|
[1]
|
Jung, E., Shin, H., Lee, B., Efremov, V., Lee, S., Lee, H.S., et al. (2020) Atomic-Level Tuning of Co-N-C Catalyst for High-Performance Electrochemical H2O2 Production. Nature Materials, 19, 436-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, L., Chen, C., Yang, Z., Li, S., Chu, C. and Chen, B. (2021) Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride. Advanced Functional Materials, 31, Article 2105731. [Google Scholar] [CrossRef]
|
|
[3]
|
Holade, Y., Ghosh, S. and Napporn, T.W. (2024) Best Practices for Hydrogen Peroxide (Photo)electrosynthesis. Nature Sustainability, 7, 1085-1087. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, T., Pan, Z., Vequizo, J.J.M., Kato, K., Wu, B., Yamakata, A., et al. (2022) Overall Photosynthesis of H2O2 by an Inorganic Semiconductor. Nature Communications, 13, Article No. 1034. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, H., Wang, Z., Zhang, J., Shao, C., Dai, K. and Fan, K. (2024) Interface Chemical Bond Enhanced Ions Intercalated Carbon Nitride/CdSe-Diethylenetriamine S-Scheme Heterojunction for Photocatalytic H2O2 Synthesis in Pure Water. Advanced Functional Materials, 34, Article 2315426. [Google Scholar] [CrossRef]
|
|
[6]
|
He, F., Lu, Y., Wu, Y., Wang, S., Zhang, Y., Dong, P., et al. (2023) Rejoint of Carbon Nitride Fragments into Multi-Interfacial Order-Disorder Homojunction for Robust Photo-Driven Generation of H2O2. Advanced Materials, 36, Article 2307490. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhou, X., Shen, B., Zhai, J. and Hedin, N. (2021) Reactive Oxygenated Species Generated on Iodide-Doped BiVO4/BaTiO3 Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation. Advanced Functional Materials, 31, Article 2009594. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhi, Q., Jiang, R., Yang, X., Jin, Y., Qi, D., Wang, K., et al. (2024) Dithiine-Linked Metalphthalocyanine Framework with Undulated Layers for Highly Efficient and Stable H2O2 Electroproduction. Nature Communications, 15, Article No. 678. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gong, Z., Gao, Y., Li, J., Cai, Z., Liu, N. and Jiang, J. (2025) Porphyrin-Based Vinylene-Linked 3D Covalent Organic Framework with Unprecedented Cya Topology for Photocatalytic H2O2 Production. Angewandte Chemie, 137, e202423205. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhang, X., Cheng, S., Chen, C., Wen, X., Miao, J., Zhou, B., et al. (2024) Keto-Anthraquinone Covalent Organic Framework for H2O2 Photosynthesis with Oxygen and Alkaline Water. Nature Communications, 15, Article No. 2649. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yue, J.Y., Luo, J.X., Pan, Z.X., Zhang, R.Z., et al. (2024) Regulating the Topology of Covalent Organic Frameworks for Boosting Overall H2O2 Photogeneration. Angewandte Chemie, 136, e202405763. [Google Scholar] [CrossRef]
|
|
[12]
|
Gong, Y., Guan, X. and Jiang, H. (2023) Covalent Organic Frameworks for Photocatalysis: Synthesis, Structural Features, Fundamentals and Performance. Coordination Chemistry Reviews, 475, Article 214889. [Google Scholar] [CrossRef]
|
|
[13]
|
Feng, B., Liu, Y., Wan, K., Zu, S., Pei, Y., Zhang, X., et al. (2024) Tailored Exfoliation of Polymeric Carbon Nitride for Photocatalytic H2O2 Production and CH4 Valorization Mediated by O2 Activation. Angewandte Chemie, 136, e202401884. [Google Scholar] [CrossRef]
|
|
[14]
|
Yu, Y. and Huang, H. (2023) Coupled Adsorption and Photocatalysis of G-C3N4 Based Composites: Material Synthesis, Mechanism, and Environmental Applications. Chemical Engineering Journal, 453, Article 139755. [Google Scholar] [CrossRef]
|
|
[15]
|
Zeng, X., Liu, Y., Hu, X. and Zhang, X. (2021) Photoredox Catalysis over Semiconductors for Light-Driven Hydrogen Peroxide Production. Green Chemistry, 23, 1466-1494. [Google Scholar] [CrossRef]
|
|
[16]
|
