|
[1]
|
Vaquer-Alicea, J. and Diamond, M.I. (2019) Propagation of Protein Aggregation in Neurodegenerative Diseases. Annual Review of Biochemistry, 88, 785-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chiti, F. and Dobson, C.M. (2017) Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress over the Last Decade. Annual Review of Biochemistry, 86, 27-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kannan, M.P., Sreeraman, S., Somala, C.S., Kushwah, R.B., Mani, S.K., Sundaram, V., et al. (2023) Advancement of Targeted Protein Degradation Strategies as Therapeutics for Undruggable Disease Targets. Future Medicinal Chemistry, 15, 867-883. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Neklesa, T.K., Tae, H.S., Schneekloth, A.R., Stulberg, M.J., Corson, T.W., Sundberg, T.B., et al. (2011) Small-Molecule Hydrophobic Tagging-Induced Degradation of HaloTag Fusion Proteins. Nature Chemical Biology, 7, 538-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Nalepa, G., Rolfe, M. and Harper, J.W. (2006) Drug Discovery in the Ubiquitin-Proteasome System. Nature Reviews Drug Discovery, 5, 596-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ravid, T. and Hochstrasser, M. (2008) Diversity of Degradation Signals in the Ubiquitin-Proteasome System. Nature Reviews Molecular Cell Biology, 9, 679-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Balchin, D., Hayer-Hartl, M. and Hartl, F.U. (2016) In Vivo Aspects of Protein Folding and Quality Control. Science, 353, aac4354. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Schapira, M., Calabrese, M.F., Bullock, A.N. and Crews, C.M. (2019) Targeted Protein Degradation: Expanding the Toolbox. Nature Reviews Drug Discovery, 18, 949-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dong, G., Ding, Y., He, S. and Sheng, C. (2021) Molecular Glues for Targeted Protein Degradation: From Serendipity to Rational Discovery. Journal of Medicinal Chemistry, 64, 10606-10620. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, Z., Wang, C., Wang, Z., Zhu, C., Li, J., Sha, T., et al. (2019) Allele-selective Lowering of Mutant HTT Protein by HTT-LC3 Linker Compounds. Nature, 575, 203-209. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Takahashi, D., Moriyama, J., Nakamura, T., Miki, E., Takahashi, E., Sato, A., et al. (2019) AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Molecular Cell, 76, 797-810.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Banik, S.M., Pedram, K., Wisnovsky, S., Ahn, G., Riley, N.M. and Bertozzi, C.R. (2020) Lysosome-Targeting Chimaeras for Degradation of Extracellular Proteins. Nature, 584, 291-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zeng, S., Huang, W., Zheng, X., Liyan cheng,, Zhang, Z., Wang, J., et al. (2021) Proteolysis Targeting Chimera (PROTAC) in Drug Discovery Paradigm: Recent Progress and Future Challenges. European Journal of Medicinal Chemistry, 210, Article ID: 112981. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Neklesa, T.K. and Crews, C.M. (2012) Greasy Tags for Protein Removal. Nature, 487, 308-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wang, Y., Jiang, X., Feng, F., Liu, W. and Sun, H. (2020) Degradation of Proteins by Protacs and Other Strategies. Acta Pharmaceutica Sinica B, 10, 207-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bustamante, H.A., González, A.E., Cerda-Troncoso, C., Shaughnessy, R., Otth, C., Soza, A., et al. (2018) Interplay between the Autophagy-Lysosomal Pathway and the Ubiquitin-Proteasome System: A Target for Therapeutic Development in Alzheimer’s Disease. Frontiers in Cellular Neuroscience, 12, Article 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mizushima, N. (2018) A Brief History of Autophagy from Cell Biology to Physiology and Disease. Nature Cell Biology, 20, 521-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, Y., Li, S. and Wu, H. (2022) Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells, 11, Article 851. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Mizushima, N. (2007) Autophagy: Process and Function. Genes & Development, 21, 2861-2873. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hetz, C. and Papa, F.R. (2018) The Unfolded Protein Response and Cell Fate Control. Molecular Cell, 69, 169-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Walter, P. and Ron, D. (2011) The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science, 334, 1081-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Schulz, A.M. and Haynes, C.M. (2015) UPRmt-Mediated Cytoprotection and Organismal Aging. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1847, 1448-1456. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hetz, C. (2012) The Unfolded Protein Response: Controlling Cell Fate Decisions under ER Stress and Beyond. Nature Reviews Molecular Cell Biology, 13, 89-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
