淋病奈瑟菌对头孢曲松耐药性及penA基因的分子特征分析
Molecular Characterization Analysis of Ceftriaxone Resistance and the penA Gene in Neisseria Gonorrhoeae
DOI: 10.12677/bp.2026.161002, PDF, HTML, XML,   
作者: 张淑静, 刘若男, 章 祎, 王中新*:安徽医科大学第一附属医院检验科,安徽 合肥
关键词: 淋病奈瑟菌头孢曲松药物耐药penA等位基因Neisseria gonorrhoeae Ceftriaxone Drug Resistance penA Gene
摘要: 目的:分析合肥部分地区淋病奈瑟菌对头孢曲松、阿奇霉素、环丙沙星、青霉素和四环素的耐药率,并探讨头孢曲松耐药菌株的penA基因型分布。方法:收集2024年6月至2025年6月期间98株临床分离株,采用琼脂稀释法测定头孢曲松及另外四种抗生素的最小抑菌浓度(MIC)。对头孢曲松耐药菌株(MIC ≥ 0.5 μg/mL)进行penA基因测序及等位基因分型。结果:头孢曲松、阿奇霉素、环丙沙星、青霉素和四环素的耐药率分别为22.4%、14.3%、99.0%、100%和99.0%。其中,90.9% (20/22)的头孢曲松耐药菌株携带嵌合型penA60.001等位基因,其余两株分别携带penA41.001和penA34.001。结论:头孢曲松耐药菌株中镶嵌型penA等位基因的优势表明高度耐药菌株在合肥地区的克隆扩增,可能威胁广谱头孢菌素类药物的长期疗效,强调持续分子监测的重要性。
Abstract: Purpose: This study aimed to analysis the antimicrobial resistance rates of Neisseria gonorrhoeae to ceftriaxone, azithromycin, ciprofloxacin, penicillin, and tetracycline in selected areas of Hefei, and to further characterize the distribution of penA genotypes among ceftriaxone-resistant isolates. Methods: A total of 98 non-duplicated clinical isolates collected between June 2024 and June 2025 were subjected to agar dilution to determine MICs for ceftriaxone and four additional antibiotics. Isolates exhibiting reduced susceptibility to ceftriaxone (MIC ≥ 0.5 μg/mL) underwent full-length sequencing of the penA gene, followed by allele typing. Results: Resistance rates to ceftriaxone, azithromycin, ciprofloxacin, penicillin and tetracycline were 22.4%, 14.3%, 99.0%, 100% and 99.0%. Notably, 90.9% (20/22) of resistant isolates harbored the mosaic penA 60.001 allele, while the remaining two isolates carried penA41.001 and penA34.001. Conclusion: The predominance of mosaic penA alleles among ceftriaxone-resistant isolates indicates clonal expansion of highly resistant lineages in Hefei, which may compromise the long-term efficacy of extended-spectrum cephalosporins and warrants continuous molecular surveillance.
文章引用:张淑静, 刘若男, 章祎, 王中新. 淋病奈瑟菌对头孢曲松耐药性及penA基因的分子特征分析[J]. 生物过程, 2026, 16(1): 11-16. https://doi.org/10.12677/bp.2026.161002

1. 引言

淋病奈瑟菌(Neisseria gonorrhoeae)感染是全球最常见的细菌性性传播感染之一,且其流行率的持续上升,已对公共卫生构成了沉重负担[1]。据世界卫生组织(WHO)估算,2020年全球15~49岁成人中淋病年发病例数约为8240万例,其中低收入国家的流行率尤为突出[2]。若未能及时治疗,淋病可发展为盆腔炎、导致不孕、异位妊娠,并持续传播,目前其仍是长期发展的公共卫生问题[3]。尽管抗生素为治疗淋病的主要手段,但快速出现的耐药性已削弱其疗效[4]。美国疾病控制与预防中心(CDC)在2019年的耐药报告中将耐药性淋病菌列为“紧迫威胁”,指出2000~2017年间耐药性呈上升趋势,头孢菌素类曾是治疗淋病的唯一推荐药物[5]。但是,多国已报告对头孢曲松和头孢呋辛的耐药菌株[6]

