共价有机框架(COFs)在光催化制备过氧化氢(H2O2)领域的研究进展
Research Progress of Covalent Organic Frameworks (COFs) in Photocatalytic Preparation of Hydrogen Peroxide (H2O2)
DOI: 10.12677/aac.2026.161001, PDF, HTML, XML,   
作者: 龚文康:浙江师范大学化学与材料科学学院,浙江 金华
关键词: 共价有机框架光催化过氧化氢太阳能转化Covalent Organic Framework Photocatalysis Hydrogen Peroxide Solar Energy Conversion
摘要: 过氧化氢(H2O2)作为绿色高效氧化剂,广泛应用于化工合成、环境治理及生物医药等领域,但传统蒽醌法存在能耗高、污染大的缺陷,光催化制备过H2O2就是利用太阳能和光催化剂驱动O2还原H2O氧化生成H2O2,是极具前景的绿色路径。共价有机框架(COFs)因结构可调、比表面积大、共轭稳定,结构易调控等特性,成为光催化产H2O2的理想材料。本文梳理了COFs的光催化机制,设计策略、及优化方向,分析了稳定性、成本等挑战,并总结了2020~2025年具有代表性的几种COFs用于光催化产H2O2的设计策略与不足之处,对COFs精准设计与实际应用进行展望,为COFs光催化产H2O2领域的发展提供参考。
Abstract: Hydrogen peroxide (H2O2), as a green and efficient oxidant, is widely used in chemical synthesis, environmental treatment, and biomedicine, etc. However, the traditional anthraquinone method has the drawbacks of high energy consumption and significant pollution. Photocatalytic production of H2O2 utilizes solar energy and photocatalysts to drive the reduction of O2 and oxidation of water to generate H2O2, which is a promising green approach. Covalent organic frameworks (COFs) have become ideal materials for photocatalytic production of H2O2 due to their adjustable structures, large specific surface areas, stable conjugation, and easy structural regulation. This paper reviews the photocatalytic mechanism, design strategies, and optimization directions of COFs, analyzes the challenges such as stability and cost, and summarizes several representative design strategies and shortcomings of COFs for photocatalytic production of H2O2 from 2020 to 2025. It looks forward to the precise design and practical application of COFs, providing reference for the development of COFs in the field of photocatalytic production of H2O2.
文章引用:龚文康. 共价有机框架(COFs)在光催化制备过氧化氢(H2O2)领域的研究进展[J]. 分析化学进展, 2026, 16(1): 1-8. https://doi.org/10.12677/aac.2026.161001

1. 引言

过氧化氢(H2O2)是“绿色”化工原料,分解产物仅为水和氧气,在造纸漂白、废水处理、有机合成等领域不可或缺[1]。据《2025年全球H2O2市场报告》,全球需求年增长率达5.2%,但传统制备方法存在显著瓶颈:蒽醌法依赖化石能源(每生产1吨H2O2需0.8吨标准煤) [2],且产生有机废液;而光催化技术利用半导体材料吸收太阳能并驱动O2双电子还原(2e ORR)或通过水双电子氧化(2e WOR)生成H2O2 [3],为化学合成提供了一种绿色、低能耗的方法,是解决传统渠道生成H2O2缺陷的关键路径。传统光催化材料(如TiO2、g-C3N4) [4] [5]存在光响应范围窄(仅紫外光)、载流子复合率高(>70%)、O2吸附能力弱(吸附能 < −0.2 eV)等问题[6] [7]。COFs的出现为这一领域带来突破:作为结晶多孔材料,COFs具备三大核心优势——结构可调性(精准调控孔道尺寸与电子能带)、高比表面积(二维COFs比表面积可达2000 m2∙g1)、共轭稳定性(促进载流子传输) [8] [9]。由此COF光催化剂表现出令人印象深刻的催化性能,并且由于其良好的组织框架和定制设计的特性,提高了电荷转移效率和载流子迁移率,已经达到了成熟的发展阶段。此外,由于其可设计的分子框架,COFs允许对其能带结构和催化位点进行微调,在光催化合成H2O2领域展现出巨大潜力[10] [11]。本文基于2020~2025年的研究进展,总结了几种代表性COFs的创新性设计策略和缺陷。

