小檗碱在牙周炎治疗中的研究进展
Research Progress of Berberine in the Treatment of Periodontitis
DOI: 10.12677/md.2026.161025, PDF, HTML, XML,   
作者: 廖 洋, 曾 欢*:重庆医科大学附属口腔医院儿童口腔科,重庆
关键词: 牙周炎小檗碱抗炎骨代谢抗菌Periodontitis Berberine Anti-Inflammation Bone Metabolism Antibacterial Activity
摘要: 牙周炎是一种常见的口腔慢性炎症,导致牙周组织破坏和牙齿丢失,其中牙周微生物群和宿主免疫反应共同参与组织破坏。小檗碱(Berberine)是一种主要提取自中国传统中药黄连的天然生物碱。目前,多项研究表明,小檗碱可以通过多种途径调节免疫,发挥良好的抗炎作用。在骨代谢方面,小檗碱通过影响多条信号通路抑制骨吸收并促进骨形成;在抗菌作用方面,小檗碱具有广谱抗菌性,并且能有效抑制牙周致病菌的生长。本文将从抗炎、促成骨、抗菌等三个方面对小檗碱的作用机制作一综述,并对其在牙周炎治疗中的进展进行总结,旨在为牙周炎的治疗提供新的思路。
Abstract: Periodontitis is a common chronic oral inflammatory disease that leads to the destruction of periodontal tissues and tooth loss, in which the periodontal microbiota and host immune response jointly participate in tissue damage. Berberine is a natural alkaloid mainly extracted from Coptis chinensis, a traditional Chinese medicinal herb. At present, numerous studies have shown that berberine can regulate immunity through multiple pathways and exert a favorable anti-inflammatory effect. In terms of bone metabolism, berberine inhibits bone resorption and promotes bone formation by modulating multiple signaling pathways. In terms of antibacterial activity, berberine has a broad-spectrum antibacterial property and can effectively inhibit the growth of periodontal pathogenic bacteria. This paper reviews the mechanism of action of berberine from three aspects: anti-inflammation, osteogenesis promotion and antibacterial activity, and summarizes its research progress in the treatment of periodontitis, aiming to provide new ideas for the clinical treatment of periodontitis.
文章引用:廖洋, 曾欢. 小檗碱在牙周炎治疗中的研究进展[J]. 医学诊断, 2026, 16(1): 182-187. https://doi.org/10.12677/md.2026.161025

1. 前言

牙周炎是最常见的口腔慢性炎症疾病之一,会引起牙周支持组织的逐渐破坏、吸收,最终导致牙齿的移位、松动甚至脱落。目前,牙周炎仍然是引起我国居民牙齿丢失的主要原因[1]。牙周炎的发生与进展是一个受多因素影响的复杂过程,牙周微生物群的变化以及宿主的免疫反应相结合,共同参与了牙周支持组织的破坏[2]。目前,有效地移除病原微生物并缓解组织的炎症状态仍然是临床上进行牙周基础治疗的核心观念,然而复杂的牙周袋解剖形态往往难以使病原微生物得到彻底的消除,且受到破坏的牙周组织也难以实现再生[3]。因此,目前亟待寻找到一种既能够起到辅助清除病原微生物、控制炎症反应,又能够促进牙周组织再生的治疗方式。

小檗碱(Berberine)又名黄连素,是一种天然的苄基异喹啉生物碱[4]。其具有调节菌群、降血脂、降血糖、促成骨、抗炎、抗癌等多种药理活性[5],在各个领域被广泛研究。在我国治疗牙周炎的传统中药方剂,如金栀洁龈含漱液、黄连解毒汤加味中,都有小檗碱的存在。近年来,亦有学者尝试将小檗碱搭载于水凝胶体系中,通过牙周袋给药的方式进行治疗,并观察到较好的抗炎以及促成骨效果[6]。因为小檗碱的药理性质十分符合学界对牙周炎治疗的期待,本文将从抗炎、抗菌、促成骨3个方面探讨小檗碱在各个领域的应用以及其在牙周炎治疗中的进展。