近年来与头孢曲松治疗失败相关的报告有所增多,尤其是与FC428谱系相关、携带嵌合penA60.001等位基因的菌株在中国及其他国家广泛传播[7]。而编码青霉素结合蛋白2 (PBP2)的penA基因出现嵌合型序列重组被认为是导致对头孢菌素类药物耐药的主要机制之一[8]。虽然中国部分地区已有抗菌药物耐药监测体系,但关于合肥地区头孢曲松耐药及其分子特征的数据仍较匮乏。掌握本地流行病学信息对于优化临床治疗方案和制定公共卫生干预措施至关重要。本研究旨在分析合肥地区淋球菌的抗菌药物敏感性谱,并对头孢曲松耐药菌株的penA等位基因进行分子分型,以阐明该地区广谱头孢菌素耐药的分子流行病学特征,为临床用药及监测提供依据。

2. 材料与方法

2.1. 菌株来源

收集2024年6月至2025年6月期间安徽医科大学第一附属医院高新院区的生殖医学中心、泌尿科、妇科和皮肤科的淋球菌菌株。所有患者均为男性,平均年龄34.7岁。对分离株进行鉴定后,排除来自同一患者、同一标本来源或同一病原体的重复菌株,最终获得98株非重复的淋病菌纳入后续实验分析(标准菌株为ATCC49226,伦理批号PJ2025-12-71)。

2.2. 纳入标准

(1) 年龄 ≥ 18岁;(2) 检测前14天内未使用抗生素;(3) 自愿参加并签署知情同意书。

2.3. 排除标准

(1) 有全身急性疾病症状(如发热、咳嗽等);(2) 妊娠或哺乳期妇女;(3) 因精神或认知障碍无法配合者。

2.4. 实验方法

2.4.1. 鉴定菌株

菌株按临床检验操作规程进行分离和培养,全部细菌均使用基质辅助激光解吸/电离飞行时间质谱法进行鉴定。

2.4.2. 菌株复苏与培养

将−80℃保存的菌株置于室温解冻,用无菌接种环划接于含羊血的GC琼脂平板上。在36℃、5% CO2的环境下培养18~24小时。取形态一致的单菌落转至新培养基继续培养,以扩大菌量并确保实验所用菌株处于稳定的对数生长期。

2.4.3. 菌悬液制备

取培养18~20小时的新鲜菌落,加入1 mL无菌生理盐水悬浮,将菌液调整至约1.5 × 108 CFU/mL (对应OD ≈ 0.15),随后按1:10稀释,配成约1.5 × 107 CFU/mL的待测菌液用于药敏试验。

2.4.4. 抗菌药物敏感性测试及MIC判定

用多头接种针吸取1至2 μL菌悬液接种于药敏板,设置空白对照,待菌液干燥后置于36℃、5% CO2环境中培养18~24 h。后观察生长情况,依据CLSI标准判定MIC值[9]

2.4.5. DNA提取与penA基因测序

对头孢曲松耐药株使用加热裂解法提取基因组DNA [10],设计引物扩增penA基因全长片段[11]。PCR产物送生工生物工程(上海)股份有限公司进行双向测序。将测序结果与野生型penA基因(GenBank: M32091.1)比对,确定其突变情况及其等位基因型别。相关引物和测序信息见表1

Table 1. Relevant primer sequences and product lengths

1. 相关引物序列及长度

基因

引物序列(5’→3’)

引物长度(bp)

penA

A1:CGGGCAATACCTTTATGGTGGAAC

620

B1:AACCTTCCTGACCTTTGCCGTC

A2:AAAACGCCATTACCCGATGGG

580

B2:TAATGCCGCGCACATCCAAAG

A3:GCCGTAACCGATATGATCGA

870

B3:CGTTGATACTCGGATTAAGACG

3. 结果

3.1. 抗生素耐药率分析

合肥部分地区淋球菌的抗生素耐药如下(见表2)。

Table 2. Analysis of susceptibility and resistance to five antibiotics in 98 Neisseria gonorrhoeae isolates

2. 98株淋球菌对5种抗生素的药物敏感性及耐药性分析

抗生素

MIC范围(μg/mL)

MIC50 (μg/mL)

MIC90 (μg/mL)

耐药率(%)

头孢曲松

0.008~1

0.03

0.5

22.4

阿奇霉素

0.03~2

0.125

2

14.3

环丙沙星

0.5~16

1

8

99

青霉素

2~8

4

8

100

四环素

0.5~32

4

16

99

3.2. penA基因型分布及镶嵌结构分析

系统发育分析结果显示,20株头孢曲松耐药淋病奈瑟菌的penA基因序列呈现高度聚集特征(图1),其中携带penA60.001等位基因的菌株形成明显的单一分支,分支间遗传距离较小,提示这些耐药菌株可能来源于共同的祖先并发生克隆扩增。这一结果进一步支持了合肥地区存在优势耐药株系局部流行的推测。