2. 光催化生产H2O2的机理

光催化H2O2生产的过程大致可以分为三个连续的部分。首先,光催化剂被光照射后吸收光子。当入射光子能量超过光催化剂的带隙(Eg)时,电子从价带(VB)激发到导带(CB) [12]。其次,被激发的电子和由此产生的空穴在光催化剂内部迁移或重新组合[13]。激发后,电子和空穴将扩散到光催化界面,促进同时进行的还原和氧化过程[14]。生成H2O2的反应主要包括水氧化反应(WOR)和氧还原反应(ORR)两种途径[15],并且这两种反应同时发生生成过氧化氢。相关的反应步骤如下:

WOR:

2e直接途径:

2 H 2 O+2 h + H 2 O 2 +2 H + (1.76 V vs. NHE)

2e间接途径:

H 2 O+2 h + ·OH+ H + (2.73 V vs. NHE)

·OH+·OH H 2 O 2

4e途径:

2 H 2 O+4 h + O 2 +4 H + (1.23 V vs. NHE)

ORR:

2e直接途径:

O 2 +2 e +2 H + H 2 O 2 (0.68 V vs. NHE)

2e间接途径:

O 2 + e · O 2 (−0.33 V vs. NHE)

· O 2 + e +2 H + H 2 O 2 (1.44 V vs. NHE)

4e途径:

O 2 +4 e +4 H + 2 H 2 O (1.23 V vs. NHE)

Figure 1. Reaction potentials corresponding to ORR and WOR during H2O2 production

1. 生产H2O2时ORR和WOR对应的反应势

H2O2生成过程中所涉及的ORR和WOR对应电位如图1所示。根据中间产物的存在与否,2e ORR可分为直接和间接两类途径。为了通过2e ORR途径直接获得H2O2,光催化剂的导带(CB)电位必须控制在0.68 V以下。2e ORR的间接路径通常涉及中间体的生成和转化。在间接路径中,O2首先被还原为 · O 2 中间体,然后这个中间体经过质子化和进一步的反应最终生成H2O2。为了实现这一过程,光催化剂的CB电位通常需要低于−0.33 V,以驱动O2单电子还原为 · O 2 。相较于两电子直接途径,虽然间接途径在中间体调控上具有较大的灵活性,但也对材料的表面性能提出了更高的要求。相应的,2e WOR也可分为直接途径和间接途径。通过2e直接WOR生产H2O2所需的光催化剂的价带(VB)电势理论上必须超过1.76 V。相比之下,通过2e间接WOR生产H2O2所需的VB电势理论上必须超过2.73 V [16]。同时,与间接途径相比,2e直接WOR和ORR更具热力学优势,但缺乏动力学优势[17]。作为光催化H2O2产中不希望发生的反应,4e WOR将直接影响H2O2的生产效率和稳定性。这种情况可归因于它与反应底物的2e ORR竞争。光催化生产H2O2依赖于O2作为原料。4e WOR消耗H2O生成O2,导致O2的循环消耗,降低了2e ORR可用的O2浓度。同时,4e WOR会消耗大量的H2O,这会影响质子供应,间接抑制2e ORR的进展。此外,4e WOR产生的O2可能通过歧化反应催化H2O2的分解。因此,为了保证H2O2的高产率,提高2e途径的选择性也是相关研究的重要课题。

3. 光催化产H2O2的COFs材料设计策略

COFs的结构设计是实现高效光催化产H2O2的核心,从广义上讲,提高H2O2产率的策略包括分子工程、基于COF的异质结构的构建和晶体结构的调节[18]。国内团队通过“精准调控配体与构筑单元”,如混合配体策略;引入功能单元;增强键合能力;设计共轭体系等开发了多类功能化COFs,针对性解决O2吸附、载流子传输及稳定性问题。

