|
[1]
|
Sivakumar, N., Sathishkumar, R., Selvakumar, G., Shyamkumar, R. and Arjunekumar, K. (2020) Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. In: Yadav, A., Singh, J., Rastegari, A. and Yadav, N. Eds., Sustainable Development and Biodiversity, Springer International Publishing, 113-172. [Google Scholar] [CrossRef]
|
|
[2]
|
Nadarajah, K.K. (2017) Rhizosphere Interactions: Life Below Ground. In: Choudhary, D., Varma, A. and Tuteja, N., Eds., Plant-Microbe Interaction: An Approach to Sustainable Agriculture, Springer, 3-23. [Google Scholar] [CrossRef]
|
|
[3]
|
Hacquard, S. and Schadt, C.W. (2015) Towards a Holistic Understanding of the Beneficial Interactions across the populus Microbiome. New Phytologist, 205, 1424-1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Abdul Rahman, N.S.N., Abdul Hamid, N.W. and Nadarajah, K. (2021) Effects of Abiotic Stress on Soil Microbiome. International Journal of Molecular Sciences, 22, 9036. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Santos, M.S., Nogueira, M.A. and Hungria, M. (2019) Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express, 9, Article No. 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bhattacharyya, P.N. and Jha, D.K. (2012) Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Manzoni, C., Kia, D.A., Vandrovcova, J., Hardy, J., Wood, N.W., Lewis, P.A., et al. (2016) Genome, Transcriptome and Proteome: The Rise of Omics Data and Their Integration in Biomedical Sciences. Briefings in Bioinformatics, 19, 286-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Compant, S., Cambon, M.C., Vacher, C., Mitter, B., Samad, A. and Sessitsch, A. (2021) The Plant Endosphere World—Bacterial Life within Plants. Environmental Microbiology, 23, 1812-1829. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gong, T. and Xin, X. (2021) Phyllosphere Microbiota: Community Dynamics and Its Interaction with Plant Hosts. Journal of Integrative Plant Biology, 63, 297-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Krysenko, S. and Wohlleben, W. (2024) Role of Carbon, Nitrogen, Phosphate and Sulfur Metabolism in Secondary Metabolism Precursor Supply in Streptomyces Spp. Microorganisms, 12, Article 1571. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Howarth, G. and Wang, H. (2013) Role of Endogenous Microbiota, Probiotics and Their Biological Products in Human Health. Nutrients, 5, 58-81. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Massimi, M., Radócz, L. and Csótó, A. (2023) Impact of Organic Acids and Biological Treatments in Foliar Nutrition on Tomato and Pepper Plants. Horticulturae, 9, Article 413. [Google Scholar] [CrossRef]
|
|
[13]
|
Dong, C., Wang, L., Li, Q. and Shang, Q. (2019) Bacterial Communities in the Rhizosphere, Phyllosphere and Endosphere of Tomato Plants. PLOS ONE, 14, e0223847. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rastogi, G., Coaker, G.L. and Leveau, J.H.J. (2013) New Insights into the Structure and Function of Phyllosphere Microbiota through High-Throughput Molecular Approaches. FEMS Microbiology Letters, 348, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Campisano, A., Antonielli, L., Pancher, M., Yousaf, S., Pindo, M. and Pertot, I. (2014) Bacterial Endophytic Communities in the Grapevine Depend on Pest Management. PLOS ONE, 9, e112763. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Aleklett, K., Hart, M. and Shade, A. (2014) The Microbial Ecology of Flowers: An Emerging Frontier in Phyllosphere Research. Botany, 92, 253-266. [Google Scholar] [CrossRef]
|
|
[17]
|
Trouvelot, S., Héloir, M., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., et al. (2014) Carbohydrates in Plant Immunity and Plant Protection: Roles and Potential Application as Foliar Sprays. Frontiers in Plant Science, 5, Article No. 592. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ma, A., Lv, D., Zhuang, X. and Zhuang, G. (2013) Quorum Quenching in Culturable Phyllosphere Bacteria from Tobacco. International Journal of Molecular Sciences, 14, 14607-14619. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Monier, J.-. and Lindow, S.E. (2003) Differential Survival of Solitary and Aggregated Bacterial Cells Promotes Aggregate Formation on Leaf Surfaces. Proceedings of the National Academy of Sciences, 100, 15977-15982. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Vorholt, J.A. (2012) Microbial Life in the Phyllosphere. Nature Reviews Microbiology, 10, 828-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Pascale, A., Proietti, S., Pantelides, I.S. and Stringlis, I.A. (2020) Modulation of the Root Microbiome by Plant Molecules: The Basis for Targeted Disease Suppression and Plant Growth Promotion. Frontiers in Plant Science, 10, Article ID: 1741. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. and Kopriva, S. (2017) The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science, 8, Article ID: 1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Nadarajah, K.K. (2016) Induced Systemic Resistance in Rice. In: houdhary, D.K. and Varma, A., Eds., Microbial-Mediated Induced Systemic Resistance in Plants, Springer, 103-124. [Google Scholar] [CrossRef]
|
|
[24]
|
Mendes, L.W., Kuramae, E.E., Navarrete, A.A., van Veen, J.A. and Tsai, S.M. (2014) Taxonomical and Functional Microbial Community Selection in Soybean Rhizosphere. The ISME Journal, 8, 1577-1587. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, T., Wu, S., Yang, W., Selosse, M. and Gao, J. (2021) How Mycorrhizal Associations Influence Orchid Distribution and Population Dynamics. Frontiers in Plant Science, 12, Article ID: 647114. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ma, Y., Oliveira, R.S., Freitas, H. and Zhang, C. (2016) Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 7, Article ID: 918. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gill, S.S., Gill, R., Trivedi, D.K., Anjum, N.A., Sharma, K.K., Ansari, M.W., et al. (2016) Piriformospora Indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology, 7, Article ID: 332. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Eschweiler, J., van Holstein-Saj, R., Kruidhof, H.M., Schouten, A. and Messelink, G.J. (2019) Tomato Inoculation with a Non-Pathogenic Strain of Fusarium Oxysporum Enhances Pest Control by Changing the Feeding Preference of an Omnivorous Predator. Frontiers in Ecology and Evolution, 7, Article ID: 213. [Google Scholar] [CrossRef]
|
|
[29]
|
Cheng, T., Yao, X., Wu, C., Zhang, W., He, W. and Dai, C. (2020) Endophytic Bacillus Megaterium Triggers Salicylic Acid-Dependent Resistance and Improves the Rhizosphere Bacterial Community to Mitigate Rice Spikelet Rot Disease. Applied Soil Ecology, 156, Article 103710. [Google Scholar] [CrossRef]
|
|
[30]
|
Kudjordjie, E.N., Hooshmand, K., Sapkota, R., Darbani, B., Fomsgaard, I.S. and Nicolaisen, M. (2022) Fusarium Oxysporum Disrupts Microbiome-Metabolome Networks in Arabidopsis Thaliana Roots. Microbiology Spectrum, 10, e01226-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lakshmanan, V., Selvaraj, G. and Bais, H.P. (2014) Functional Soil Microbiome: Belowground Solutions to an Aboveground Problem. Plant Physiology, 166, 689-700. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S. and Varma, A. (2020) Revisiting Plant-Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Frontiers in Microbiology, 11, Article ID: 560406. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Larrainzar, E. and Wienkoop, S. (2017) A Proteomic View on the Role of Legume Symbiotic Interactions. Frontiers in Plant Science, 8, Article ID: 1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lorite, M.J., Estrella, M.J., Escaray, F.J., Sannazzaro, A., Videira e Castro, I.M., Monza, J., et al. (2018) The Rhizobia-Lotus Symbioses: Deeply Specific and Widely Diverse. Frontiers in Microbiology, 9, Article ID: 2055. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wan, J., Torres, M., Ganapathy, A., Thelen, J., DaGue, B.B., Mooney, B., et al. (2005) Proteomic Analysis of Soybean Root Hairs after Infection by Bradyrhizobium japonicum. Molecular Plant-Microbe Interactions, 18, 458-467. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
van Loon, L.C., Rep, M. and Pieterse, C.M.J. (2006) Significance of Inducible Defense-Related Proteins in Infected Plants. Annual Review of Phytopathology, 44, 135-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sellstedt, A. and Richau, K.H. (2013) Aspects of Nitrogen-Fixing Actinobacteria, in Particular Free-Living and Symbioticfrankia. FEMS Microbiology Letters, 342, 179-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., et al. (2019) Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 10, Article ID: 1068. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nadarajah, K.K. (2017) Induction of Systemic Resistance for Disease Suppression. In: Abdullah, S., Chai-Ling, H. and Wagstaff, C. Eds., Crop Improvement, Springer International Publishing, 335-357. [Google Scholar] [CrossRef]