2. 小檗碱的抗炎作用

小檗碱的抗炎作用已经在关节炎、支气管炎、糖尿病等多个领域得到了验证[7]-[9]。在过去的几年中,小檗碱的抗炎性质常被运用于针对牙周炎的治疗。有研究指出,小檗碱可以通过抑制MMP-2以及MMP-9的活性来减轻牙周组织的破坏程度[10]。Jia及其同事以120 mg/kg/天的剂量并持续7周给药,发现可以显著改善牙周炎大鼠模型中的牙槽骨吸收[11]。Gu及其同事的一项针对牙周炎大鼠的体内研究表明,小檗碱可以上调GRP30蛋白水平,显著降低磷酸化的p38MAPK和磷酸化的NF-κB 65水平[12]。Wang等人将小檗碱搭载于水凝胶材料中,并发现小檗碱可以通过控制PI3K/AKT信号通路抑制炎症因子的产生[6]

小檗碱的抗炎作用与巨噬细胞息息相关。巨噬细胞拥有多种不同的表型,而不同表型的巨噬细胞也行使着不同的功能。M1型的巨噬细胞通过吞噬作用促进病原体消除,刺激多形核中性粒细胞和T细胞的活化,并产生促炎细胞因子,如IL-1β、IL-6和TNF-α;而M2巨噬细胞通过分泌抗炎介质参与炎症消退和组织再生[13] [14]。多项研究表明,小檗碱可以通过多条信号通路促进巨噬细胞向抗炎M2型极化。Kou等人设计了一种针对M1型巨噬细胞的靶向纳米小檗碱递送平台,发现小檗碱可以通过ROS清除作用以及对NF-κB通路的抑制促进M1型巨噬细胞向M2抗炎型极化[15]。Yu等人发现,小檗碱可以通过上调p-AMPK的表达,并抑制HIF-1α的表达,改变巨噬细胞的能量代谢状态,促使巨噬细胞由M1向M2转化[16]。Sun等人在体外细胞模型中发现,小檗碱显著下调了NLRP3炎性小体及其相关分子在巨噬细胞中的表达,从而减轻了NLRP3炎性小体激活诱导的巨噬细胞M1极化和炎症[17]。除了直接作用于巨噬细胞,小檗碱还可以通过间接方式调节巨噬细胞的功能。Wang等人首先利用小檗碱处理人骨髓间充质干细胞,收集条件培养基(BBR-HB-CM),发现BBR-HB-CM可以抑制p85/AKT/mTOR通路活性,增强巨噬细胞的自噬,促进巨噬细胞向M2型极化,并增强胞葬作用[18]

近年来,许多学者在探索小檗碱的具体抗炎机制和作用靶点方面作出了努力。Wei等人运用化学蛋白质组学技术,首次鉴定出EIF2AK2、eEF1A1、PRDX3和VPS4B为小檗碱发挥协同抗炎作用的直接靶点。其中,EIF2AK2与BBR亲和力最强,BBR通过抑制EIF2AK2二聚化而非酶活性,选择性调控JNK、NF-κB、AKT和NLRP3等下游通路,且安全性良好。并且,在EIF2AK2基因敲除小鼠中,BBR对IL-1β、IL-6、IL-18和TNF-α分泌的抑制作用显著减弱,证实其抗炎功效依赖EIF2AK2 [19]

综上,现有研究明确了小檗碱具有广泛且显著的抗炎活性。同时纳米递送系统和水凝胶的应用进一步提升了其生物利用度,为小檗碱在牙周炎相关疾病中的临床应用提供了扎实的机制支撑和靶点依据。

3. 小檗碱对骨代谢的影响

小檗碱可以通过多条信号通路减少破骨细胞的形成并抑制其活性,为治疗和预防牙周炎导致的牙槽骨吸收创造潜在的突破口。Zhou等人通过体外实验验证,硫酸小檗碱能显著抑制破骨细胞的形成,其机制为小檗碱能抑制破骨细胞标记基因-NFATc1、抗酒石酸酸性磷酸酶(Tartrate resistant acid phosphatase, TRAcP)和液泡型H + ⅣATPase V0亚基D2 (Vacuolar-type H + ⅣAT-Pase V0 subunit D2, V-ATPase d2)等的表达,进而抑制了RANKL诱导的NF-κB和NFAT活性受体发挥作用[20]。Hu等人证明了低至0. 2 μM的小檗碱就可以显著抑制RANKL的表达,进而抑制NF-κB和Akt的激活,阻断破骨细胞生成和存活[21]。Li等人发现,小檗碱抑制了RANKL诱导的MAPKs (p38和ERK)的激活,从而下调了NFATc1调控的破骨细胞标记基因TRAP、CTR和CTSK的产生[22]