注释:以penA60.001为特征的耐药株聚类分支,采用邻接法构建,分支节点数字为bootstrap支持度(1000次重复),树中各分支长度的总和为0.024。

Figure 1. Phylogenetic tree of the penA gene from 20 resistant Neisseria gonorrhoeae isolates

1. 20株耐药淋球菌penA基因的系统发育树分析

4. 讨论

本研究系统分析了合肥地区淋球菌的抗生素敏感性及耐药基因特征。中国淋球菌耐药监测数据显示,近年来9.7%~12.2%的临床分离株表现出头孢曲松敏感性降低[12]。相比之下,与合肥地区的耐药表型具有显著的区域差异性。头孢曲松敏感性的显著下降,预示着本地广谱头孢菌素(ESC)耐药风险正处于加速期,这可能削弱以头孢曲松为核心的临床治疗方案,并增加治疗失败的风险[13] [14]

基因测序结果显示,大多数对头孢曲松耐药的株系携带镶嵌型penA60.001等位基因。该等位基因通过淋球菌发生基因重组形成,导致PBP2结构发生显著改变,从而降低β-内酰胺类药物的亲和性[14]。目前在亚洲、欧洲和大洋洲等地曾多次报道penA60.001与国际传播的FC428克隆相关[15] [16]。本研究中该基因型的高检出率提示合肥可能已形成局部流行的传播链,呈现聚集性扩散的特征。这一发现说明,仅依赖传统培养和药敏结果不足以全面把握耐药动态,常规监测中应当结合分子分型手段以提高识别和预警能力[17]

同时本研究存在若干局限性。首先,样本来自单一医疗机构,地理代表性受限;其次,仅对penA基因进行了测序分析,未检测如porB、mtrR等其他耐药相关位点,也未开展高分辨率分型或全基因组测序,因而对传播链条的推断深度有限[18] [19];此外,采样时间较短,无法评估长期进化趋势。尽管如此,现有数据仍提示携带penA60.001的ESC耐药菌株在合肥地区可能已处于流行状态。

综上所述,嵌合型penA相关的头孢曲松耐药株的出现与扩散构成日益严峻的公共卫生挑战。为遏制耐药株进一步传播,需加强分子流行病学监测、完善分型与报告机制,并采取针对性的预防与控制措施。

