|
[1]
|
Becker, M.H. and Joseph, J.G. (1988) AIDS and behavioral change to reduce risk: A review. American Journal of Public Health, 78, 394-410.
|
|
[2]
|
Barre-Sinoussi, F., Chermann, J.C., Rey, F., et al. (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science, 220, 868871.
|
|
[3]
|
Gallo, R.C., Salahuddin, S.Z., Popovic, M., et al. (1984) Frequent detection and isolation of cytopathic retroviruses (HTLVIII) from patients with AIDS and at risk for AIDS. Science, 224, 500-503.
|
|
[4]
|
Levy, J.A., Hoffman, A.D., Kramer, S.M., et al. (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science, 225, 840-842.
|
|
[5]
|
Chun, T.W., Engel, D., Mizell, S.B., et al. (1999) Effect of interleukin-2 on the pool of latently infected, resting CD4+T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nature Medicine, 5, 651-655.
|
|
[6]
|
Uenishi, R., Hase, S., Keng, T.K., et al. (2007) HIV/AIDS in Asia: The shape of epidemics and their molecular epide-miology. Virologica Sinica, 6, 004.
|
|
[7]
|
Mayer, K.H. and Beyrer, C. (2007) HIV epidemiology update and transmission factors: Risks and risk contexts—16th International AIDS Conference epidemiology plenary. Clinical Infectious Diseases, 44, 981-987.
|
|
[8]
|
钟进彦, 张栗, 柳建发 (2010) 艾滋病的流行研究进展. 地方病通报, 6, 72-74.
|
|
[9]
|
Wei, X., Ghosh, S.X., Taylor, M.E., et al. (1995) Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 373, 117-122.
|
|
[10]
|
Finzi, D., Hermankova, M., Pierson, T., et al. (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science, 278, 1295-1300.
|
|
[11]
|
Bassetti, S., Battegay, M., Furrer, H., et al. (1999) Why is highly active an-ti-retroviral therapy (HAART) not prescribed or discontinued. JAIDS Journal of Acquired Immune Deficiency Syndromes, 21, 114-119.
|
|
[12]
|
Sharkey, M.E., Teo, I., Greenough, T., et al. (2000) Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nature Medicine, 6, 76-81.
|
|
[13]
|
Bassetti, S., Battegay, M., Furrer, H., et al. (1999) Why is highly active anti-retroviral therapy (HAART) not prescribed or dis-continued? Journal of Acquired Immune Deficiency Syndromes, 21, 114-119.
|
|
[14]
|
Dinoso, J.B., Kim, S.Y., Wiegand, A.M., et al. (2009) Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. PNAS, 106, 94039408.
|
|
[15]
|
Sharkey, M.E., Teo, I., Greenough, T., et al. (2000) Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy. Nature Medicine, 6, 76-81.
|
|
[16]
|
Dean, M., Carrington, M., Winkler, C., Huttley, G.A., Smith, M.W., Allikmets, R., et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science, 273, 1856-1862.
|
|
[17]
|
Rosenberg, E.S., Altfeld, M., Poon, S.H., Phillips, M.N., Wilkes, B.M., Eldridge, R.L., Robbins, G.K., D’Aquila, R.T., Goulder, P.J. and Walker, B.D. (2000) Immune control of HIV-1 after early treatment of acute infection. Nature, 407, 523-526.
|
|
[18]
|
Novina, C.D., Murray, M.F., Dykxhoorn, D.M., Beresford, P.J., Riess, J., Lee, S.K., Collman, R.G., Lieberman, J., Shankar, P. and Sharp, P.A. (2002) siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681-686.
|
|
[19]
|
Pantaleo, G., Graziosi, C. and Fauci, A.S. (1993) The immunopathogenesis of human immunodeficiency virus infection. New England Journal of Medicine, 328, 327-335.
|
|
[20]
|
Kaplan, E.H. (1990) An overview of AIDS modeling. New Directions for Program Evaluation, 46, 23-36.
|
|
[21]
|
Phillips, A.N. (1996) Reduction of HIV concentration during acute infection: Independence from a specific immune response. Science, 271, 497-499.
|
|
[22]
|
Perelson, A.S. and Weisbuch, G. (1997) Immunology for physicists. Reviews of Modern Physics, 69, 1219.
|
|
[23]
|
Perelson, A.S. and Nelson, P.W. (1999) Mathematical analysis of HIV-1 dynamics. SIAM Review, 41, 3-44.
|
|
[24]
|
Cohn, M. and Mata, J. (2007) Quantitative modeling of immune responses. Immunological Reviews, 216, 5-8.
|
|
[25]
|
Chavali, A.K., Gianchandani, E.P., Tung, K.S., Lawrence, M.B., Peirce, S.M. and Papin, J.A. (2008) Characterizing emergent properties of immunological systems with multi-cellular rulebased computational modeling. Trends in Immunol-ogy, 29, 589599.