B’chir, W., Maurin, A., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., et al. (2013) The eIF2α/ATF4 Pathway Is Essential for Stress-Induced Autophagy Gene Expression. Nucleic Acids Research, 41, 7683-7699. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wanka, L., Iqbal, K. and Schreiner, P.R. (2013) The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chemical Reviews, 113, 3516-3604. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xie, T., Lim, S.M., Westover, K.D., Dodge, M.E., Ercan, D., Ficarro, S.B., et al. (2014) Pharmacological Targeting of the Pseudokinase HER3. Nature Chemical Biology, 10, 1006-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ma, A., Stratikopoulos, E., Park, K., Wei, J., Martin, T.C., Yang, X., et al. (2019) Discovery of a First-In-Class EZH2 Selective Degrader. Nature Chemical Biology, 16, 214-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hirai, K., Yamashita, H., Tomoshige, S., Mishima, Y., Niwa, T., Ohgane, K., et al. (2022) Conversion of a PROTAC Mutant Huntingtin Degrader into Small-Molecule Hydrophobic Tags Focusing on Drug-Like Properties. ACS Medicinal Chemistry Letters, 13, 396-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gao, N., Huang, Y., Chu, T., Li, Q., Zhou, B., Chen, Y., et al. (2019) TDP-43 Specific Reduction Induced by Di-Hydrophobic Tags Conjugated Peptides. Bioorganic Chemistry, 84, 254-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Scholz, M. and Hey-Hawkins, E. (2011) Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chemical Reviews, 111, 7035-7062. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Asawa, Y., Nishida, K., Kawai, K., Domae, K., Ban, H.S., Kitazaki, A., et al. (2021) Carborane as an Alternative Efficient Hydrophobic Tag for Protein Degradation. Bioconjugate Chemistry, 32, 2377-2385. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Rao N, V., Ganivada, M.N., Sarkar, S., Dinda, H., Chatterjee, K., Dalui, T., et al. (2014) Magnetic Norbornene Polymer as Multiresponsive Nanocarrier for Site Specific Cancer Therapy. Bioconjugate Chemistry, 25, 276-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, J., Li, C., Liu, L. and Fu, X. (2018) Norbornene in Organic Synthesis. Synthesis, 50, 2799-2823. [Google Scholar] [CrossRef]
|
|
[34]
|
Lemmon, M.A. and Schlessinger, J. (2010) Cell Signaling by Receptor Tyrosine Kinases. Cell, 141, 1117-1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xie, S., Zhan, F., Zhu, J., Sun, Y., Zhu, H., Liu, J., et al. (2023) Discovery of Norbornene as a Novel Hydrophobic Tag Applied in Protein Degradation. Angewandte Chemie International Edition, 62, e202217246. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Mihreteab, S., Platon, L., Berhane, A., Stokes, B.H., Warsame, M., Campagne, P., et al. (2023) Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. New England Journal of Medicine, 389, 1191-1202. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Qing, L., Yu, Q., Wang, C., Lu, X., Yang, Y., Chen, X., et al. (2025) Discovery of D-Ring-Contracted Artemisinin as a Potent Hydrophobic Tag for Targeted Protein Degradation. Journal of Medicinal Chemistry, 68, 1619-1631. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Abbel, R., Schenning, A.P.H.J. and Meijer, E.W. (2009) Fluorene‐Based Materials and Their Supramolecular Properties. Journal of Polymer Science Part A: Polymer Chemistry, 47, 4215-4233. [Google Scholar] [CrossRef]
|
|
[39]
|
Rajesh, Y., Biswas, A., Kumar, U., Banerjee, I., Das, S., Maji, S., et al. (2020) Lumefantrine, an Antimalarial Drug, Reverses Radiation and Temozolomide Resistance in Glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 117, 12324-12331. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Slade, D. (2020) PARP and PARG Inhibitors in Cancer Treatment. Genes & Development, 34, 360-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Go, A., Jang, J.W., Lee, W., Ha, J.D., Kim, H.J. and Nam, H.J. (2020) Augmentation of the Antitumor Effects of PARP Inhibitors in Triple-Negative Breast Cancer via Degradation by Hydrophobic Tagging Modulation. European Journal of Medicinal Chemistry, 204, Article ID: 112635. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bains, G., Patel, A.B. and Narayanaswami, V. (2011) Pyrene: A Probe to Study Protein Conformation and Conformational Changes. Molecules, 16, 7909-7935. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Galla, H. and Sackmann, E. (1974) Lateral Diffusion in the Hydrophobic Region of Membranes: Use of Pyrene Excimers as Optical Probes. Biochimica et Biophysica Acta (BBA)—Biomembranes, 339, 103-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hachisu, M., Seko, A., Daikoku, S., Takeda, Y., Sakono, M. and Ito, Y. (2016) Hydrophobic Tagged Dihydrofolate Reductase for Creating Misfolded Glycoprotein Mimetics. ChemBioChem, 17, 300-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Varshavsky, A. (1992) The N-End Rule. Cell, 69, 725-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Varshavsky, A. (1991) Naming a Targeting Signal. Cell, 64, 13-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Timms, R.T., Zhang, Z., Rhee, D.Y., Harper, J.W., Koren, I. and Elledge, S.J. (2019) A Glycine-Specific N-Degron Pathway Mediates the Quality Control of Protein N-myristoylation. Science, 365, eaaw4912. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Long, M.J.C., Gollapalli, D.R. and Hedstrom, L. (2012) Inhibitor Mediated Protein Degradation. Chemistry & Biology, 19, 629-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shi, Y., Long, M.J.C., Rosenberg, M.M., Li, S., Kobjack, A., Lessans, P., et al. (2016) Boc3Arg-Linked Ligands Induce Degradation by Localizing Target Proteins to the 20S Proteasome. ACS Chemical Biology, 11, 3328-3337. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Coffey, R.T., Shi, Y., Long, M.J.C., Marr, M.T. and Hedstrom, L. (2016) Ubiquilin-Mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling. Journal of Biological Chemistry, 291, 5221-5233. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ma, L., Zhang, K., Huang, Z., Guo, Y., Liu, N., Chen, J., et al. (2024) Development of Novel Silicon-Based Hydrophobic Tags (SiHyT) for Targeted Proteins Degradation. Journal of Medicinal Chemistry, 67, 21344-21363. [Google Scholar] [CrossRef] [PubMed]
|