3.1. 混合配体策略优化电子与孔道结构

Tang等团队[19]采用混合配体共聚合策略,将两种醛类单体,即对苯二甲酸(TA)和2,5-二(噻吩-2-基)对苯二甲酸(DTTA)与2,4,6-三甲基-1,3,5-三嗪(TMT)以精确控制的比例共聚合,形成交替排列的二维框架TA/DTTA-2-TMT。该设计优化了孔道尺寸(1.5 nm,适合O2扩散),比表面积提升至1800 m2∙g1;同时,噻吩单元的引入有效地促进了电荷载流子的分离,配体间电子耦合抑制了光生载流子复合[20] [21],载流子寿命从2.1 ns延长至4.3 ns,有助于更多的电子参与反应,最终实现H2O2生成速率3451 μmol∙g1∙h1

虽然混合配体策略能有效优化电子与孔道结构,但该设计策略面临COFs的稳定性与功能性的冲突:混合配体策略需平衡“亲水性”与“结晶性”的难题,TA的引入虽然增强了水亲和力,但会破坏DTTA的共轭结构,导致框架结晶度下降[22];长期光催化过程中,这种结构无序会进一步加剧,引发活性位点失活。同时其材料性能依赖TA与DTTA的精确摩尔比,在工业级合成中难以实现分子层面的精确调控;配体比例的微小偏差会导致孔道尺寸波动较大[23],将直接影响O2的扩散效应,导致其催化性能下降。

3.2. 功能单元增强O2吸附与活化

Chi等团队[24]针对O2吸附不足的瓶颈,设计了含嘧啶单元的BTT-MD-COF:以1,3,5-三(4-氨基苯基)三嗪(BTT)为连接体,与含嘧啶环的2,5-二羟基对苯二甲酸(MD)通过亚胺键聚合。嘧啶环作为强电子受体,通过π-π相互作用增强O2吸附(吸附能−0.5 eV,远高于不含嘧啶的COFs),并将O2还原能垒从0.8 eV降至0.3 eV;均一孔道(1.2 nm)为O2扩散与H2O2脱附提供高效通道,最终H2O2生成速率达5691.2 μmol∙g−1∙h−1

该研究通过“嘧啶单元增强O2吸附”实现了高选择性一步2e ORR,但该设计方案存在策略局限性与长期稳定性隐患:嘧啶环作为强电子受体,通过π-π作用增强了O2吸附,但过度吸附会导致O2分子“卡死”在活性位点上——过量O2占据嘧啶环的电子轨道后,会抑制光生电子向O2的转移[25],同时阻碍反应中间体•OOH的形成,反而降低催化速率;框架的“刚性–柔性的平衡”是保证长期性能的关键,设计中采用了高刚性的亚胺键连接来增强O2吸附,但长期O2吸附–脱附循环会引发“框架微裂纹”(如晶面间距从0.34 nm扩大至0.38 nm),材料结晶度会逐渐下降,活性位点嘧啶环也会流失,导致H2O2产率逐渐下降。

3.3. 稳定键合提升极端环境耐受性

Wang等[26]团队开发了偶氮键(-N=N-)连接的COF-TPT-Azo:以4,4’-二氨基偶氮苯为配体,与2,4,6-三(4-甲醛苯基)-1,3,5-三嗪(TPT)通过偶氮键聚合。偶氮键(键能210 kJ·mol⁻¹)远高于亚胺键(160 kJ∙mol1) [27],使COF-TPT-Azo在pH = 10的碱性溶液中连续运行72 h后,结晶度仍保持85%,H2O2生成速率仅下降10%;偶氮键的光响应特性(顺反异构)可动态调整电子结构,对电子–空穴对的重组具有更强的抑制作用,进一步提升载流子迁移速率[28]