除了对破骨活性的抑制,小檗碱还可以通过多条途径起到促进骨形成的效果。Nam等人发现,小檗碱的一种化合物可以提高BMP4诱导的ALP和BSP启动子的转录活性,提高成骨细胞的成骨活性[23]。此外,小檗碱可以通过p38 MAPKs通路激活关键成骨Runt相关转录因2 (Runx2)的表达,从而促进骨再生[24]。通过激活经典的Wnt/β-catenin信号通路,小檗碱可以促进骨髓间充质干细胞和根尖乳头干细胞等干细胞的成骨分化[25] [26]。在一项体外研究中,Cui等人发现,小檗碱可以通过激活根尖乳头干细胞中的Wnt/β-catenin,上调其成骨表达并促进未成熟牙齿根尖周炎的牙根修复[27]。Xin等人通过体外实验发现黄连素可能通过激活EGFR-MAPK-Runx2信号通路促进人牙髓间充质细胞的成骨分化,并抑制其成脂分化[28]

在炎症微环境中,小檗碱仍可维持良好的促成骨活性:在糖尿病患者牙周组织中,高糖高脂环境会导致ROS过量产生、线粒体功能障碍,进而使间充质干细胞的成骨能力受损。Ming等人构建了负载小檗碱的SF/PCL纳米纤维膜(Ber@SF/PCL)并优化,发现小檗碱可通过恢复自噬流,抑制二型糖尿病微环境中间充质干细胞ROS的过量产生、线粒体功能障碍和细胞凋亡,有效地改善成骨分化能力。同时,该纤维膜在糖尿病大鼠牙槽缺损模型上也表现出良好的促骨组织再生能力,这进一步肯定了小檗碱在牙周炎治疗领域的应用前景[29]

4. 小檗碱的抗菌作用

小檗碱作为异喹啉类生物碱中的一员,具有较广的抗菌谱[30]。众多研究指出,小檗碱作用于细菌后可降低细胞膜上钠钾泵的活力,破坏细菌的细胞膜结构,抑制细菌的胶原酶活性,完全破坏蛋白质或部分降解蛋白质,以及通过影响DNA拓扑异构酶的活性来抑制DNA的合成或抑制RNA转录破坏生物膜中蛋白质的结合,从而中断其稳定性,最终导致细菌死亡[31]-[33]。对于大部分牙周炎致病菌如牙龈卟啉单胞菌、伴放线菌等,均有较好的抑菌效果。一项研究揭示小檗碱能在不干扰正常口腔菌群的情况下,较强抑制伴放线杆菌、牙龈卟啉菌的生长,并且抑制伴放线杆菌的能力强于牙龈卟啉菌,提示小檗碱有望用于各型牙周炎的治疗,尤其青少年牙周炎[34]

在牙周炎治疗领域,小檗碱联合其他药物或材料同样能发挥良好的抗菌作用,可作为一种新型抗菌工具为牙周炎的治疗提供重要的临床参考价值,有望成为控制口腔微生物群的有前途的药物。当小檗碱与奥硝唑、四环素或多西环素等联合使用时,可对口腔中病原体的生长发挥协同抑制作用,有利于抑制牙周细菌,这为小檗碱有望作为口腔常规治疗药物提供了合理的理论基础[35]。柳玉梅等人研制出了具备良好温敏性能的小檗碱/壳聚糖/β-甘油磷酸钠温敏水凝胶,将小檗碱负载于水凝胶支架上,其缓释的小檗碱对牙龈卟啉单胞菌具有较好的抑制作用。小檗碱联合支架材料能协同发挥良好的抗菌效能,为该牙周炎的治疗方式提供新方向[36]