NOTES

*通讯作者。

参考文献

[1] de Korne-Elenbaas, J., Bruisten, S.M., de Vries, H.J.C. and van Dam, A.P. (2022) Within-Host Genetic Variation in Neisseria gonorrhoeae over the Course of Infection. Microbiology Spectrum, 10, e0031322. [Google Scholar] [CrossRef] [PubMed]
[2] Tu, Q., Cao, X., Ling, C., Xiang, L., Yang, P. and Huang, S. (2023) Point-Of-Care Detection of Neisseria gonorrhoeae Based on RPA-CRISPR/Cas12a. AMB Express, 13, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
[3] Sunkavalli, A., McClure, R. and Genco, C. (2022) Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms, 10, Article 922. [Google Scholar] [CrossRef] [PubMed]
[4] Sikora, A.E., Gomez, C., Le Van, A., Baarda, B.I., Darnell, S., Martinez, F.G., et al. (2020) A Novel Gonorrhea Vaccine Composed of MetQ Lipoprotein Formulated with CpG Shortens Experimental Murine Infection. Vaccine, 38, 8175-8184. [Google Scholar] [CrossRef] [PubMed]
[5] Rodriguez-Mateos, P., Ngamsom, B., Ameyo, D., Wakaba, P., Shiluli, C., Iles, A., et al. (2023) Integrated Microscale Immiscible Phase Extraction and Isothermal Amplification for Colorimetric Detection of Neisseria gonorrhoeae. Analytical and Bioanalytical Chemistry, 415, 5129-5137. [Google Scholar] [CrossRef] [PubMed]
[6] Zhong, J., Le, W., Li, X. and Su, X. (2024) Evaluating the Efficacy of Different Antibiotics against Neisseria gonorrhoeae: A Pharmacokinetic/Pharmacodynamic Analysis Using Monte Carlo Simulation. BMC Infectious Diseases, 24, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
[7] Yang, F., Liu, J., Gu, Y., Jiao, R., Yan, J., Gao, S., et al. (2022) Antimicrobial Activity of Auranofin, Cannabidivarin, and Tolfenamic Acid against Multidrug-Resistant Neisseria gonorrhoeae. Microbiology Spectrum, 10, e0395222. [Google Scholar] [CrossRef] [PubMed]
[8] Hathorn, E., Dhasmana, D., Duley, L. and Ross, J.D. (2014) The Effectiveness of Gentamicin in the Treatment of Neisseria gonorrhoeae: A Systematic Review. Systematic Reviews, 3, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
[9] Kon, H., Lurie-Weinberger, M., Cohen, A., Metsamber, L., Keren-Paz, A., Schwartz, D., et al. (2023) Occurrence, Typing, and Resistance Genes of ESBL/AmpC-Producing Enterobacterales in Fresh Vegetables Purchased in Central Israel. Antibiotics, 12, Article 1528. [Google Scholar] [CrossRef] [PubMed]
[10] Jiang, Y., Chen, Z., Liu, X., Xin, Q., Wang, D., Ji, C., et al. (2025) A Rapid and Naked-Eye Methicillin Resistant Staphylococcus aureus Screening Method Based on CRISPR/Cas12a and Hybridization Chain Reaction. Frontiers in Microbiology, 16, Article 1592153. [Google Scholar] [CrossRef] [PubMed]
[11] Lin, X., Chen, W., Xie, Q., Yu, Y., Liao, Y., Feng, Z., et al. (2022) Dissemination and Genome Analysis of High-Level Ceftriaxone-Resistant penA 60.001 Neisseria gonorrhoeae Strains from the Guangdong Gonococcal Antibiotics Susceptibility Programme (GD-GASP), 2016-2019. Emerging Microbes & Infections, 11, 344-350. [Google Scholar] [CrossRef] [PubMed]
[12] Unemo, M. and Shafer, W.M. (2011) Antibiotic Resistance in Neisseria gonorrhoeae: Origin, Evolution, and Lessons Learned for the Future. Annals of the New York Academy of Sciences, 1230, E19-E28. [Google Scholar] [CrossRef] [PubMed]
[13] (2016) WHO Guidelines for the Treatment of Neisseria Gonorrhoeae. World Health Organization.
[14] Lahra, M.M., Martin, I., Demczuk, W., Jennison, A.V., Lee, K., Nakayama, S., et al. (2018) Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain. Emerging Infectious Diseases, 24, 735-743. [Google Scholar] [CrossRef] [PubMed]
[15] Thomas IV, J.C., Cartee, J.C., Hebrank, K., St. Cyr, S.B., Schlanger, K., Raphael, B.H., et al. (2024) Emergence and Evolution of Mosaic penA-60 and penA-237 Alleles in a Neisseria gonorrhoeae Core Genogroup That Was Historically Susceptible to Extended Spectrum Cephalosporins. Frontiers in Microbiology, 15, Article 1401303. [Google Scholar] [CrossRef] [PubMed]
[16] Day, M., Pitt, R., Mody, N., Saunders, J., Rai, R., Nori, A., et al. (2022) Detection of 10 Cases of Ceftriaxone-Resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Eurosurveillance, 27, Article ID: 2200803. [Google Scholar] [CrossRef] [PubMed]
[17] Merrick, R., Cole, M., Pitt, R., Enayat, Q., Ivanov, Z., Day, M., et al. (2022) Antimicrobial-Resistant Gonorrhoea: The National Public Health Response, England, 2013 to 2020. Eurosurveillance, 27, Article ID: 2200057. [Google Scholar] [CrossRef] [PubMed]
[18] Kagawa, N., Aoki, K., Komori, K., Ishii, Y., Shimuta, K., Ohnishi, M., et al. (2024) Molecular Epidemiological and Antimicrobial-Resistant Mechanisms Analysis of Prolonged Neisseria gonorrhoeae Collection between 1971 and 2005 in Japan. JAC-Antimicrobial Resistance, 6, dlae040. [Google Scholar] [CrossRef] [PubMed]
[19] Zhao, Y., Le, W., Genco, C.A., Rice, P.A. and Su, X. (2023) Increase in Multidrug Resistant Neisseria gonorrhoeae FC428-Like Isolates Harboring the Mosaic penA 60.001 Gene, in Nanjing, China (2017-2020). Infection and Drug Resistance, 16, 4053-4064. [Google Scholar] [CrossRef] [PubMed]