|
[1]
|
Hernández-Medrano, C., Hidalgo-Bravo, A., Villanueva-Mendoza, C., Bautista-Tirado, T. and Apam-Garduño, D. (2020) Mosaic Cat Eye Syndrome in a Child with Unilateral Iris Coloboma. Ophthalmic Genetics, 42, 84-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Williams, J.L., McDonald, M.T., Seifert, B.A., Deak, K.L., Rehder, C.W. and Campbell, M.J. (2020) An Unusual Association: Total Anomalous Pulmonary Venous Return and Aortic Arch Obstruction in Patients with Cat Eye Syndrome. Journal of Pediatric Genetics, 10, 35-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, S.H., Yang, M.H., Bu, X.F., et al. (2023) Prenatal Diagnosis and Genetic Analysis of Chimeric Cat Eye Syndrome. Chinese Journal of Prenatal Diagnosis, 35, 138-142.
|
|
[4]
|
Serra, G., Giambrone, C., Antona, V., Cardella, F., Carta, M., Cimador, M., et al. (2022) Congenital Hypopituitarism and Multiple Midline Defects in a Newborn with Non-Familial Cat Eye Syndrome. Italian Journal of Pediatrics, 48, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Glaeser, A.B., Diniz, B.L., Santos, A.S., Guaraná, B.B., Muniz, V.F., Carlotto, B.S., et al. (2021) A Child with Cat-Eye Syndrome and Oculo-Auriculo-Vertebral Spectrum Phenotype: A Discussion around Molecular Cytogenetic Findings. European Journal of Medical Genetics, 64, Article ID: 104319. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, Y., Zhang, P., Chai, Y. and Zang, W. (2023) Cat Eye Syndrome Caused by 22q11.1q11.21 Duplication: Case Report in a Chinese Family. Molecular Cytogenetics, 16, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lo, Y.M.D. (2022) Discovery of Cell-Free Fetal DNA in Maternal Blood and Development of Noninvasive Prenatal Testing: 2022 Lasker-DeBakey Clinical Medical Research Award. JAMA, 328, 1293-1294. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Rose, N.C., Barrie, E.S., Malinowski, J., Jenkins, G.P., McClain, M.R., LaGrave, D., et al. (2022) Systematic Evidence-Based Review: The Application of Noninvasive Prenatal Screening Using Cell-Free DNA in General-Risk Pregnancies. Genetics in Medicine, 24, 1379-1391. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sahinbegovic, H., Andres, S., Langer-Freitag, S., Divane, A., Ieremiadou, F., Mehmedbasic, S., et al. (2022) Genome Wide Noninvasive Prenatal Testing Detects Microduplication of the Distal End of Chromosome 15 in a Fetus: A Case Report. Molecular Cytogenetics, 15, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pei, Y., Hu, L., Liu, J., Wen, L., Luo, X., Lu, J., et al. (2020) Efficiency of Noninvasive Prenatal Testing for the Detection of Fetal Microdeletions and Microduplications in Autosomal Chromosomes. Molecular Genetics & Genomic Medicine, 8, e1339. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rose, N.C., Kaimal, A.J., Dugoff, L., et al. (2020) Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstetrics & Gynecology, 136, e48-e69. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chitty, L.S. (2021) Non-Invasive Prenatal Testing 10 Years On. Prenatal Diagnosis, 41, 1187-1189. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Xiang, J., Sun, X., Peng, J., et al. (2025) Non-Invasive Prenatal Testing for 22q11.2 Deletion Syndrome: An Innovative Bioinformatics Pipeline to Distinguish the Origin of Copy Number Variations. Scientific Reports, 15, Article No. 24755.