Deng, M., Wang, D. and Li, Y. (2024) General Design Concept of High-Performance Single-Atom-Site Catalysts for H2O2 Electrosynthesis. Advanced Materials, 36, Article 2314340. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Mavrikis, S., Perry, S.C., Leung, P.K., Wang, L. and Ponce de León, C. (2020) Recent Advances in Electrochemical Water Oxidation to Produce Hydrogen Peroxide: A Mechanistic Perspective. ACS Sustainable Chemistry & Engineering, 9, 76-91. [Google Scholar] [CrossRef]
|
|
[18]
|
An, Y., Cai, T., Jiang, W., Lei, T. and Pang, H. (2025) Research Progress on Photocatalytic Production of Hydrogen Peroxide over MOFs and COFs. Green Chemistry, 27, 10478-10509. [Google Scholar] [CrossRef]
|
|
[19]
|
Lin, H., Tan, G., Ju, Y., Su, P., Chen, F. and Tang, Y. (2025) Thiophene-Doped Fully Conjugated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Peroxide Generation. CCS Chemistry, 2025, 1-14. [Google Scholar] [CrossRef]
|
|
[20]
|
Chen, Z., Wang, J., Hao, M., Xie, Y., Liu, X., Yang, H., et al. (2023) Tuning Excited State Electronic Structure and Charge Transport in Covalent Organic Frameworks for Enhanced Photocatalytic Performance. Nature Communications, 14, Article No. 1106. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Qian, Y., Han, Y., Zhang, X., Yang, G., Zhang, G. and Jiang, H. (2023) Computation-Based Regulation of Excitonic Effects in Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalysis. Nature Communications, 14, Article No. 3083. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tao, X., Wang, Z., Zhang, Q., Liu, N., Sun, Y., Niu, R., et al. (2023) Covalent Organic Framework Nanohydrogels. Journal of the American Chemical Society, 145, 25471-25477. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Thompson, C.M., Occhialini, G., McCandless, G.T., Alahakoon, S.B., Cameron, V., Nielsen, S.O., et al. (2017) Computational and Experimental Studies on the Effects of Monomer Planarity on Covalent Organic Framework Formation. Journal of the American Chemical Society, 139, 10506-10513. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, H., Zhang, H., Chi, K. and Zhao, Y. (2024) Pyrimidine-Containing Covalent Organic Frameworks for Efficient Photosynthesis of Hydrogen Peroxide via One-Step Two Electron Oxygen Reduction Process. Nano Research, 17, 9498-9506. [Google Scholar] [CrossRef]
|
|
[25]
|
Wu, J., Zhang, Q. and Wang, F. (2024) Rational Design of Dibenzothiophene-S, S-Dioxide-Containing Conjugated Polymers for Highly Efficient Photosynthesis of Hydrogen Peroxide in Pure Water. Journal of Materials Chemistry A, 12, 4656-4665. [Google Scholar] [CrossRef]
|
|
[26]
|
Sun, H.H., Zhou, Z.B., Fu, Y., Qi, Q.Y., et al. (2024) Azobenzene‐Bridged Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Peroxide Production from Alkaline Water: One Atom Makes a Significant Improvement. Angewandte Chemie, 136, e202409250. [Google Scholar] [CrossRef]
|
|
[27]
|
Zhou, Z.B., Tian, P.J., Yao, J., Lu, Y., et al. (2022) Toward Azo-Linked Covalent Organic Frameworks by Developing Linkage Chemistry via Linker Exchange. Nature Communications, 13, Article No. 2180. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yue, J.Y., Song, L.P., Fan, Y.F., Pan, Z.X., et al. (2023) Thiophene‐Containing Covalent Organic Frameworks for Overall Photocatalytic H2O2 Synthesis in Water and Seawater. Angewandte Chemie International Edition, 62, e202309624. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qian, C., Qi, Q., Jiang, G., Cui, F., Tian, Y. and Zhao, X. (2017) Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the American Chemical Society, 139, 6736-6743. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu H., S., Mitra, S., et al. (2017) Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes. Advanced Materials, 29, Article 1603945. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yang, S., Zhi, K., Zhang, Z., Kerem, R., Hong, Q., Zhao, L., et al. (2024) Nitrogen-Rich Triazine-Based Covalent Organic Frameworks as Efficient Visible Light Photocatalysts for Hydrogen Peroxide Production. Nanomaterials, 14, Article 643. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Jung, S., Senthil, R.A., Min, A., Kumar, A., Moon, C.J., Jeong, G.H., et al. (2024) Exploring IR-Doped NiFe-LDH Nanosheets via a Pulsed Laser for Oxygen Evolution Kinetics: in Situ Raman and DFT Insights. Journal of Materials Chemistry A, 12, 8694-8706. [Google Scholar] [CrossRef]
