|
[1]
|
Dan, Y., Wang, Q., Hu, M., Zhao, D., Pei, G., Su, Y., et al. (2025) A Novel Radiative Cooling System with a Dissimilar Material-Based Compound Parabolic Concentrator for Mitigating Daytime Solar Radiation Impact. Renewable Energy, 244, Article 122622. [Google Scholar] [CrossRef]
|
|
[2]
|
Wang, F., Guo, J., Ke, M., Zheng, Y., Zheng, W. and Jiang, Y. (2025) Experimental Investigation on Cooling Performance in High Radiative Temperature of Energy-Storage Radiative Cooling Panel. Energy, 332, Article 137118. [Google Scholar] [CrossRef]
|
|
[3]
|
Huo, Z., Yang, K., Du, N., Wang, J., Li, J. and Chen, Y. (2025) Optimization of an Innovative Delignified Wood-Structured Phase Change Roof Integrated with Sky Radiation Cooling. Energy and Buildings, 348, Article 116445. [Google Scholar] [CrossRef]
|
|
[4]
|
Pandiyan, R. and Praveen Kumar, G. (2025) Experimental Analysis of a Sky Radiative Cooling System and Numerical Investigation of Its Integration with a Chiller and Energy Storage System for Sustainable Cooling Applications. Applied Thermal Engineering, 275, Article 126813. [Google Scholar] [CrossRef]
|
|
[5]
|
Guo, C., Tang, H., Kong, D., Chen, Q., Wu, X., Fan, F., et al. (2026) Sustainable Moisture-Induced Electricity from Wood through Asymmetric Hygroscopic Design and Radiative Cooling. Energy & Environmental Science, 19, 230-240. [Google Scholar] [CrossRef]
|
|
[6]
|
李杰峰. 基于分层级微球及其复合材料的辐射制冷性能研究[D]: [博士学位论文]. 北京: 北京交通大学, 2025.
|
|
[7]
|
Fu, Z., Jia, S., Wang, F., Yan, H. and Cheng, Z. (2025) Multispectral Stealth Structures for Simultaneous Visible-Infrared Stealth and Efficient Heat Dissipation. Journal of Quantitative Spectroscopy and Radiative Transfer, 337, Article 109397. [Google Scholar] [CrossRef]
|
|
[8]
|
Xin, Y., Wang, Q., Fu, C., Du, S., Hou, L., Wei, X., et al. (2024) Alumina Fiber Membrane Prepared by Electrospinning Technology for Passive Daytime Radiative Cooling. Advanced Functional Materials, 35, Article 2413813. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhang, Y. and Yu, J. (2022) Scalable and High-Performance Radiative Cooling Fabrics through an Electrospinning Method. ACS Applied Materials & Interfaces, 14, 45707-45715. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tian, H., Zhang, H., Zhu, Z., Dai, J., Qin, S., Xu, R., et al. (2025) Near-Unity Solar Reflectance and Mid-Infrared Transparency via Microwave-Engineered 2DY2O3 for Passive Radiative Cooling. Journal of Materials Chemistry A, 13, 39330-39339. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhang, Y., Du, X., Huangfu, J., Chen, K., Han, X., Xiao, C., et al. (2024) Self-Cleaning PTFE Nanofiber Membrane for Long-Term Passive Daytime Radiative Cooling. Chemical Engineering Journal, 490, Article 151831. [Google Scholar] [CrossRef]
|
|
[12]
|
Lin, C., Li, K., Li, M., Dopphoopha, B., Zheng, J., Wang, J., et al. (2024) Pushing Radiative Cooling Technology to Real Applications. Advanced Materials, 37, Article 2409738. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, B., Zhang, R., Wu, Y., Wang, Y., Yu, T., Li, X., et al. (2024) Radiative Cooling and Protective Clothing through Lamination of Hierarchically Porous Membrane. Advanced Materials Technologies, 9, Article 2301808. [Google Scholar] [CrossRef]
|
|
[14]
|
Siegel, R. (1987) Radiative Cooling of a Solidifying Droplet Layer Including Absorption and Scattering. International Journal of Heat and Mass Transfer, 30, 1762-1765. [Google Scholar] [CrossRef]