|
|
[14]
|
Xue, H., Yu, A., Lin, M., Chen, X., Guo, Q., Xu, L., et al. (2022) Efficiency of Expanded Noninvasive Prenatal Testing in the Detection of Fetal Subchromosomal Microdeletion and Microduplication in a Cohort of 31,256 Single Pregnancies. Scientific Reports, 12, Article No. 19750. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Song, Y., Liu, C., Qi, H., Zhang, Y., Bian, X. and Liu, J. (2013) Noninvasive Prenatal Testing of Fetal Aneuploidies by Massively Parallel Sequencing in a Prospective Chinese Population. Prenatal Diagnosis, 33, 700-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lo, Y.M.D., Tein, M.S.C., Lau, T.K., Haines, C.J., Leung, T.N., Poon, P.M.K., et al. (1998) Quantitative Analysis of Fetal DNA in Maternal Plasma and Serum: Implications for Noninvasive Prenatal Diagnosis. The American Journal of Human Genetics, 62, 768-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lo, Y.M.D., Corbetta, N., Chamberlain, P.F., Rai, V., Sargent, I.L., Redman, C.W., et al. (1997) Presence of Fetal DNA in Maternal Plasma and Serum. The Lancet, 350, 485-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xue, H., Chen, X., Lin, M., Lin, N., Huang, H., Yu, A., et al. (2020) Prenatal Diagnosis and Molecular Cytogenetic Identification of Small Supernumerary Marker Chromosomes: Analysis of Three Prenatal Cases Using Chromosome Microarray Analysis. Aging, 13, 2135-2148. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Gaspar, N.S., Rocha, G., Grangeia, A. and Soares, H.C. (2022) Cat-Eye Syndrome: A Report of Two Cases and Literature Review. Cureus, 14, e26316. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xue, J., Shen, R., Xie, M., Liu, Y., Zhang, Y., Gong, L., et al. (2021) 22q11.2 Recurrent Copy Number Variation-Related Syndrome: A Retrospective Analysis of Our Own Microarray Cohort and a Systematic Clinical Overview of Clingen Curation. Translational Pediatrics, 10, 3273-3281. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Navon Elkan, P., Zhou, Q., et al. (2025) The Cat Eye Syndrome Chromosome Region, Candidate 1 (CECR1) Encodes Adenosine Deaminase 2 (ADA2), Which Is the Major Extracellular Adenosine Deaminase. Rheumatology, 35, 138-142.
|
|
[22]
|
Pavani, H., Baskar, R., et al. (2025) Extracellular Adenosine Deamination Primes Tip Organizer Development in Dictyostelium. bioRxiv. [Google Scholar] [CrossRef]
|
|
[23]
|
Niri, F., Terpstra, A.N., Lim, K.R.Q. and McDermid, H.E. (2021) Chromatin Remodeling Factor CECR2 Forms Tissue-Specific Complexes with CCAR2 and LUZP1. Biochemistry and Cell Biology, 99, 759-765. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Akula, S.K., Chen, A.Y., Neil, J.E., et al. (2023) Exome Sequencing and the Identification of New Genes and Shared Mechanisms in Polymicrogyria. JAMA Neurology, 80, 980-988.
|
|
[25]
|
de Amorim, A.M., et al. (2025) Molecular Mechanisms of Recruitment, Function and Regulation of UPF1 in Histone mRNA Decay. bioRxiv. [Google Scholar] [CrossRef]
|
|
[26]
|
Vassilopoulos, A., et al. (2024) Genetic Diversity of CHC22 Clathrin Impacts Its Function in Glucose and Neuronal Pathways. eLife, 13, e84567.
|
|
[27]
|
Hou, H., Chen, H., Wang, X., Yuan, C., Yang, Q., Liu, Z., et al. (2019) Genetic Characterisation of 22q11.2 Variations and Prevalence in Patients with Congenital Heart Disease. Archives of Disease in Childhood, 105, 367-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Glaeser, A.B., Santos, A.S., Diniz, B.L., Deconte, D., Rosa, R.F.M. and Zen, P.R.G. (2020) Candidate Genes of Oculo-Auriculo-Vertebral Spectrum in 22q Region: A Systematic Review. American Journal of Medical Genetics Part A, 182, 2624-2631. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jedraszak, G., Receveur, A., Andrieux, J., et al. (2023) Cat Eye Syndrome: Clinical, Cytogenetics and Familial Findings in a Large Cohort of 43 Patients Highlighting the Importance of Congenital Heart Disease and Inherited Cases. American Journal of Medical Genetics Part A, 185, 1-7.
|
|
[30]
|
Li, J., Zhang, Y., Diao, Y., Li, R., Jiang, L., Zhou, L., et al. (2021) A De Novo sSMC(22) Characterized by High-Resolution Chromosome Microarray Analysis in a Chinese Boy with Cat-Eye Syndrome. Case Reports in Genetics, 2021, Article ID: 8824184. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, X., Su, L., Shen, Q., Guo, Q., Li, Y., Xu, S., et al. (2022) Chromosomal Abnormalities and Pregnancy Outcomes for Fetuses with Gastrointestinal Tract Obstructions. Frontiers in Pediatrics, 10, Article 918130. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jeong, H., Dishuck, P.C., Yoo, D., Harvey, W.T., Munson, K.M., Lewis, A.P., et al. (2025) Structural Polymorphism and Diversity of Human Segmental Duplications. Nature Genetics, 57, 390-401. [Google Scholar] [CrossRef] [PubMed]
|