|
|
[26]
|
Li, X.H., Wang, Z.X., Lu, T.Y. and Che, X.J. (2009) Modelling immune system: Principles, models, analysis and perspectives. Journal of Bionic Engineering, 6, 77-85.
|
|
[27]
|
Nowak, M.A., May, R.M. and Anderson, R.M. (1990) The evolutionary dy-namics of HIV-1 quasispecies and the development of immunodefi-ciency disease. AIDS, 4, 1095-1103.
|
|
[28]
|
Coffin, J.M. (1995) HIV population dynamics in vivo: Implications for genetic variation, pathogenesis, and therapy. Science, 267, 483-489.
|
|
[29]
|
Nowak, M. and May, R.M. (2000) Virus dynamics: Mathematical principles of immunology and virology. Oxford University Press, Oxford.
|
|
[30]
|
Perelson, A.S. (2002) Modelling viral and immune system dynamics. Nature Reviews Immunology, 2, 28-36.
|
|
[31]
|
Wang, G. and Deem, M.W. (2006) Physical theory of the competition that allows HIV to escape from the immune system. Physical Review Letters, 97, Article ID: 188106.
|
|
[32]
|
Wodarz, D. (2007) Kill cell dynamics: Mathematical and computational approaches to immunology. Springer, Berlin.
|
|
[33]
|
Hernandez-Vargas, E.A. and Middleton, R.H. (2013) Modeling the three stages in HIV infection. Journal of Theoretical Biology, 320, 33-40.
|
|
[34]
|
Hershberg, U., Louzoun, Y., Atlan, H. and Solomon, S. (2001) HIV time hierarchy: Winning the war while, loosing all the battles. Physica A, 289, 178-190.
|
|
[35]
|
Lin, H. and Shuai, J.W. (2010) A stochastic spatial model of HIV dynamics with an asymmetric battle between the virus and the immune system. New Journal of Physics, 12, 043051.
|
|
[36]
|
Weisbuch, G. and Atlan, H. (1988) Control of the im-mune response. Journal of Physics A: Mathematical and General, 21, L189-L192.
|
|
[37]
|
Dayan, I., Stauffer, D. and Havlin, S. (1988) Cellu-lar automata generalization of the Weisbuch-Atlan model for immune response. Journal of Physics A: Mathematical and General, 21, 2473-2476.
|
|
[38]
|
Pandey, R.B. and Stauffer, D. (1990) Metastability with probabilistic cellular automata in an HIV infection. Journal of Statistical Physics, 61, 235-240.
|
|
[39]
|
Pandey, R.B. (1991) Cellular automata approach to interacting cellular network models for the dynamics of cell population in an early HIV infection. Physica A, 179, 442-470.
|
|
[40]
|
Zorzenon dos Santos, R.M. and Coutinho, S. (2001) Dynamics of HIV infection: A cellular automata approach. Physical Review Letters, 87, 168102.
|
|
[41]
|
Codd, E.F. (1968) Cellular automata. Academic Press, Inc., Waltham.
|
|
[42]
|
Gardner, M. (1970) Mathematical games: The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223, 120-123.
|
|
[43]
|
Wolfram, S. (1983) Statistical mechanics of cellular automata. Reviews of Modern Physics, 55, 601.
|
|
[44]
|
Wolfram, S. (1984) Cellular automata as models of complexity. Nature, 311, 419-424.
|
|
[45]
|
Wolfram, S. (1994) Cellular automata and complexity: Collected papers. Addison-Wesley, Reading.
|
|
[46]
|
Maerivoet, S. and De Moor, B. (2005) Cellular automata models of road traffic. Physics Reports, 419, 1-64.
|
|
[47]
|
Chopard, B. and Droz, M. (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge.
|
|
[48]
|
Mei, S.S., Billings, S.A. and Guo, L.Z. (2005) A neighborhood selection method for cellular automata models. International Journal of Bifurcation and Chaos, 15, 383-393.
|
|
[49]
|
Toffoli, T. and Margolus, N. (1987) Cellular automata machines: A new environment for modeling. MIT Press, Cambridge.
|
|
[50]
|
Coveney, P.V. and Fowler, P.W. (2005) Modelling biological complexity: A physical scientist’s perspective. Journal of the Royal Society Interface, 2, 267-280.
|
|
[51]
|
Celada, F. and Seiden, P.E. (1992) A computer model of cellular interactions in the immune system. Immunology Today, 13, 5662.
|
|
[52]
|
Strain, M.C. and Levine, H. (2002) Comment on “dynamics of HIV infection: A cellular automata approach. Physical Review Letters, 89, Article ID: 219805.
|
|
[53]
|
Solovey, G., Peruani, F., Ponce Dawson, S. and Zorzenon dos Santos, R.M. (2004) On cell resistance and immune response time lag in a model for the HIV infection. Physica A: Statistical Mechanics and Its Applications, 343, 543-556.
|
|
[54]
|
Figueirêdo, P.H., Coutinho, S. and Zorzenon dos Santos, R.M. (2008) Robustness of a cellular automata model for the HIV infection. Physica A: Statistical Mechanics and Its Applications, 387, 6545-6552.