该研究通过偶氮键替代亚胺键提升了框架稳定性,但存在光响应稳定性隐患和催化选择性为验证问题:偶氮键的顺反异构特性虽然增强了光吸收范围,但长期强光照射下(如夏季户外光照),顺式偶氮键会不可逆的转化为反式[29],导致框架共轭结构破坏,这将抑制光生载流子的分离,载流子寿命将缩短,最终导致H2O2产率下降;研究中仅测试了“无牺牲剂碱性条件”下的性能(1498 μmol∙g−1∙h−1),未评估复杂体系中的选择性——比如在含还原性有机物(如苯酚)的废水中,偶氮键的强氧化性可能优先氧化有机物[30],而非还原O2生成H2O2,目标产物选择性将大幅下降。

3.4. 共轭框架促进载流子传输

Wang等人[31]开发并合成了两种高共轭的三嗪基COFs,即TBP-COF和TTP-COF,并检测了它们在H2O2生产中的光催化效率。TBP-COF (1882 μmol∙g−1∙h−1)和TTP-COF (4244 μmol∙g−1∙h−1)在纯水中,10 W LED (λ = 420 nm)可见光照射下的性能差异证明了富氮结构和共轭效应增强了光吸收[32],促进了O2吸附,提高了氧化还原能力,有利于光生载体的高效分离和转移。Tan等人[33]开发了三嗪–噻吩融合COFs:通过以共面三嗪环为连接剂,以平面熔融苯并三噻吩(BTT)和噻吩[3,2-b] (TT)为构建块的缩聚方法,成功合成了两种高度共面融合的共价三嗪骨架CTF-BTT和CTF-TT。其光响应范围拓宽至600 nm (覆盖可见光区),噻吩单元将电导率从传统COFs的105 S∙cm−1提升至1.2 × 103 S∙cm1,显著促进了光生电子传输[34]

Wang,Tan团队通过利用三嗪基的共面性,构筑了高共轭的COFs,证实了共轭效应有利于促进光生载流子的传输,增加了光生电子的有效利用率[35]。虽然该设计策略简单有效,但仍然存在大规模应用的难题:三嗪基COFs的光吸收范围有限,窄带隙要求难以满足,对光生电子–空穴对的分离效率有待进一步提高,另外还必须解决三嗪环在合成过程中溶解度有限的问题[36],减低生产成本,才有望大规模应用。

3.5. 调节分子内极性促进激子解离和形成

Liu等人[37]通过引入适量的苯基作为电子给体,优化COFs的分子内极性,促进激子在COFs中的形成和解离。以苯基(n = 0, 1, 2)含量不同的三嗪核三胺为前驱体,制备了一类具有不同分子内极性的三嗪基COFs 。在这三种COFs中,八极共轭结构中具有中等分子内极性的COF-N32在光照射下可以为H2O2光合作用产生最多的电子。在不需要牺牲剂的情况下,COF-N32在可见光照射12小时,H2O2产率达到605 μmol∙g−1∙h−1。此外,COF-N32可以在更多可用的真实水样(包括自来水、河水和海水)中有效地产生H2O2,还能够自然阳光照射下有效地产生H2O2

该研究通过“三嗪环的N2p态和C2p调控”实现了O2还原–水氧化双路径,但其方案存在双路径机制的平衡难题:双路径效率依赖“分子内极性”与“光生电荷分离的协同”,弱极性(如未优化的COF-N33)会导致载流子复合率高,无法启动双路径;强极性(如COF-N31)又会抑制光激子解离(激子寿命延长),导致电荷利用率下降[38],即使优化后的COF-N32,其双路径协同效率也仅达到60%,不能突破“极性–电荷分离”的平衡性质。