|
|
[15]
|
Kang, J., Lee, C., Chung, H. and Bermel, P. (2025) Design Strategies, Manufacturing, and Applications of Radiative Cooling Technologies. Nanophotonics, 14, 2355-2395. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, R., Wang, S., Zhou, Z., Zhang, K., Wang, G., Chen, C., et al. (2025) Materials in Radiative Cooling Technologies. Advanced Materials, 37, Article 2401577. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhao, D., Aili, A., Zhai, Y., Xu, S., Tan, G., Yin, X., et al. (2019) Radiative Sky Cooling: Fundamental Principles, Materials, and Applications. Applied Physics Reviews, 6, Article 021306. [Google Scholar] [CrossRef]
|
|
[18]
|
Ali, R., Su, W., Ali, M., Akhtar, A., Usman, M. and Khan, Z.U. (2025) High-Performance Metasurface Based Daytime Radiative Cooler Designed by Random Forest Method. Solar Energy Materials and Solar Cells, 286, Article 113591. [Google Scholar] [CrossRef]
|
|
[19]
|
Xu, Y., Wang, B. and Ye, J. (2025) Near-Infrared Violation of Kirchhoff’s Law of Thermal Radiation at Near-Zero Angle. International Journal of Thermal Sciences, 211, Article 109752. [Google Scholar] [CrossRef]
|
|
[20]
|
Yang, K., Wu, X., Zhou, L., Wu, P., Gereige, I. and Gan, Q. (2025) Towards Practical Applications of Radiative Cooling. Nature Reviews Clean Technology, 1, 235-254. [Google Scholar] [CrossRef]
|
|
[21]
|
Li, Z., Chen, Q., Song, Y., Zhu, B. and Zhu, J. (2020) Fundamentals, Materials, and Applications for Daytime Radiative Cooling. Advanced Materials Technologies, 5, Article 1901007. [Google Scholar] [CrossRef]
|
|
[22]
|
Bian, Y., Chen, Y. and Zhang, Y. (2025) Integrated Measurement of Infrared Emissivity and Thermal Irradiance Reflectivity of Fabrics by Using Dual Light Sources with Two Different Powers. Thermal Science and Engineering Progress, 59, Article 103213. [Google Scholar] [CrossRef]
|
|
[23]
|
Xu, R., Zhu, Z., Zhang, H., Fan, W., Guan, T., Wei, Y., et al. (2025) Synergistic Material-Structure Engineering for Mid‐Infrared Thermal Management in Textiles. Small, 21, e09257. [Google Scholar] [CrossRef]
|
|
[24]
|
Hu, Q., Tan, R., Qin, F., Wang, J., Zhang, Z., Xue, P., et al. (2026) Advanced Luminescent Metamaterials with Porous Structures and Rare Earth Phosphors for Efficient Passive Daytime Radiative Cooling and Energy Saving. Materials Today Energy, 56, Article 102187. [Google Scholar] [CrossRef]
|
|
[25]
|
Chen, H., Liu, X., Liu, J., Wang, F. and Wang, C. (2025) Radiative Cooling Applications toward Enhanced Energy Efficiency: System Designs, Achievements, and Perspectives. The Innovation, 6, Article 100999. [Google Scholar] [CrossRef]
|
|
[26]
|
Zhang, Y. and Yu, J. (2021) In Situ Formation of SiO2 Nanospheres on Common Fabrics for Broadband Radiative Cooling. ACS Applied Nano Materials, 4, 11260-11268. [Google Scholar] [CrossRef]
|
|
[27]
|
Han, M., Ren, S., Ge, C., Fang, J., Wang, H. and Lin, T. (2025) Polyamide 6-Al2O3 Nanoparticle Composite Nanofiber Membranes with High Solar Reflectivity and Human Radiation Transmittance for Passive Human Body Cooling. Solar Energy Materials and Solar Cells, 279, Article 113270. [Google Scholar] [CrossRef]
|
|
[28]
|
Long, B., Liu, C., Yang, Z., Gao, Q. and Gao, C. (2025) Flexible Radiative Cooling Textiles Based on Bark‐Like SA-Al2O3@TiO2 Fibers for Personal Thermal Management. Journal of Applied Polymer Science, 142, e57905. [Google Scholar] [CrossRef]