|
|
[55]
|
González, R.E.R., de Figueirêdo, P.H. and Coutinho, S. (2013) Cellular automata approach for the dynamics of HIV infection under antiretrovial therapies: The role of the virus diffusion. Physica A, 392, 4717-4725.
|
|
[56]
|
Strain, M.C., Richman, D.D., Wong, J.K. and Levine, H. (2002) Spatiotemporal dynamics of HIV propagation. Journal of Theoretical Biology, 218, 85-96.
|
|
[57]
|
Mielke, A. and Pandey, R.B. (1998) A computer simulation study of cell population in a fuzzy interaction model for mutating HIV. Physica A, 251, 430-438.
|
|
[58]
|
Corne, D.W. and Frisco, P. (2008) Dynamics of HIV infection studies with cellular automata and conformon-P systems. BioSystems, 91, 531-544.
|
|
[59]
|
Precharattana, M., Triampo, W., Mod-chang, C., Triampo, D. and Lenbury, Y. (2010) Investigation of spatial formation involving CD4+ T cells in HIV/AIDS dynamics by a sto-chastic cellular automata model. International Journal of Mathematics and Computers in Simulation, 4, 135-143.
|
|
[60]
|
Precharattana, M. and Triampo, W. (2014) Modeling dynamics of HIV infected cells using stochastic cellular automaton. Physica A, 407, 303-311.
|
|
[61]
|
Mannion, R., Ruskin, H.J. and Pandey, R.B. (2002) Effects of viral mutation on cellular dynamics in a Monte Carlo simulation of HIV immune response model in three dimensions. Theory in Biosciences, 121, 237-245.
|
|
[62]
|
Mo, Y.B., Ren, B., Yang, W.C. and Shuai, J.W. (2014) The 3-dimensional cellular automata for HIV infection. Physica A, 399, 31-39.
|
|
[63]
|
Moonchai, S., Lenbury, Y. and Triampo, W. (2010) Cellular automata simulation modeling of HIV infection in lymph node and peripheral blood compartments. International Journal of Mathematics and Computers in Simulation, 4, 124-134.
|
|
[64]
|
Sloot, P., Chen, F. and Boucher, C. (2002) Cellular automata model of drug therapy for HIV infection. In: Cellular Automata, Springer, Berlin, 282-293.
|
|
[65]
|
Benyoussef, A., El HafidAllah, N., ElKenz, A., Ez-Zahraouy, H. and Loulidi, M. (2003) Dynamics of HIV infection on 2D cellular automata. Physica A, 322, 506-520.
|
|
[66]
|
Shi, V., Tridane, A. and Kuang, Y. (2008) A viral load-based cellular automata approach to modeling HIV dynamics and drug treatment. Journal of Theoretical Biology, 252, 24-35.
|
|
[67]
|
Precharattana, M., Nokkeaw, A., Triampo, W., Triampo, D. and Lenbury, Y. (2011) Stochastic cellular automata model and Monte Carlo simulations of CD4+ T cell dynamics with a proposed alternative leukapheresis treatment for HIV/AIDS. Computers in Biology and Medicine, 41, 546-558.
|
|
[68]
|
Burkhead, E.G., Hawkins, J.M. and Molinek, D.K. (2009) A dynamical study of a cellular automata model of the spread of HIV in a lymph node. Bulletin of Mathematical Biology, 71, 2574.
|
|
[69]
|
Bacelar, F.S., Andrade, R.F.S. and Santos, R.M. (2010) The dynamics of the HIV infection: A time-delay differential equation approach.
|
|
[70]
|
Hecquet, D., Ruskin, H.J. and Crane, M. (2007) Optimisation and parallelization strategies for Monte Carlo simulation of HIV infection. Computers in Biology and Medicine, 37, 691-699.
|
|
[71]
|
Baldazzi, V., Castiglione, F. and Bernaschi, M. (2006) An enhanced agent based model of the immune system response. Cellular Immunology, 244, 77-79.
|
|
[72]
|
Beauchemin, C., Samuel, J. and Tuszynski, J. (2005) A simple cellular automaton model for influenza A viral infections. Journal of Theoretical Biology, 232, 223-234.
|
|
[73]
|
Santos, L.B., Costa, M.C., Pinho, S.T.R. and Andrade, R.F.S. (2009) Periodic forcing in a three level cellular automata model for a vector-transmitted disease. Physical Review E, 80, 016102.
|
|
[74]
|
Xiao, X., Shao, S.H. and Chou, K.C. (2006) A probability cellular automaton model for hepatitis B viral infections. Biochemical and Biophysical Research Communications, 342, 605-610.
|
|
[75]
|
Gharib-Zahedi, M.R. and Ghaemi, M. (2012) Kinetics of hepatitis B virus infection: A cellular automaton model study. Journal of Paramedical Sciences, 3, 2008-4978.
|