4. 应用挑战与展望

尽管对于COFs用于光催化产H2O2的研究取得显著进展,但COFs光催化产H2O2仍面临四大挑战:1. 稳定性不足:传统亚胺键COFs在酸碱条件下易水解,限制了废水处理等场景的应用[39];2. 成本高:COFs合成需昂贵芳香配体(如三嗪配体500元/g),规模化成本约20万元/kg,远高于TiO2 (500元/kg) [40];3. 自然光利用效率低:现有COFs对近红外光(占太阳能50%)的利用率 < 10% [41];4. 产物自分解:COFs孔道易导致H2O2积累,引发自分解[42]。由此我们未来的目标有:1. 开发自稳定COFs:引入碳–碳键、硼氧键等稳定键合方式,提升极端环境耐受性[43];2. 低成本规模化合成:利用工业级配体(如石油副产品)或水相合成法[44],降低成本;3. 近红外响应设计:引入卟啉、酞菁等单元[45],扩展光响应至近红外区;4. 智能孔道调控:通过动态共价键(如席夫碱键)设计“可切换”孔道[46],减少H2O2自分解;5. 实际应用验证:开发固定床反应器[47],用于饮用水消毒或工业废水处理中的H2O2现场制备。

参考文献

[1] Jung, E., Shin, H., Lee, B., Efremov, V., Lee, S., Lee, H.S., et al. (2020) Atomic-Level Tuning of Co-N-C Catalyst for High-Performance Electrochemical H2O2 Production. Nature Materials, 19, 436-442. [Google Scholar] [CrossRef] [PubMed]
[2] Chen, L., Chen, C., Yang, Z., Li, S., Chu, C. and Chen, B. (2021) Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production Using Cyano-Rich Graphitic Carbon Nitride. Advanced Functional Materials, 31, Article 2105731. [Google Scholar] [CrossRef
[3] Holade, Y., Ghosh, S. and Napporn, T.W. (2024) Best Practices for Hydrogen Peroxide (Photo)electrosynthesis. Nature Sustainability, 7, 1085-1087. [Google Scholar] [CrossRef
[4] Liu, T., Pan, Z., Vequizo, J.J.M., Kato, K., Wu, B., Yamakata, A., et al. (2022) Overall Photosynthesis of H2O2 by an Inorganic Semiconductor. Nature Communications, 13, Article No. 1034. [Google Scholar] [CrossRef] [PubMed]
[5] He, H., Wang, Z., Zhang, J., Shao, C., Dai, K. and Fan, K. (2024) Interface Chemical Bond Enhanced Ions Intercalated Carbon Nitride/CdSe-Diethylenetriamine S-Scheme Heterojunction for Photocatalytic H2O2 Synthesis in Pure Water. Advanced Functional Materials, 34, Article 2315426. [Google Scholar] [CrossRef
[6] He, F., Lu, Y., Wu, Y., Wang, S., Zhang, Y., Dong, P., et al. (2023) Rejoint of Carbon Nitride Fragments into Multi-Interfacial Order-Disorder Homojunction for Robust Photo-Driven Generation of H2O2. Advanced Materials, 36, Article 2307490. [Google Scholar] [CrossRef] [PubMed]
[7] Zhou, X., Shen, B., Zhai, J. and Hedin, N. (2021) Reactive Oxygenated Species Generated on Iodide-Doped BiVO4/BaTiO3 Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation. Advanced Functional Materials, 31, Article 2009594. [Google Scholar] [CrossRef
[8] Zhi, Q., Jiang, R., Yang, X., Jin, Y., Qi, D., Wang, K., et al. (2024) Dithiine-Linked Metalphthalocyanine Framework with Undulated Layers for Highly Efficient and Stable H2O2 Electroproduction. Nature Communications, 15, Article No. 678. [Google Scholar] [CrossRef] [PubMed]
[9] Gong, Z., Gao, Y., Li, J., Cai, Z., Liu, N. and Jiang, J. (2025) Porphyrin-Based Vinylene-Linked 3D Covalent Organic Framework with Unprecedented Cya Topology for Photocatalytic H2O2 Production. Angewandte Chemie, 137, e202423205. [Google Scholar] [CrossRef
[10] Zhang, X., Cheng, S., Chen, C., Wen, X., Miao, J., Zhou, B., et al. (2024) Keto-Anthraquinone Covalent Organic Framework for H2O2 Photosynthesis with Oxygen and Alkaline Water. Nature Communications, 15, Article No. 2649. [Google Scholar] [CrossRef] [PubMed]