|
|
[29]
|
Yang, C., Sun, X., Hu, H., Zhang, K., Ni, Y., Shang, S., et al. (2022) Scalable Fabrication of PVDF/SiO2-PTFE Fiber Membrane for Effective Daytime Radiative Cooling. Materials Letters, 320, Article 132372. [Google Scholar] [CrossRef]
|
|
[30]
|
Lv, C., Zu, M., Xie, D., Yan, F., Li, M. and Cheng, H. (2020) 4A Zeolite Based Daytime Passive Radiative Cooling Material. Infrared Physics & Technology, 107, Article 103342. [Google Scholar] [CrossRef]
|
|
[31]
|
Xu, J., Wan, R., Xu, W., Ma, Z., Cheng, X., Yang, R., et al. (2022) Colored Radiative Cooling Coatings Using Phosphor Dyes. Materials Today Nano, 19, Article 100239. [Google Scholar] [CrossRef]
|
|
[32]
|
Wang, H., Xue, C., Ma, C., Jin, X., Huang, M., Wu, Y., et al. (2024) Durable and Scalable Superhydrophobic Colored Composite Coating for Subambient Daytime Radiative Cooling. ACS Sustainable Chemistry & Engineering, 12, 1681-1693. [Google Scholar] [CrossRef]
|
|
[33]
|
Wang, C., Chen, H. and Wang, F. (2024) Passive Daytime Radiative Cooling Materials toward Real-World Applications. Progress in Materials Science, 144, Article 101276. [Google Scholar] [CrossRef]
|
|
[34]
|
Raman, A.P., Anoma, M.A., Zhu, L., Rephaeli, E. and Fan, S. (2014) Passive Radiative Cooling Below Ambient Air Temperature under Direct Sunlight. Nature, 515, 540-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Lee, G.J., Kim, Y.J., Kim, H.M., Yoo, Y.J. and Song, Y.M. (2018) Colored, Daytime Radiative Coolers with Thin‐Film Resonators for Aesthetic Purposes. Advanced Optical Materials, 6, Article 1800707. [Google Scholar] [CrossRef]
|
|
[36]
|
Du, Y., Chen, Y., Yang, X., Liu, J., Liang, Y., Chao, Y., et al. (2024) Hybrid Passive Cooling: Towards the Next Breakthrough of Radiative Sky Cooling Technology. Journal of Materials Chemistry A, 12, 21490-21514. [Google Scholar] [CrossRef]
|
|
[37]
|
Hu, W., Tan, X., Yang, X., Qi, G., Chen, S., Li, S., et al. (2024) A Superhydrophobic Transparent Radiative Cooling Film Exhibits Excellent Resistance to Acid and Alkali as Well as Remarkable Robustness. Optical Materials, 149, Article 114995. [Google Scholar] [CrossRef]
|
|
[38]
|
Li, B., Cao, B., Song, R., Zhong, Y., Chen, C., Hu, H., et al. (2023) Low-Cost and Scalable Sub-Ambient Radiative Cooling Porous Films. Journal of Photonics for Energy, 13, Article 015501. [Google Scholar] [CrossRef]
|
|
[39]
|
Yang, M., Zeng, Y., Du, Q., Sun, H., Yin, Y., Yan, X., et al. (2024) Enhanced Radiative Cooling with Janus Optical Properties for Low-Temperature Space Cooling. Nanophotonics, 13, 629-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gangisetty, G. and Zevenhoven, R. (2023) A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights. Energies, 16, Article 1975. [Google Scholar] [CrossRef]
|
|
[41]
|
Fu, J., Yu, J., Hu, Z., Dong, X. and Wang, Y. (2025) Micro-Structured Nano-PE/PDMS Porous Coating with Radiative Cooling and Self-Cleaning Properties for Various Textiles. Solar Energy Materials and Solar Cells, 293, Article 113836. [Google Scholar] [CrossRef]
|
|
[42]
|
Yang, G., Liu, W., Yao, W., Wang, S., Zhang, M., Su, K., et al. (2025) Oxidatively Modified Polyphenylene Sulfide and Polytetrafluoroethylene Composite Membrane for Durable Daytime Radiative Cooling. Chemical Engineering Journal, 510, Article 161629. [Google Scholar] [CrossRef]
