|
[1]
|
姚瑶. 多种钢混合成纤维混凝土性能试验研究及经济价值分析[J]. 中国水泥, 2025(5): 35-38.
|
|
[2]
|
Arvizu-Montes, A., Guerrero-Bustamante, O., Polo-Mendoza, R. and Martinez-Echevarria, M.J. (2025) Mechanical Performance of Fiber-Reinforced Cement Mortars: A Comparative Study on the Effect of Synthetic and Natural Fibers. Buildings, 15, Article 2352. [Google Scholar] [CrossRef]
|
|
[3]
|
宋丹, 李晓英, 何依蔓. 不同类型天然纤维对混凝土力学性能的影响研究[J]. 混凝土, 2024(9): 101-104.
|
|
[4]
|
李明, 赵峰, 杨璞. 聚丙烯纤维增强混凝土的力学性能研究[J]. 交通世界, 2024(20): 48-50.
|
|
[5]
|
晏麓晖, 张玉武, 朱林. 超高分子量聚乙烯纤维混凝土的基本力学性能[J]. 国防科技大学学报, 2014, 36(6): 43-47.
|
|
[6]
|
杨杰. 碳纤维增强混凝土的力学性能提升及在高层建筑中的应用[J]. 佛山陶瓷, 2025, 35(8): 36-38.
|
|
[7]
|
葛辉, 张启志. 玻璃纤维对混凝土力学性能的影响[J]. 化学与粘合, 2021, 43(2): 121-123+128.
|
|
[8]
|
Shen, R., Wu, K., Mo, F., Luo, K., Yu, H., Fang, S., et al. (2025) Effect of Temperature Cycles on Calcined-Bauxite-Aggregate High-Strength-Steel-Fibre-Hybrid-Reinforced Rapid-Hardening Concrete: Quasi-Static and Dynamic Compressive Performance. Construction and Building Materials, 504, Article 144578. [Google Scholar] [CrossRef]
|
|
[9]
|
菅士良, 侯莉娜, 黄炜, 等. 纤维混凝土抗冻性能研究现状及展望[J]. 应用化工, 2023, 52(11): 3153-3157+3162.
|
|
[10]
|
葛晨, 杨鼎宜, 张军. 高温后纤维混凝土微结构与力学性能研究[J]. 混凝土, 2022(7): 53-58+66.
|
|
[11]
|
Vadivel, M., Selinaruby, G., Padmapriya, R. and Perumal, B. (2025) Experimental Research on Mechanical and Microstructural Characteristics of Hybrid Fiber Reinforced Concrete (HFRC). Scientific Reports, 15, Article No. 43189. [Google Scholar] [CrossRef]
|
|
[12]
|
虞洋, 何羽茜, 张娟, 等. 混杂纤维增强超高性能混凝土高温后性能研究[J]. 塑料科技, 2025, 53(8): 68-72.
|
|
[13]
|
Priyaanka, L.S., Ranjan, P.K., Hari, R., Zhuge, Y. and Mini, K.M. (2026) Hermite Interpolation Technique-Based Performance Assessment of Coir-Polypropylene Hybrid Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 38. [Google Scholar] [CrossRef]
|
|
[14]
|
Smarzewski, P. (2026) Shear Behaviour and Failure Mechanisms of High-Performance Concrete Beams without Stirrups Reinforced with Hybrid Steel, Polypropylene and Glass Fibres. Composite Structures, 377, Article 119866. [Google Scholar] [CrossRef]
|
|
[15]
|
沈亚金, 倪金花, 陈宇轩, 等. 玄武岩纤维混凝土力学性能及断裂特性研究[J]. 福建建材, 2025(4): 9-12.
|
|
[16]
|
秦超. 水稻秸秆纤维增强混凝土在水利工程中的应用研究[J]. 合成纤维, 2021, 50(7): 45-49.
|
|
[17]
|
孙海龙. 黄麻纤维对混凝土塑化性能和物理力学性能的影响[J]. 水利科技与经济, 2023, 29(8): 130-133+139.
|
|
[18]
|
杜红伟. 纤维复合材料加固混凝土构件耐久性设计[J]. 南阳理工学院学报, 2012, 4(4): 80-84.
|
|
[19]
|
潘志伟. 天然纤维增强环氧树脂基混凝土的环境老化性能研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2018.
|
|
[20]
|
卢安琪, 祝烨然, 李克亮, 等. 聚丙烯纤维混凝土耐气候老化性能试验研究[J]. 混凝土, 2002(1): 61-63.
|
|
[21]
|
陆建南, 辜凯, 张浩. 不同纤维材料对混凝土力学及耐久性能的影响研究[J]. 混凝土世界, 2024(1): 22-27.
|
|
[22]
|
徐文远, 刘秀, 纪泳丞. 绿色建材与低碳混凝土课程思政改革: 理论与实践探讨[J]. 高教学刊, 2025, 11(21): 19-23+31.
|
|
[23]
|
孙希鹏, 张沛伦. “双碳”背景下再生混凝土在工程中的应用现状与发展趋势研究[J]. 中国建材科技, 2025, 34(2): 8-11.
|
|
[24]
|
Yan, G., Zhao, Y., Wang, D., Jin, K., Zhang, H., Wang, P., et al. (2026) Mechanical Enhancement of Hybrid Steel Fiber-Reinforced Superabsorbent Polymer Concrete: Experimental and Multiscale Simulation Analysis. Journal of Building Engineering, 117, Article 114762. [Google Scholar] [CrossRef]
|
|
[25]
|
Ntsie, O.D., Phiri, R., Boonyasopon, P., Rangappa, S.M. and Siengchin, S. (2025) Advancing Sustainable Infrastructure: Natural Fiber-Reinforced Composites in Engineering. Discover Applied Sciences, 7, Article No. 884. [Google Scholar] [CrossRef]
|
|
[26]
|
周明耀, 杨鼎宜, 汪洋. 合成纤维混凝土材料的发展与应用[J]. 水利与建筑工程学报, 2003, 1(4): 1-4.
|
|
[27]
|
Jaafar Mosa, Z. and Ali Mohammed, H. (2025) Enhancing Flexural and Splitting Strength of Concrete with Two Hybrid Fiber Types. IOP Conference Series: Earth and Environmental Science, 1545, Article 012059. [Google Scholar] [CrossRef]
|
|
[28]
|
夏冬桃, Itry Samira, 吴晨, 等. 钢-聚丙烯混杂纤维混凝土耐硫酸盐侵蚀性能研究[J]. 湖北工业大学学报, 2025, 40(5): 86-89.
|
|
[29]
|
Saleem, S., Shah, O.H., Jirawattanasomkul, T., Dawei, Z., Pimanmas, A., Kunawisarut, A., et al. (2025) Evaluating Natural and Synthetic Fibers in Strengthening Concrete Column Specimens with Varying Corner Radii and Aspect Ratios. Journal of Building Engineering, 103, Article 112095. [Google Scholar] [CrossRef]
|