[11] Yue, J.Y., Luo, J.X., Pan, Z.X., Zhang, R.Z., et al. (2024) Regulating the Topology of Covalent Organic Frameworks for Boosting Overall H2O2 Photogeneration. Angewandte Chemie, 136, e202405763. [Google Scholar] [CrossRef
[12] Gong, Y., Guan, X. and Jiang, H. (2023) Covalent Organic Frameworks for Photocatalysis: Synthesis, Structural Features, Fundamentals and Performance. Coordination Chemistry Reviews, 475, Article 214889. [Google Scholar] [CrossRef
[13] Feng, B., Liu, Y., Wan, K., Zu, S., Pei, Y., Zhang, X., et al. (2024) Tailored Exfoliation of Polymeric Carbon Nitride for Photocatalytic H2O2 Production and CH4 Valorization Mediated by O2 Activation. Angewandte Chemie, 136, e202401884. [Google Scholar] [CrossRef
[14] Yu, Y. and Huang, H. (2023) Coupled Adsorption and Photocatalysis of G-C3N4 Based Composites: Material Synthesis, Mechanism, and Environmental Applications. Chemical Engineering Journal, 453, Article 139755. [Google Scholar] [CrossRef
[15] Zeng, X., Liu, Y., Hu, X. and Zhang, X. (2021) Photoredox Catalysis over Semiconductors for Light-Driven Hydrogen Peroxide Production. Green Chemistry, 23, 1466-1494. [Google Scholar] [CrossRef
[16] Deng, M., Wang, D. and Li, Y. (2024) General Design Concept of High-Performance Single-Atom-Site Catalysts for H2O2 Electrosynthesis. Advanced Materials, 36, Article 2314340. [Google Scholar] [CrossRef] [PubMed]
[17] Mavrikis, S., Perry, S.C., Leung, P.K., Wang, L. and Ponce de León, C. (2020) Recent Advances in Electrochemical Water Oxidation to Produce Hydrogen Peroxide: A Mechanistic Perspective. ACS Sustainable Chemistry & Engineering, 9, 76-91. [Google Scholar] [CrossRef
[18] An, Y., Cai, T., Jiang, W., Lei, T. and Pang, H. (2025) Research Progress on Photocatalytic Production of Hydrogen Peroxide over MOFs and COFs. Green Chemistry, 27, 10478-10509. [Google Scholar] [CrossRef
[19] Lin, H., Tan, G., Ju, Y., Su, P., Chen, F. and Tang, Y. (2025) Thiophene-Doped Fully Conjugated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Peroxide Generation. CCS Chemistry, 2025, 1-14. [Google Scholar] [CrossRef
[20] Chen, Z., Wang, J., Hao, M., Xie, Y., Liu, X., Yang, H., et al. (2023) Tuning Excited State Electronic Structure and Charge Transport in Covalent Organic Frameworks for Enhanced Photocatalytic Performance. Nature Communications, 14, Article No. 1106. [Google Scholar] [CrossRef] [PubMed]
[21] Qian, Y., Han, Y., Zhang, X., Yang, G., Zhang, G. and Jiang, H. (2023) Computation-Based Regulation of Excitonic Effects in Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalysis. Nature Communications, 14, Article No. 3083. [Google Scholar] [CrossRef] [PubMed]
[22] Tao, X., Wang, Z., Zhang, Q., Liu, N., Sun, Y., Niu, R., et al. (2023) Covalent Organic Framework Nanohydrogels. Journal of the American Chemical Society, 145, 25471-25477. [Google Scholar] [CrossRef] [PubMed]
[23] Thompson, C.M., Occhialini, G., McCandless, G.T., Alahakoon, S.B., Cameron, V., Nielsen, S.O., et al. (2017) Computational and Experimental Studies on the Effects of Monomer Planarity on Covalent Organic Framework Formation. Journal of the American Chemical Society, 139, 10506-10513. [Google Scholar] [CrossRef] [PubMed]