|
|
[33]
|
Sun, R., Yang, X., Hu, X., Guo, Y., Zhang, Y., Shu, C., et al. (2025) Unprecedented Photocatalytic Hydrogen Peroxide Production via Covalent Triazine Frameworks Constructed from Fused Building Blocks. Angewandte Chemie, 137, e202416350. [Google Scholar] [CrossRef]
|
|
[34]
|
Xu, M., Wei, C., Zhang, Y., Chen, J., Li, H., Zhang, J., et al. (2024) Coplanar Conformational Structure of Π-Conjugated Polymers for Optoelectronic Applications. Advanced Materials, 36, Article 2301671. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhang, Y., Pan, C., Bian, G., Xu, J., Dong, Y., Zhang, Y., et al. (2023) H2O2 Generation from O2 and H2O on a Near-Infrared Absorbing Porphyrin Supramolecular Photocatalyst. Nature Energy, 8, 361-371. [Google Scholar] [CrossRef]
|
|
[36]
|
Ma, S., Deng, T., Li, Z., Zhang, Z., Jia, J., Li, Q., et al. (2022) Photocatalytic Hydrogen Production on a Sp2-Carbon-Linked Covalent Organic Framework. Angewandte Chemie, 134, e202208919. [Google Scholar] [CrossRef]
|
|
[37]
|
Liu, F., Zhou, P., Hou, Y., Tan, H., Liang, Y., Liang, J., et al. (2023) Covalent Organic Frameworks for Direct Photosynthesis of Hydrogen Peroxide from Water, Air and Sunlight. Nature Communications, 14, Article No. 4344. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhou, P., Chen, H., Chao, Y., Zhang, Q., Zhang, W., Lv, F., et al. (2021) Single-Atom Pt-I3 Sites on All-Inorganic Cs2SNi6 Perovskite for Efficient Photocatalytic Hydrogen Production. Nature Communications, 12, Article No. 4412. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Guan, X., Li, H., Ma, Y., Xue, M., Fang, Q., Yan, Y., et al. (2019) Chemically Stable Polyarylether-Based Covalent Organic Frameworks. Nature Chemistry, 11, 587-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Vardhan, H., Rummer, G., Deng, A. and Ma, S. (2023) Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. Membranes, 13, Article 696. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L. and Hoi, S.C.H. (2021) Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2872-2893. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhu, R., Liu, Y., Han, W., Feng, J., Zhang, J., Pang, H., et al. (2025) Three-Dimensional Covalent Organic Frameworks Based on Linear and Trigonal Linkers for High-Performance H2O2 Photosynthesis. Angewandte Chemie International Edition, 64, e202412890. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bi, S., Meng, F., Wu, D. and Zhang, F. (2022) Synthesis of Vinylene-Linked Covalent Organic Frameworks by Monomer Self-Catalyzed Activation of Knoevenagel Condensation. Journal of the American Chemical Society, 144, 3653-3659. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, Y., Wang, Y., Li, H., Guan, X., Zhu, L., Xue, M., et al. (2019) Ambient Aqueous-Phase Synthesis of Covalent Organic Frameworks for Degradation of Organic Pollutants. Chemical Science, 10, 10815-10820. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, J., Zhu, Y. and Kaskel, S. (2020) Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angewandte Chemie International Edition, 60, 5010-5035. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Liu, J., Wang, S., Huang, T., Manchanda, P., Abou-Hamad, E. and Nunes, S.P. (2020) Smart Covalent Organic Networks (CONs) with “On-Off-On” Light-Switchable Pores for Molecular Separation. Science Advances, 6, eabb3188. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liu, C., Liu, X., Chen, B., Li, Z., Ou, X., Lu, Y., et al. (2025) Squaric Acid-Based Zwitterionic Covalent Organic Framework Induces Triple Synergy for Boosted Hydrogen Peroxide Photosynthesis. Nature Communications, 16, Article No. 8941. [Google Scholar] [CrossRef]
|