|
|
[40]
|
Lin, C. and Sauter, M. (2020) Control of Root System Architecture by Phytohormones and Environmental Signals in Rice. Israel Journal of Plant Sciences, 67, 98-109. [Google Scholar] [CrossRef]
|
|
[41]
|
Li, S., Peng, M., Liu, Z. and Shah, S.S. (2017) The Role of Soil Microbes in Promoting Plant Growth. Molecular Microbiology Research, 7, 30-37. [Google Scholar] [CrossRef]
|
|
[42]
|
Iqbal, N., Khan, N.A., Ferrante, A., Trivellini, A., Francini, A. and Khan, M.I.R. (2017) Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Frontiers in Plant Science, 8, Article ID: 475. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Backer, R., Naidoo, S. and van den Berg, N. (2019) The Nonexpressor of Pathogenesis-Related Genes 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. Frontiers in Plant Science, 10, Article ID: 102. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Rashid, M.I., Mujawar, L.H., Shahzad, T., Almeelbi, T., Ismail, I.M.I. and Oves, M. (2016) Bacteria and Fungi Can Contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiological Research, 183, 26-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Olanrewaju, O.S., Glick, B.R. and Babalola, O.O. (2017) Mechanisms of Action of Plant Growth Promoting Bacteria. World Journal of Microbiology and Biotechnology, 33, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Vishwakarma, K., Kumar, V., Tripathi, D.K. and Sharma, S. (2018) Characterization of Rhizobacterial Isolates from Brassica Juncea for Multitrait Plant Growth Promotion and Their Viability Studies on Carriers. Environmental Sustainability, 1, 253-265. [Google Scholar] [CrossRef]
|
|
[47]
|
Velásquez, A.C., Castroverde, C.D.M. and He, S.Y. (2018) Plant—Pathogen Warfare under Changing Climate Conditions. Current Biology, 28, R619-R634. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Köhl, J., Kolnaar, R. and Ravensberg, W.J. (2019) Mode of Action of Microbial Biological Control Agents against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science, 10, Article ID: 845. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Fiorilli, V., Catoni, M., Lanfranco, L. and Zabet, N.R. (2020) Interactions of Plants with Bacteria and Fungi: Molecular and Epigenetic Plasticity of the Host. Frontiers Media SA, 274.
|
|
[50]
|
Masri, L., Branca, A., Sheppard, A.E., Papkou, A., Laehnemann, D., Guenther, P.S., et al. (2015) Host-Pathogen Coevolution: The Selective Advantage of Bacillus Thuringiensis Virulence and Its Cry Toxin Genes. PLOS Biology, 13, e1002169. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Nishad, R., Ahmed, T., Rahman, V.J. and Kareem, A. (2020) Modulation of Plant Defense System in Response to Microbial Interactions. Frontiers in Microbiology, 11, Article ID: 1298. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Avila-Quezada, G.D., Melgoza-Castillo, A., Esquivel, J.F., Silva-Rojas, H.V., Leyva-Mir, S.G., De Jesús Garcia-Avila, C., Quezada-Salinas, A., Noriega-Orozco, L., Rivas-Valencia, P. and Ojeda-Barrios, D. (2018) Emerging Plant Diseases under a Changing Climate Scenario: Threats to Our Global Food Supply. Emirates Journal of Food and Agriculture, 30, 443-450.
|
|
[53]
|
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., et al. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 259, 660-684. [Google Scholar] [CrossRef]
|
|
[54]
|
Goss, E.M. (2015) Genome-Enabled Analysis of Plant-Pathogen Migration. Annual Review of Phytopathology, 53, 121-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Thynne, E., McDonald, M.C. and Solomon, P.S. (2015) Phytopathogen Emergence in the Genomics Era. Trends in Plant Science, 20, 246-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Rashid, M.H., Kamruzzaman, M., Haque, A.N.A. and Krehenbrink, M. (2019) Soil Microbes for Sustainable Agriculture. In: Meena, R., Kumar, S., Bohra, J. and Jat, M. Eds., Sustainable Management of Soil and Environment, Springer, 339-382. [Google Scholar] [CrossRef]
|
|
[57]
|
Glick, B.R. (2012) Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica, 2012, Article ID: 963401. [Google Scholar] [CrossRef] [PubMed]
|