Nie, C., Huo, S., et al. (2026) National Mapping of Wetland Vegetation Leaf Area Index in China Using Hybrid Model with Sentinel-2 and Landsat-8 Data. ISPRS Journal of Photogrammetry and Remote Sensing, 232, 18-33. [Google Scholar] [CrossRef]
|
|
[51]
|
郝大磊, 肖青, 闻建光, 等. 定量遥感升尺度转换方法研究进展[J]. 遥感学报, 2018, 22(3): 408-423.
|
|
[52]
|
刘婷, 陈晨, 范文义, 等. 基于不同空间尺度遥感影像估算森林叶面积指数的差异[J]. 应用生态学报, 2019, 30(5): 1687-1698.
|
|
[53]
|
徐保东. 非均质地表叶面积指数反演及产品真实性检验[D]: [博士学位论文]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2018.
|