|
|
[43]
|
Mao, J., Tan, X., Hu, W., Shi, C., Zhou, F. and Tsamis, A. (2024) Simple Preparation of PVDF Composite Flexible Film with Transparent, Self-Cleaning and Radiative Cooling Properties. RSC Advances, 14, 36656-36666. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, N., Wei, L., You, M., Chen, M., Li, H., Liu, H., et al. (2023) Hierarchically Structural TiO2-PVDF Fiber Film with Particle-Enhanced Spectral Performance for Radiative Sky Cooling. Solar Energy, 259, 41-48. [Google Scholar] [CrossRef]
|
|
[45]
|
Li, X., Ding, Z., Kong, L., Fan, X., Li, Y., Zhao, J., et al. (2023) Recent Progress in Organic-Based Radiative Cooling Materials: Fabrication Methods and Thermal Management Properties. Materials Advances, 4, 804-822. [Google Scholar] [CrossRef]
|
|
[46]
|
Cai, C., Wang, Y., Wu, X., Cai, W., Wei, Z. and Fu, Y. (2024) An Engineered Superdurable Cellulosic Radiative Cooling—Power Generation Wearable Metafabric. Chemical Engineering Journal, 493, Article 152599. [Google Scholar] [CrossRef]
|
|
[47]
|
Wainstein, D., Kovalev, A., Vakhrushev, V., Gago, R. and Endrino, J.L. (2018) Interconnections between Electronic Structure and Optical Properties of Multilayer Nanolaminate TiALN/Ag and Al2O3/Ag Coatings. Coatings, 8, Article 290. [Google Scholar] [CrossRef]
|
|
[48]
|
Ovchinnikov, V. (2015) Reflection from Disordered Silver Nanoparticles on Multilayer Substrate. Sensors & Transducers, 193, 170-178.
|
|
[49]
|
Jia, H., Zhang, J., Hou, Y., Pan, Y., Liu, C., Shen, C., et al. (2024) Bio‐Mass Radiative Cooling Materials: Progress and Prospects. Advanced Sustainable Systems, 9, Article 2400773. [Google Scholar] [CrossRef]
|
|
[50]
|
Han, T., Zhou, Z., Du, Y., Wang, W., Wang, C., Yang, X., et al. (2024) Advances in Radiative Sky Cooling Based on the Promising Electrospinning. Renewable and Sustainable Energy Reviews, 200, Article 114533. [Google Scholar] [CrossRef]
|
|
[51]
|
Zhu, H., Zhou, Y. and Zhan, Y. (2024) High-Performance Non-Contact Radiative Cooling Enabled by Solar Reflectance and Infrared Transparent Porous Poly (4-Methyl-Pentene) Film. 2024 International Conference on Optoelectronic Information and Optical Engineering (OIOE 2024), Kunming, 8-10 March 2024, 413-420. [Google Scholar] [CrossRef]
|
|
[52]
|
Meng, X., Zhao, Q., Chen, Z., Li, Q. and Chen, X. (2024) A Janus Film Coupling Radiative Cooling and Heating for All-Day Active/Passive Personal Thermal Management. Materials Today Physics, 46, Article 101511. [Google Scholar] [CrossRef]
|
|
[53]
|
Li, L., Liu, G., Zhang, Q., Zhao, H., Shi, R., Wang, C., et al. (2024) Porous Structure of Polymer Films Optimized by Rationally Tuning Phase Separation for Passive All-Day Radiative Cooling. ACS Applied Materials & Interfaces, 16, 6504-6512. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Atiganyanun, S. and Kumnorkaew, P. (2023) Effects of Pigment Volume Concentration on Radiative Cooling Properties of Acrylic-Based Paints with Calcium Carbonate and Hollow Silicon Dioxide Microparticles. International Journal of Sustainable Energy, 42, 612-626. [Google Scholar] [CrossRef]
|
|
[55]
|
Liu, J., Zhang, Y., Zhang, D., Jiao, S., Zhang, Z. and Zhou, Z. (2020) Model Development and Performance Evaluation of Thermoelectric Generator with Radiative Cooling Heat Sink. Energy Conversion and Management, 216, Article 112923. [Google Scholar] [CrossRef]
|
|
