1. 引言
文33块沙三上油藏平均孔隙度16.5%,空气渗透率为34.7 mD,油藏温度是115~120℃,原始地层水矿化度26 × 104~30 × 104 mg/L。截止到2016年12月,该区块注水井开井54口,平均注水压力35.8 MPa,平均单井日注水14.2 m3,高压注水井48口,其中32口井欠注,区块注水压力高、压高欠注及欠泵欠注现象严重。针对文33块沙三上油藏开发中存在的问题,现场采取了相应的酸化降压增注措施,统计该区块近5年的措施效果,低效和无效井所占比例较高,且普遍存在有效期较短、注水压力很快恢复至措施前的问题。针对该问题,通过储层伤害分析,从现有酸液中优选出二次沉淀量少、弱敏感的无机与有机酸并将其复合,添加黏土稳定剂、铁离子稳定剂等添加剂,形成文33块沙三上油藏弱敏感降压增注体系。
2. 储层伤害原因分析
对文33块沙三上油藏的取心井做了X射线衍射全岩和黏土矿物含量分析。文33块沙三上油藏黏土矿物含量高达26.3%,主要黏土矿物是伊利石,占总含量58.8%。敏感性评价结果为较强速敏、中等水敏及中等偏弱酸敏,并且酸敏产生的二次沉淀对储层造成的伤害不容忽视。为此,较强速敏、中等水敏及酸敏等储层敏感性是造成储层伤害的主要原因。
3. 弱敏感降压增注体系主酸液的研究
为减少溶解碳酸盐氟化钙二次沉淀的生成,酸液中须含有盐酸;为溶蚀黏土及避免产生二次沉淀,应采用较低浓度的氢氟酸 [1] ;为使氟硅酸盐和氟铝酸盐沉淀转化为可溶盐类,减少二次沉淀生成,须复配潜在酸,同时潜在酸逐步水化分解生成氢氟酸能够起到缓速的作用 [2] ;为保持酸液较低pH值,以有机酸作为缓冲剂 [3] 。
3.1. 试验步骤
先将岩心洗油,岩心在105℃温度下烘4 h,然后将岩心粉碎至100~140目的颗粒。称质量5 g左右的岩心,加入蒸馏水及各种酸,放入高温钢筒以120℃温度反应4 h,过滤后在105℃温度下烘干,最后称其质量,计算溶蚀率。将岩心过170~200目筛后,计算破碎率 [4] 。计算公式如下:
式中:R为溶蚀率,%;P为破碎率,%;m1为酸溶前样品质量,g;m2为酸溶后样品质量,g;m3为酸溶后通过170~200目筛后的样品质量,g。
3.2. 结果及讨论
3.2.1. 盐酸的体积分数
试验测得不同体积分数盐酸溶液反应后的溶蚀率,如图1所示。当盐酸体积分数达到8%~10%时溶蚀率最大。

Figure 1. The effect of hydrochloric acid volume fraction on the dissolution rate
图1. 盐酸体积分数对溶蚀率的影响
3.2.2. 氢氟酸的体积分数
试验测得不同体积分数的氢氟酸溶液(盐酸体积分数为10%)反应后的溶蚀率和破碎率,如图2所示。氢氟酸体积分数为0.5%时溶蚀率已达到要求且破碎率为12%,说明该体积分数的氢氟酸对岩石骨架破坏较小。同时,低体积分数的氢氟酸有利于减少水化硅及氟化铝等二次沉淀 [5] 。

Figure 2. The effect of hydrofluoric acid volume fraction on dissolution rate and breakage rate
图2. 氢氟酸体积分数对溶蚀率与破碎率的影响
3.2.3. 潜在酸的筛选
10%HCl + 0.5%HF的酸液中分别加入体积分数为1%的潜在酸A、B、C,溶蚀率与破碎率试验结果如表1所示。潜在酸A的溶蚀率较高,而岩心骨架破碎率最低,同时潜在酸A的反应产物能够胶结未溶解的黏土微粒而形成架状结构,使未溶解的地层微粒稳定化 [6] ,非常适于伊利石含量较高、较强速敏的文33块沙三上油藏。因此主酸液中确定潜在酸为A。

Table 1. The screening of potential acids
表1. 潜在酸的筛选
10%HCl + 0.5%HF的酸液中分别加入不同体积分数的潜在酸A,溶蚀率与破碎率试验结果如图3所示。当潜在酸A体积分数大于0.5%时溶蚀率趋于平缓且破碎率较低,因此潜在酸A体积分数确定为0.5%。

Figure 3. The effect of potential acid A volume fraction on dissolution rate and breakage rate
图3. 潜在酸A体积分数对溶蚀率与破碎率的影响
3.2.4. 有机酸的筛选
10%HCl + 0.5%HF + 0.5%潜在酸A的酸液中分别加入有机酸A、B、C,反应后的溶蚀率与破碎率试验结果如表2所示。加入3种有机酸后酸液溶蚀率差别不大,但酸液中加入有机酸C的破碎率最低,因此主酸液中的有机酸确定为有机酸C,其体积分数为5%。

Table 2. The organic acid type screening
表2. 有机酸种类筛选
4. 弱敏感解堵体系性能评价
4.1. 二次沉淀定量评价
分别取常规土酸、弱敏感降压增注体系(RMG-1)与岩屑反应后的产物,利用X射线衍射仪测定二次沉淀组分与质量分数,试验结果如表3所示。

Table 3. The type and number of secondary precipitation caused by acid rock reaction
表3. 酸岩反应产生的二次沉淀类型与数量
常规土酸产生的二次沉淀分别是氟铝酸钾和氟硅酸钠,弱敏感降压增注体系产生的二次沉淀是氟铝酸钾。弱敏感降压增注体系产生的二次沉淀的质量分数为常规土酸的1/12。
4.2. 动态性能评价
采用文33块沙三上油藏天然岩心分别模拟了近井污染和黏土矿物膨胀运移伤害,测定了注入弱敏感降压增注体系后注入压力与渗透率的改变情况,试验结果如图4所示。弱敏感降压增注体系能有效解除近井污染以及因水敏、速敏等使得黏土颗粒运移与膨胀而造成的地层堵塞,降低注入压力,提高渗透率。

Figure 4. The curve of experiment for removing near wellbore pollution and removing clay mineral damage
图4. 解除近井污染及黏土矿物膨胀运移伤害试验曲线
5. 结论
1) 弱敏感降压增注体系中低浓度的氢氟酸以及潜在酸A的加入有效减少了氟硅酸盐、氟铝酸盐等二次沉淀,能有效抑制酸敏的程度。
2) 弱敏感降压增注体系适应于具有多敏感性的文33块沙三上油藏,能有效解除因水敏、速敏等使得黏土颗粒运移与膨胀而造成的地层堵塞。
基金项目
中原油田科技工程项目“敏感性油藏解堵技术研究” (2017KF06)。