[1]
|
Yang, H.Y., Jang, M.-S., Gao, G.H., Lee, J.H. and Lee, D.S. (2016) Construction of Redox/pH Dual Stimuli-Responsive Pegylated Polymeric Micelles for Intracellular Doxorubicin Delivery in Liver Cancer. Polymer Chemistry, 7, 1813-1825. https://doi.org/10.1039/C5PY01808K
|
[2]
|
Du, J., Lane, L.A. and Nie, S. (2015) Stimuli-Responsive Nanoparticles for Targeting the Tumor Microenvironment. Journal of Controlled Release, 219, 205-214. https://doi.org/10.1016/j.jconrel.2015.08.050
|
[3]
|
Wang, S., Huang, P. and Chen, X. (2016) Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano, 10, 2991-2994. https://doi.org/10.1021/acsnano.6b00870
|
[4]
|
Shim, M.S. and Kwon, Y.J. (2012) Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications. Advanced Drug Delivery Reviews, 64, 1046-1059. https://doi.org/10.1016/j.addr.2012.01.018
|
[5]
|
Tayo, L.L. (2017) Stimuli-Responsive Na-nocarriers for Intracellular Delivery. Biophysical Reviews, 9, 931-940. https://doi.org/10.1007/s12551-017-0341-z
|
[6]
|
Engin, K., Leeper, D., Cater, J., et al. (1995) Extracellular pH Distribution in Human Tumours. International Journal of Hyperthermia, 11, 211-216. https://doi.org/10.3109/02656739509022457
|
[7]
|
Yu, P., Yu, H., Guo, C., et al. (2015) Reversal of Doxorubicin Resistance in Breast Cancer by Mitochondria-Targeted pH-Responsive Micelles. Acta Biomaterialia, 14, 115-124. https://doi.org/10.1016/j.actbio.2014.12.001
|
[8]
|
Kocak, G., Tuncer, C. and Bütün, V. (2017) pH-Responsive Polymers. Polymer Chemistry, 8, 144-176. https://doi.org/10.1039/C6PY01872F
|
[9]
|
Mao, J., Li, Y., Wu, T., et al. (2016) A Simple Dual-PH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Applied Materials & Interfaces, 8, 17109-17117. https://doi.org/10.1021/acsami.6b04247
|
[10]
|
Aryal, S., Hu, C. and Zhang, L. (2009) Polymer-Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 4, 251-258. https://doi.org/10.1021/nn9014032
|
[11]
|
Shen, Y., Jin, E., Zhang, B., et al. (2010) Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 132, 4259-4265. https://doi.org/10.1021/ja909475m
|
[12]
|
Mackay, J.A., Chen, M., McDaniel, J.R., et al. (2009) Self-Assembling Chimeric Po-lypeptide-Doxorubicin Conjugate Nanoparticles that Abolish Tumours after a Single Injection. Nature Materials, 8, 993-999. https://doi.org/10.1038/nmat2569
|
[13]
|
Li, J., Zhang, L., Lin, Y., et al. (2016) A pH-Sensitive Prodrug Micelle Self-Assembled from Multi-Doxorubicin-Tailed Polyethylene Glycol for Cancer Therapy. RSC Advances, 6, 9160-9163. https://doi.org/10.1039/C5RA27293A
|
[14]
|
Tian, H., Tang, Z., Zhuang, X., Chen, X. and Jing, X. (2012) Biodegradable Syn-thetic Polymers: Preparation, Functionalization and Biomedical Application. Progress in Polymer Science, 37, 237-280. https://doi.org/10.1016/j.progpolymsci.2011.06.004
|
[15]
|
Wu, G., Fang, Y., Yang, S., Lupton, J.R. and Turner, N.D. (2004) Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134, 489-492. https://doi.org/10.1093/jn/134.3.489
|
[16]
|
Aluri, S., Janib, S.M. and Mackay, J.A. (2009) Environmentally Responsive Peptides as Anticancer Drug Carriers. Advnced Drug Delivery Reviews, 61, 940-952. https://doi.org/10.1016/j.addr.2009.07.002
|
[17]
|