[24] Chen, H., Zhang, H., Chi, K. and Zhao, Y. (2024) Pyrimidine-Containing Covalent Organic Frameworks for Efficient Photosynthesis of Hydrogen Peroxide via One-Step Two Electron Oxygen Reduction Process. Nano Research, 17, 9498-9506. [Google Scholar] [CrossRef
[25] Wu, J., Zhang, Q. and Wang, F. (2024) Rational Design of Dibenzothiophene-S, S-Dioxide-Containing Conjugated Polymers for Highly Efficient Photosynthesis of Hydrogen Peroxide in Pure Water. Journal of Materials Chemistry A, 12, 4656-4665. [Google Scholar] [CrossRef
[26] Sun, H.H., Zhou, Z.B., Fu, Y., Qi, Q.Y., et al. (2024) Azobenzene‐Bridged Covalent Organic Frameworks Boosting Photocatalytic Hydrogen Peroxide Production from Alkaline Water: One Atom Makes a Significant Improvement. Angewandte Chemie, 136, e202409250. [Google Scholar] [CrossRef
[27] Zhou, Z.B., Tian, P.J., Yao, J., Lu, Y., et al. (2022) Toward Azo-Linked Covalent Organic Frameworks by Developing Linkage Chemistry via Linker Exchange. Nature Communications, 13, Article No. 2180. [Google Scholar] [CrossRef] [PubMed]
[28] Yue, J.Y., Song, L.P., Fan, Y.F., Pan, Z.X., et al. (2023) Thiophene‐Containing Covalent Organic Frameworks for Overall Photocatalytic H2O2 Synthesis in Water and Seawater. Angewandte Chemie International Edition, 62, e202309624. [Google Scholar] [CrossRef] [PubMed]
[29] Qian, C., Qi, Q., Jiang, G., Cui, F., Tian, Y. and Zhao, X. (2017) Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. Journal of the American Chemical Society, 139, 6736-6743. [Google Scholar] [CrossRef] [PubMed]
[30] Kandambeth, S., Biswal, B.P., Chaudhari, H.D., Rout, K.C., Kunjattu H., S., Mitra, S., et al. (2017) Selective Molecular Sieving in Self-Standing Porous Covalent-Organic-Framework Membranes. Advanced Materials, 29, Article 1603945. [Google Scholar] [CrossRef] [PubMed]
[31] Yang, S., Zhi, K., Zhang, Z., Kerem, R., Hong, Q., Zhao, L., et al. (2024) Nitrogen-Rich Triazine-Based Covalent Organic Frameworks as Efficient Visible Light Photocatalysts for Hydrogen Peroxide Production. Nanomaterials, 14, Article 643. [Google Scholar] [CrossRef] [PubMed]
[32] Jung, S., Senthil, R.A., Min, A., Kumar, A., Moon, C.J., Jeong, G.H., et al. (2024) Exploring IR-Doped NiFe-LDH Nanosheets via a Pulsed Laser for Oxygen Evolution Kinetics: in Situ Raman and DFT Insights. Journal of Materials Chemistry A, 12, 8694-8706. [Google Scholar] [CrossRef
[33] Sun, R., Yang, X., Hu, X., Guo, Y., Zhang, Y., Shu, C., et al. (2025) Unprecedented Photocatalytic Hydrogen Peroxide Production via Covalent Triazine Frameworks Constructed from Fused Building Blocks. Angewandte Chemie, 137, e202416350. [Google Scholar] [CrossRef
[34] Xu, M., Wei, C., Zhang, Y., Chen, J., Li, H., Zhang, J., et al. (2024) Coplanar Conformational Structure of Π-Conjugated Polymers for Optoelectronic Applications. Advanced Materials, 36, Article 2301671. [Google Scholar] [CrossRef] [PubMed]