5. 总结

尽管小檗碱在抗炎、促成骨及抗菌领域的效果已被大量体外实验及体内研究验证,其调控骨代谢、抑制致病菌增殖的作用潜力也得到广泛认可,但将其应用于牙周炎治疗的专项研究仍处于初步探索阶段。目前,小檗碱针对牙周炎病理微环境的精准作用机制尚未完全阐明,尤其是在牙周复杂菌群交互、宿主免疫应答调控网络中,其与各信号通路的协同或拮抗效应、对牙周组织不同细胞亚群的特异性影响等关键科学问题,仍缺乏系统且深入的研究证据支持,亟需开展多维度、多层次的机制探究以完善理论体系。此外,小檗碱自身的药代动力学特性存在明显短板,其水溶性差、生物利用度偏低,且在体内易被快速代谢清除,导致其在靶组织难以达到有效治疗浓度,极大限制了其从基础研究向临床转化的进程。因此,如何通过制剂改良(如纳米载药系统、缓释剂型构建)、结构修饰或联合用药等策略,突破小檗碱生物利用度低、溶解度差等瓶颈,实现其在牙周局部的长效、高效富集,已成为当前研究中亟待解决的核心难题,也是推动小檗碱走向牙周炎临床治疗的关键突破口。

NOTES

*通讯作者。

参考文献

[1] Michaud, D.S., Fu, Z., Shi, J. and Chung, M. (2017) Periodontal Disease, Tooth Loss, and Cancer Risk. Epidemiologic Reviews, 39, 49-58.
https://pubmed.ncbi.nlm.nih.gov/28449041/
[2] Hathaway-Schrader, J.D. and Novince, C.M. (2021) Maintaining Homeostatic Control of Periodontal Bone Tissue. Periodontology 2000, 86, 157-187. [Google Scholar] [CrossRef] [PubMed]
[3] Sanz, M., Herrera, D., Kebschull, M., Chapple, I., Jepsen, S., Berglundh, T., et al. (2020) Treatment of Stage I-III Periodontitis—The EFP S3 Level Clinical Practice Guideline. Journal of Clinical Periodontology, 47, 4-60. [Google Scholar] [CrossRef] [PubMed]
[4] Li, T., Wang, P., Guo, W., Huang, X., Tian, X., Wu, G., et al. (2019) Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. ACS Nano, 13, 6770-6781. [Google Scholar] [CrossRef] [PubMed]
[5] Kong, Y., Li, L., Zhao, L., Yu, P. and Li, D. (2021) A Patent Review of Berberine and Its Derivatives with Various Pharmacological Activities (2016-2020). Expert Opinion on Therapeutic Patents, 32, 211-223. [Google Scholar] [CrossRef] [PubMed]
[6] Wang, C., Liu, C., Liang, C., Qu, X., Zou, X., Du, S., et al. (2023) Role of Berberine Thermosensitive Hydrogel in Periodontitis via PI3K/AKT Pathway in Vitro. International Journal of Molecular Sciences, 24, Article 6364. [Google Scholar] [CrossRef] [PubMed]
[7] Paudel, K.R., Panth, N., Manandhar, B., Singh, S.K., Gupta, G., Wich, P.R., et al. (2022) Attenuation of Cigarette-Smoke-Induced Oxidative Stress, Senescence, and Inflammation by Berberine-Loaded Liquid Crystalline Nanoparticles: In Vitro Study in 16HBE and RAW264.7 Cells. Antioxidants, 11, Article 873. [Google Scholar] [CrossRef] [PubMed]
[8] Jeong, H.W., Hsu, K.C., Lee, J., Ham, M., Huh, J.Y., Shin, H.J., et al. (2009) Berberine Suppresses Proinflammatory Responses through AMPK Activation in Macrophages. American Journal of Physiology-Endocrinology and Metabolism, 296, E955-E964. [Google Scholar] [CrossRef] [PubMed]
[9] Han, Y., Tian, M., Wang, X., Fan, D., Li, W., Wu, F., et al. (2020) Berberine Ameliorates Obesity-Induced Chronic Inflammation through Suppression of ER Stress and Promotion of Macrophage M2 Polarization at Least Partly via Downregulating LncRNA Gomafu. International Immunopharmacology, 86, Article ID: 106741. [Google Scholar] [CrossRef] [PubMed]
[10] Tu, H., Fu, M.M.J., Kuo, P., Chin, Y., Chiang, C., Chung, C., et al. (2013) Berberine’s Effect on Periodontal Tissue Degradation by Matrix Metalloproteinases: An in Vitro and in Vivo Experiment. Phytomedicine, 20, 1203-1210. [Google Scholar] [CrossRef] [PubMed]
