|
[1]
|
Hu, L., Pal, S., Nguyen, H., Bui, V. and Lin, H. (2020) Molecularly Engineering Polymeric Membranes for H2/CO2 Separation at 100-300 °c. Journal of Polymer Science, 58, 2467-2481. [Google Scholar] [CrossRef]
|
|
[2]
|
Cardoso, S.P., Azenha, I.S., Lin, Z., Portugal, I., Rodrigues, A.E. and Silva, C.M. (2017) Inorganic Membranes for Hydrogen Separation. Separation & Purification Reviews, 47, 229-266. [Google Scholar] [CrossRef]
|
|
[3]
|
Ma, J., Li, L., Wang, H., Du, Y., Ma, J., Zhang, X., et al. (2022) Carbon Capture and Storage: History and the Road Ahead. Engineering, 14, 33-43. [Google Scholar] [CrossRef]
|
|
[4]
|
Chuah, C., Lee, J. and Bae, T. (2020) Graphene-Based Membranes for H2 Separation: Recent Progress and Future Perspective. Membranes, 10, Article 336. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Xu, R., He, L., Li, L., Hou, M., Wang, Y., Zhang, B., et al. (2020) Ultraselective Carbon Molecular Sieve Membrane for Hydrogen Purification. Journal of Energy Chemistry, 50, 16-24. [Google Scholar] [CrossRef]
|
|
[6]
|
Robeson, L.M. (2008) The Upper Bound Revisited. Journal of Membrane Science, 320, 390-400. [Google Scholar] [CrossRef]
|
|
[7]
|
Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M. (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, Article 1230444. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sun, S., Li, S., Wang, S. and Chen, Y. (2024) Design and Development of Highly Selective and Permeable Membranes for H2/CO2 Separation—A Review. Chemical Engineering Journal, 494, Article 152972. [Google Scholar] [CrossRef]
|
|
[9]
|
Lombardo, S.J. and Bell, A.T. (1991) A Review of Theoretical Models of Adsorption, Diffusion, Desorption, and Reaction of Gases on Metal Surfaces. Surface Science Reports, 13, 3-72. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, M., He, F., Zhou, C., Dong, F., Yang, G., Zhou, W., et al. (2021) New Perovskite Membrane with Improved Sintering and Self-Reconstructed Surface for Efficient Hydrogen Permeation. Journal of Membrane Science, 620, Article 118980. [Google Scholar] [CrossRef]
|
|
[11]
|
Wijmans, J.G. and Baker, R.W. (1995) The Solution-Diffusion Model: A Review. Journal of Membrane Science, 107, 1-21. [Google Scholar] [CrossRef]
|
|
[12]
|
Park, G.S. (1986) Transport Principles—Solution, Diffusion and Permeation in Polymer Membranes. In: Bungay, P.M., Lonsdale, H.K. and de Pinho, M.N., Eds., Synthetic Membranes: Science, Engineering and Applications, Springer Netherlands, 57-107. [Google Scholar] [CrossRef]
|
|
[13]
|
Bayati, B., Ghorbani, A., Ghasemzadeh, K., Iulianelli, A. and Basile, A. (2019) Study on the Separation of H2 from CO2 Using a ZIF-8 Membrane by Molecular Simulation and Maxwell-Stefan Model. Molecules, 24, Article 4350. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, K., Hu, S., Ban, Y., Zhou, Y., Cao, N., Zhao, M., et al. (2021) ZIF-L Membrane with a Membrane-Interlocked-Support Composite Architecture for H2/CO2 Separation. Science Bulletin, 66, 1869-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Abdul Hamid, M.R., Qian, Y., Wei, R., Li, Z., Pan, Y., Lai, Z., et al. (2021) Polycrystalline Metal-Organic Framework (MOF) Membranes for Molecular Separations: Engineering Prospects and Challenges. Journal of Membrane Science, 640, Article 119802. [Google Scholar] [CrossRef]
|
|
[16]
|
Liu, H., Cong, S., Yan, X., Wang, X., Gao, A., Wang, Z., et al. (2023) Honeycomb-Like Hofmann-Type Metal-Organic Framework Membranes for C2H2/CO2 and H2/CO2 Separation. Journal of Membrane Science, 669, Article 121282. [Google Scholar] [CrossRef]
|
|
[17]
|
Ji, T., Sun, Y., Liu, Y., Li, M., Wang, F., Liu, L., et al. (2020) Facile in Situ Hydrothermal Synthesis of Layered Zirconium Phenylphosphonate Molecular Sieve Membranes with Optimized Microstructure and Superb H2/CO2 Selectivity. ACS Applied Materials & Interfaces, 12, 15320-15327. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, Y., Yan, J., Gao, Y., Ji, T., Chen, S., Wang, C., et al. (2023) Fabrication of Highly Oriented Ultrathin Zirconium Metal‐Organic Framework Membrane from Nanosheets Towards Unprecedented Gas Separation. Angewandte Chemie International Edition, 62, e202216697. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dechnik, J., Gascon, J., Doonan, C.J., Janiak, C. and Sumby, C.J. (2017) Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56, 9292-9310. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kamble, A.R., Patel, C.M. and Murthy, Z.V.P. (2021) A Review on the Recent Advances in Mixed Matrix Membranes for Gas Separation Processes. Renewable and Sustainable Energy Reviews, 145, Article 111062. [Google Scholar] [CrossRef]
|
|
[21]
|
Hu, L., Bui, V.T., Pal, S., Guo, W., Subramanian, A., Kisslinger, K., et al. (2022) In Situ Growth of Crystalline and Polymer‐Incorporated Amorphous ZIFs in Polybenzimidazole Achieving Hierarchical Nanostructures for Carbon Capture. Small, 18, Article 2201982. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wu, X., Tian, Z., Wang, S., Peng, D., Yang, L., Wu, Y., et al. (2017) Mixed Matrix Membranes Comprising Polymers of Intrinsic Microporosity and Covalent Organic Framework for Gas Separation. Journal of Membrane Science, 528, 273-283. [Google Scholar] [CrossRef]
|
|
[23]
|
Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q. and Zhang, H. (2018) Two-Dimensional Metal-Organic Framework Nanosheets: Synthesis and Applications. Chemical Society Reviews, 47, 6267-6295. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Peng, Y., Li, Y., Ban, Y., Jin, H., Jiao, W., Liu, X., et al. (2014) Metal-Organic Framework Nanosheets as Building Blocks for Molecular Sieving Membranes. Science, 346, 1356-1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, F., Wu, M., Wang, Y., Ashtiani, S. and Jiang, H. (2018) A Go-Induced Assembly Strategy to Repair MOF Nanosheet-Based Membrane for Efficient H2/CO2 Separation. ACS Applied Materials & Interfaces, 11, 990-997. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Song, H., Peng, Y., Wang, C., Shu, L., Zhu, C., Wang, Y., et al. (2023) Structure Regulation of MOF Nanosheet Membrane for Accurate H2/CO2 Separation. Angewandte Chemie International Edition, 62, e202218472. [Google Scholar] [CrossRef] [PubMed]
|