|
[1]
|
de Korne-Elenbaas, J., Bruisten, S.M., de Vries, H.J.C. and van Dam, A.P. (2022) Within-Host Genetic Variation in Neisseria gonorrhoeae over the Course of Infection. Microbiology Spectrum, 10, e0031322. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tu, Q., Cao, X., Ling, C., Xiang, L., Yang, P. and Huang, S. (2023) Point-Of-Care Detection of Neisseria gonorrhoeae Based on RPA-CRISPR/Cas12a. AMB Express, 13, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sunkavalli, A., McClure, R. and Genco, C. (2022) Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms, 10, Article 922. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sikora, A.E., Gomez, C., Le Van, A., Baarda, B.I., Darnell, S., Martinez, F.G., et al. (2020) A Novel Gonorrhea Vaccine Composed of MetQ Lipoprotein Formulated with CpG Shortens Experimental Murine Infection. Vaccine, 38, 8175-8184. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rodriguez-Mateos, P., Ngamsom, B., Ameyo, D., Wakaba, P., Shiluli, C., Iles, A., et al. (2023) Integrated Microscale Immiscible Phase Extraction and Isothermal Amplification for Colorimetric Detection of Neisseria gonorrhoeae. Analytical and Bioanalytical Chemistry, 415, 5129-5137. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhong, J., Le, W., Li, X. and Su, X. (2024) Evaluating the Efficacy of Different Antibiotics against Neisseria gonorrhoeae: A Pharmacokinetic/Pharmacodynamic Analysis Using Monte Carlo Simulation. BMC Infectious Diseases, 24, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, F., Liu, J., Gu, Y., Jiao, R., Yan, J., Gao, S., et al. (2022) Antimicrobial Activity of Auranofin, Cannabidivarin, and Tolfenamic Acid against Multidrug-Resistant Neisseria gonorrhoeae. Microbiology Spectrum, 10, e0395222. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hathorn, E., Dhasmana, D., Duley, L. and Ross, J.D. (2014) The Effectiveness of Gentamicin in the Treatment of Neisseria gonorrhoeae: A Systematic Review. Systematic Reviews, 3, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kon, H., Lurie-Weinberger, M., Cohen, A., Metsamber, L., Keren-Paz, A., Schwartz, D., et al. (2023) Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Antibiotics, 12, Article 1528. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jiang, Y., Chen, Z., Liu, X., Xin, Q., Wang, D., Ji, C., et al. (2025) A Rapid and Naked-Eye Methicillin Resistant Staphylococcus aureus Screening Method Based on CRISPR/Cas12a and Hybridization Chain Reaction. Frontiers in Microbiology, 16, Article 1592153. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lin, X., Chen, W., Xie, Q., Yu, Y., Liao, Y., Feng, Z., et al. (2022) Dissemination and Genome Analysis of High-Level Ceftriaxone-Resistant penA 60.001 Neisseria gonorrhoeae Strains from the Guangdong Gonococcal Antibiotics Susceptibility Programme (GD-GASP), 2016-2019. Emerging Microbes & Infections, 11, 344-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Unemo, M. and Shafer, W.M. (2011) Antibiotic Resistance in Neisseria gonorrhoeae: Origin, Evolution, and Lessons Learned for the Future. Annals of the New York Academy of Sciences, 1230, E19-E28. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
(2016) WHO Guidelines for the Treatment of Neisseria Gonorrhoeae. World Health Organization.
|
|
[14]
|
Lahra, M.M., Martin, I., Demczuk, W., Jennison, A.V., Lee, K., Nakayama, S., et al. (2018) Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain. Emerging Infectious Diseases, 24, 735-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Thomas IV, J.C., Cartee, J.C., Hebrank, K., St. Cyr, S.B., Schlanger, K., Raphael, B.H., et al. (2024) Emergence and Evolution of Mosaic penA-60 and penA-237 Alleles in a Neisseria gonorrhoeae Core Genogroup That Was Historically Susceptible to Extended Spectrum Cephalosporins. Frontiers in Microbiology, 15, Article 1401303. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Day, M., Pitt, R., Mody, N., Saunders, J., Rai, R., Nori, A., et al. (2022) Detection of 10 Cases of Ceftriaxone-Resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Eurosurveillance, 27, Article ID: 2200803. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Merrick, R., Cole, M., Pitt, R., Enayat, Q., Ivanov, Z., Day, M., et al. (2022) Antimicrobial-Resistant Gonorrhoea: The National Public Health Response, England, 2013 to 2020. Eurosurveillance, 27, Article ID: 2200057. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kagawa, N., Aoki, K., Komori, K., Ishii, Y., Shimuta, K., Ohnishi, M., et al. (2024) Molecular Epidemiological and Antimicrobial-Resistant Mechanisms Analysis of Prolonged Neisseria gonorrhoeae Collection between 1971 and 2005 in Japan. JAC-Antimicrobial Resistance, 6, dlae040. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhao, Y., Le, W., Genco, C.A., Rice, P.A. and Su, X. (2023) Increase in Multidrug Resistant Neisseria gonorrhoeae FC428-Like Isolates Harboring the Mosaic penA 60.001 Gene, in Nanjing, China (2017-2020). Infection and Drug Resistance, 16, 4053-4064. [Google Scholar] [CrossRef] [PubMed]
|