[11] Jia, X., Jia, L., Mo, L., Yuan, S., Zheng, X., He, J., et al. (2018) Berberine Ameliorates Periodontal Bone Loss by Regulating Gut Microbiota. Journal of Dental Research, 98, 107-116. [Google Scholar] [CrossRef] [PubMed]
[12] Gu, L., Ke, Y., Gan, J. and Li, X. (2021) Berberine Suppresses Bone Loss and Inflammation in Ligature-Induced Periodontitis through Promotion of the G Protein-Coupled Estrogen Receptor-Mediated Inactivation of the P38mapk/NF-κB Pathway. Archives of Oral Biology, 122, 104992. [Google Scholar] [CrossRef] [PubMed]
[13] Zhuang, Z., Yoshizawa-Smith, S., Glowacki, A., Maltos, K., Pacheco, C., Shehabeldin, M., et al. (2018) Induction of M2 Macrophages Prevents Bone Loss in Murine Periodontitis Models. Journal of Dental Research, 98, 200-208. [Google Scholar] [CrossRef] [PubMed]
[14] Muñoz, J., Akhavan, N.S., Mullins, A.P. and Arjmandi, B.H. (2020) Macrophage Polarization and Osteoporosis: A Review. Nutrients, 12, Article 2999. [Google Scholar] [CrossRef] [PubMed]
[15] Kou, L., Huang, H., Tang, Y., Sun, M., Li, Y., Wu, J., et al. (2022) Opsonized Nanoparticles Target and Regulate Macrophage Polarization for Osteoarthritis Therapy: A Trapping Strategy. Journal of Controlled Release, 347, 237-255. [Google Scholar] [CrossRef] [PubMed]
[16] Yu, Y., Cai, W., Zhou, J., Lu, H., Wang, Y., Song, Y., et al. (2020) Anti-Arthritis Effect of Berberine Associated with Regulating Energy Metabolism of Macrophages through AMPK/HIF-1α Pathway. International Immunopharmacology, 87, Article ID: 106830. [Google Scholar] [CrossRef] [PubMed]
[17] Sun, J., Zeng, Q., Wu, Z., Huang, L., Sun, T., Ling, C., et al. (2024) Berberine Inhibits NLRP3 Inflammasome Activation and Proinflammatory Macrophage M1 Polarization to Accelerate Peripheral Nerve Regeneration. Neurotherapeutics, 21, e00347. [Google Scholar] [CrossRef] [PubMed]
[18] Wang, R., Wang, T., Chen, Z., Jiang, J., Du, Y., Yuan, H., et al. (2025) Bioactive Materials from Berberine-Treated Human Bone Marrow Mesenchymal Stem Cells Accelerate Tooth Extraction Socket Healing through the Jaw Vascular Unit. Science China Life Sciences, 68, 1025-1041. [Google Scholar] [CrossRef] [PubMed]
[19] Wei, W., Zeng, Q., Wang, Y., Guo, X., Fan, T., Li, Y., et al. (2023) Discovery and Identification of EIF2AK2 as a Direct Key Target of Berberine for Anti-Inflammatory Effects. Acta Pharmaceutica Sinica B, 13, 2138-2151. [Google Scholar] [CrossRef] [PubMed]
[20] Zhou, L., Song, F., Liu, Q., Yang, M., Zhao, J., Tan, R., et al. (2015) Berberine Sulfate Attenuates Osteoclast Differentiation through RANKL Induced NF-κB and NFAT Pathways. International Journal of Molecular Sciences, 16, 27087-27096. [Google Scholar] [CrossRef] [PubMed]
[21] He, X., Zhang, L., Zhang, C., Zhao, C., Li, H., Zhang, L., et al. (2017) Berberine Alleviates Oxidative Stress in Rats with Osteoporosis through Receptor Activator of NF-κB/Receptor Activator of NF-κB Ligand/Osteoprotegerin (RANK/RANKL/ OPG) Pathway. Biomolecules and Biomedicine, 17, 295-301. [Google Scholar] [CrossRef] [PubMed]
[22] Li, H., Wang, J., Sun, Q., Chen, G., Sun, S., Ma, X., et al. (2018) Jatrorrhizine Hydrochloride Suppresses Rankl-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. International Journal of Molecular Sciences, 19, Article 3698. [Google Scholar] [CrossRef] [PubMed]