[56]
|
Sun, X., Sun, Y., Zhou, Z., Alam, M.A. and Bermel, P. (2017) Radiative Sky Cooling: Fundamental Physics, Materials, Structures, and Applications. Nanophotonics, 6, 997-1015. [Google Scholar] [CrossRef]
|
|
[57]
|
Cai, C., Zhao, X., Miao, C., Tian, X., Xie, F., Luo, F., et al. (2025) Bioinspired Durable Daytime Radiative Cooling Wood: Realizing Outdoor Longtime Use. Nano Letters, 25, 4369-4378. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, P., Qin, M., Jia, K., Usman, A., Zhang, J., Shen, Z., et al. (2025) High-Efficiency and Scalable Cooling Solution for Parked Cars: Coupling Radiative Cooling and Latent Heat Storage. ACS Materials Letters, 7, 2213-2220. [Google Scholar] [CrossRef]
|
|
[59]
|
Mohsenpour, M., Salimi, M., Kermani, A. and Amidpour, M. (2025) Enhanced Ensemble Learning-Based Uncertainty and Sensitivity Analysis of Ventilation Rate in a Novel Radiative Cooling Building. Heliyon, 11, e41572. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Chen, Y., Mo, Q., Dai, Y., Yang, D., Yue, X., Qiu, F., et al. (2025) Reversible Thermochromic Cellulose-Based Agricultural Film with Radiation Cooling for Agricultural Cultivation. International Journal of Biological Macromolecules, 306, Article 141628. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Li, Y., Zhang, X., Chen, Y., Zhang, S., Liu, Y., Yu, D., et al. (2025) Polar Bear Fur-Inspired Hollow Nanofibers as a Thermal Insulating Material for Building Radiation Cooling. Renewable Energy, 250, Article 123315. [Google Scholar] [CrossRef]
|
|
[62]
|
Liu, J., Xie, L., Wu, H., Zhang, G., Fang, C. and Gu, J. (2024) Exploring Energy-Saving Performance of Radiative Cooling Roofs with a Transient Heat Transfer Model. Journal of Building Engineering, 88, Article 109174. [Google Scholar] [CrossRef]
|
|
[63]
|
Mokhtari, R. and Ghasempour, R. (2023) Feasibility Study of Integration of Radiative Cooling and Hydronic Radiant System for Free Cooling of Single-Family Houses. Applied Thermal Engineering, 220, Article 119629. [Google Scholar] [CrossRef]
|
|
[64]
|
Lin, C., Wang, Y., Zhao, Z., Lin, X., Li, R., Zheng, Z., et al. (2024) Comprehensive Investigation of Daytime Radiative Cooling Technology for Sustainable Grain Storage: A Combined Approach of Field Measurement and CFD Simulations. Building and Environment, 265, Article 111982. [Google Scholar] [CrossRef]
|
|
[65]
|
Xu, W., Gong, S., Wang, N., Zhao, W., Yin, H., Yang, R., et al. (2023) Temperature Reduction and Energy-Saving Analysis in Grain Storage: Field Application of Radiative Cooling Technology to Grain Storage Warehouse. Renewable Energy, 218, Article 119272. [Google Scholar] [CrossRef]
|
|
[66]
|
Zhao, B., Pei, G. and Raman, A.P. (2020) Modeling and Optimization of Radiative Cooling Based Thermoelectric Generators. Applied Physics Letters, 117, Article 163903. [Google Scholar] [CrossRef]
|
|
[67]
|
Kumari, S., Pandit, A., Bhende, A. and Rayalu, S. (2022) Thermal Management of Solar Panels for Overall Efficiency Enhancement Using Different Cooling Techniques. International Journal of Environmental Research, 16, Article No. 53. [Google Scholar] [CrossRef]
|
|
[68]
|
Fan, Y., Chen, H., Liu, X., Zhao, Y., Huang, Y., Liu, J., et al. (2025) Radiative Cooling in Outer Space: Fundamentals, Advances in Materials and Applications, and Perspectives. Advanced Materials, 37, e06795. [Google Scholar] [CrossRef] [PubMed]
|