[35] Zhang, Y., Pan, C., Bian, G., Xu, J., Dong, Y., Zhang, Y., et al. (2023) H2O2 Generation from O2 and H2O on a Near-Infrared Absorbing Porphyrin Supramolecular Photocatalyst. Nature Energy, 8, 361-371. [Google Scholar] [CrossRef
[36] Ma, S., Deng, T., Li, Z., Zhang, Z., Jia, J., Li, Q., et al. (2022) Photocatalytic Hydrogen Production on a Sp2-Carbon-Linked Covalent Organic Framework. Angewandte Chemie, 134, e202208919. [Google Scholar] [CrossRef
[37] Liu, F., Zhou, P., Hou, Y., Tan, H., Liang, Y., Liang, J., et al. (2023) Covalent Organic Frameworks for Direct Photosynthesis of Hydrogen Peroxide from Water, Air and Sunlight. Nature Communications, 14, Article No. 4344. [Google Scholar] [CrossRef] [PubMed]
[38] Zhou, P., Chen, H., Chao, Y., Zhang, Q., Zhang, W., Lv, F., et al. (2021) Single-Atom Pt-I3 Sites on All-Inorganic Cs2SNi6 Perovskite for Efficient Photocatalytic Hydrogen Production. Nature Communications, 12, Article No. 4412. [Google Scholar] [CrossRef] [PubMed]
[39] Guan, X., Li, H., Ma, Y., Xue, M., Fang, Q., Yan, Y., et al. (2019) Chemically Stable Polyarylether-Based Covalent Organic Frameworks. Nature Chemistry, 11, 587-594. [Google Scholar] [CrossRef] [PubMed]
[40] Vardhan, H., Rummer, G., Deng, A. and Ma, S. (2023) Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. Membranes, 13, Article 696. [Google Scholar] [CrossRef] [PubMed]
[41] Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L. and Hoi, S.C.H. (2021) Deep Learning for Person Re-Identification: A Survey and Outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 2872-2893. [Google Scholar] [CrossRef] [PubMed]
[42] Zhu, R., Liu, Y., Han, W., Feng, J., Zhang, J., Pang, H., et al. (2025) Three-Dimensional Covalent Organic Frameworks Based on Linear and Trigonal Linkers for High-Performance H2O2 Photosynthesis. Angewandte Chemie International Edition, 64, e202412890. [Google Scholar] [CrossRef] [PubMed]
[43] Bi, S., Meng, F., Wu, D. and Zhang, F. (2022) Synthesis of Vinylene-Linked Covalent Organic Frameworks by Monomer Self-Catalyzed Activation of Knoevenagel Condensation. Journal of the American Chemical Society, 144, 3653-3659. [Google Scholar] [CrossRef] [PubMed]
[44] Liu, Y., Wang, Y., Li, H., Guan, X., Zhu, L., Xue, M., et al. (2019) Ambient Aqueous-Phase Synthesis of Covalent Organic Frameworks for Degradation of Organic Pollutants. Chemical Science, 10, 10815-10820. [Google Scholar] [CrossRef] [PubMed]
[45] Chen, J., Zhu, Y. and Kaskel, S. (2020) Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angewandte Chemie International Edition, 60, 5010-5035. [Google Scholar] [CrossRef] [PubMed]
[46] Liu, J., Wang, S., Huang, T., Manchanda, P., Abou-Hamad, E. and Nunes, S.P. (2020) Smart Covalent Organic Networks (CONs) with “On-Off-On” Light-Switchable Pores for Molecular Separation. Science Advances, 6, eabb3188. [Google Scholar] [CrossRef] [PubMed]
[47] Liu, C., Liu, X., Chen, B., Li, Z., Ou, X., Lu, Y., et al. (2025) Squaric Acid-Based Zwitterionic Covalent Organic Framework Induces Triple Synergy for Boosted Hydrogen Peroxide Photosynthesis. Nature Communications, 16, Article No. 8941. [Google Scholar] [CrossRef