[23] Nam, S.W., Kim, S.H. and Han, Y. (2020) Discovery and Development of Berberine Derivatives as Stimulants of Osteoblast Differentiation. Biochemical and Biophysical Research Communications, 527, 110-116. [Google Scholar] [CrossRef] [PubMed]
[24] Zhou, R., Chen, F., Liu, H., Zhu, X., Wen, X., Yu, F., Shang, G., Qi, S. and Xu, Y. (2021) Berberine Ameliorates the LPS-Induced Imbalance of Osteogenic and Adipogenic Differentiation in Rat Bone Marrow-Derived Mesenchymal Stem cells. Molecular Medicine Reports, 23, Article 350
https://pubmed.ncbi.nlm.nih.gov/33760123/
[25] Zhang, R., Yang, J., Wu, J., Xiao, L., Miao, L., Qi, X., et al. (2019) Berberine Promotes Osteogenic Differentiation of Mesenchymal Stem Cells with Therapeutic Potential in Periodontal Regeneration. European Journal of Pharmacology, 851, 144-150. [Google Scholar] [CrossRef] [PubMed]
[26] Tao, K., Xiao, D., Weng, J., Xiong, A., Kang, B. and Zeng, H. (2016) Berberine Promotes Bone Marrow-Derived Mesenchymal Stem Cells Osteogenic Differentiation via Canonical Wnt/β-Catenin Signaling Pathway. Toxicology Letters, 240, 68-80. [Google Scholar] [CrossRef] [PubMed]
[27] Cui, Y., Xie, J., Fu, Y., Li, C., Zheng, L., Huang, D., et al. (2020) Berberine Mediates Root Remodeling in an Immature Tooth with Apical Periodontitis by Regulating Stem Cells from Apical Papilla Differentiation. International Journal of Oral Science, 12, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
[28] Xin, B., Wu, Q., Jin, S., Luo, A., Sun, D. and Wang, F. (2019) Berberine Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells through Activating EGFR-MAPK-Runx2 Pathways. Pathology & Oncology Research, 26, 1677-1685. [Google Scholar] [CrossRef] [PubMed]
[29] Ming, Y., He, X., Zhao, Z., Meng, X., Zhu, Y., Tan, H., et al. (2024) Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. International Journal of Nanomedicine, 19, 10263-10282. [Google Scholar] [CrossRef] [PubMed]
[30] 葛莲, 程珊, 吕钦, 万升标. 小檗碱衍生物的合成及抗菌活性研究[J]. 中国海洋大学学报(自然科学版), 2024, 54(2): 106-113.
[31] Shen, Y., Zou, Y., Chen, X., Li, P., Rao, Y., Yang, X., et al. (2020) Antibacterial Self-Assembled Nanodrugs Composed of Berberine Derivatives and Rhamnolipids against Helicobacter Pylori. Journal of Controlled Release, 328, 575-586. [Google Scholar] [CrossRef] [PubMed]
[32] Olewnik-Kruszkowska, E., Gierszewska, M., Wrona, M., Richert, A. and Rudawska, A. (2022) Polylactide-Based Films Incorporated with Berberine—Physicochemical and Antibacterial Properties. Foods, 12, Article 91. [Google Scholar] [CrossRef] [PubMed]
[33] 包怡红, 张俊顺, 符群, 张海婷. 细叶小檗果小檗碱抑菌性能及机理[J]. 食品科学, 2020, 41(17): 29-34.
[34] Kosalec, I., Jembrek, M.J. and Vlainić, J. (2022) The Spectrum of Berberine Antibacterial and Antifungal Activities. In: Rai, M. and Kosalec, I., Eds., Promising Antimicrobials from Natural Products, Springer International Publishing, 119-132. [Google Scholar] [CrossRef
[35] 王希, 赖筱姮, 林菁. 奥硝唑联合小檗碱对牙周致病菌的体外抗菌活性试验[J]. 中国卫生标准管理, 2019, 10(19): 95-97.
[36] 柳玉梅, 宋亚, 吴娟, 梁惠强, 孙卫斌. 黄连素温敏水凝胶的制备及其对牙周致病菌的抑菌作用评价[J]. 口腔生物医学, 2020, 11(2): 97-101.