Xia, J., Du, Y., Huang, L., et al. (2018) Redox-Responsive Micelles from Disulfide Bond-Bridged Hyaluronic Acid-Tocopherol Succinate for the Treatment of Melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 14, 713-723. https://doi.org/10.1016/j.nano.2017.12.017
|
[18]
|
Zhang, Y., Guo, Z., Cao, Z., et al. (2018) Endogenous Albumin-Mediated Delivery of Redox-Responsive Paclitaxel-Loaded Micelles for Targeted Cancer Therapy. Biomaterials, 183, 243-257. https://doi.org/10.1016/j.biomaterials.2018.06.002
|
[19]
|
Sun, C., Li, X., Du, X. and Wang, T. (2018) Redox-Responsive Micelles for Triggered Drug Delivery and Effective Laryngopharyngeal Cancer Therapy. International Journal of Biological Macromolecules, 112, 65-73. https://doi.org/10.1016/j.ijbiomac.2018.01.136
|
[20]
|
Maiti, C., Parida, S., Kayal, S., et al. (2018) Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Applied Materials & Interfaces, 10, 5318-5330. https://doi.org/10.1021/acsami.7b18245
|
[21]
|
Liu, B., Tan, L., He, C., et al. (2018) Redox-Responsive Micelles Self-Assembled from Multi-Block Copolymer for Co-Delivery of Sirna and Hydrophobic Anticancer Drug. Polymer Bulletin, 76, 4237-4257. https://doi.org/10.1007/s00289-018-2600-y
|
[22]
|
Chen, W., Yuan, Y., Cheng, D., et al. (2014) Co-Delivery of Doxorubicin and siRNA with Reduction and pH Dually Sensitive Nanocarrier for Synergistic Cancer Therapy. Small, 10, 2678-2687. https://doi.org/10.1002/smll.201303951
|
[23]
|
Qian, C., Yu, J., Chen, Y., et al. (2016) Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 28, 3313-3320. https://doi.org/10.1002/adma.201505869
|
[24]
|
Zeng, Y., Ma, J., Zhan, Y., et al. (2018) Hypoxia-Activated Prodrugs and Re-dox-Responsive Nanocarriers. International Journal of Nanomedicine, 13, 6551-6574. https://doi.org/10.2147/IJN.S173431
|
[25]
|
Kizaka-Kondoh, S., Inoue, M., Harada, H. and Hiraoka, M. (2003) Tumor Hypoxia: A Target for Selective Cancer Therapy. Cancer Science, 94, 1021-1028. https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
|
[26]
|
Liu, J.N., Bu, W. and Shi, J. (2017) Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 117, 6160-6224. https://doi.org/10.1021/acs.chemrev.6b00525
|
[27]
|
Thambi, T., Deepagan, V.G., Yoon, H.Y., et al. (2014) Hypoxia-Responsive Polymeric Nanoparticles for Tumor-Targeted Drug Delivery. Biomaterials, 35, 1735-1743. https://doi.org/10.1016/j.biomaterials.2013.11.022
|
[28]
|
Piao, W., Tsuda, S., Tanaka, Y., et al. (2013) Development of Azo-Based Fluorescent Probes to Detect Different Levels of Hypoxia. Angewandte Chemie International Edition, 52, 13028-13032. https://doi.org/10.1002/anie.201305784
|
[29]
|
Babin, J., Pelletier, M., Lepage, M., et al. (2009) A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angewandte Chemie International Edition, 48, 3329-3332. https://doi.org/10.1002/anie.200900255
|
[30]
|
Fomina, N., Sankaranarayanan, J. and Almutairi, A. (2012) Photochemical Me-chanisms of Light-Triggered Release from Nanocarriers. Advanced Drug Delivery Reviews, 64, 1005-1020. https://doi.org/10.1016/j.addr.2012.02.006
|
[31]
|
Zhao, Y. (2012) Light-Responsive Block Copolymer Micelles. Macromolecules, 45, 3647-3657. https://doi.org/10.1021/ma300094t
|
[32]
|
Baghbani, F. and Moztarzadeh, F. (2017) Bypassing Multidrug Resistant Ovarian Cancer Using Ultrasound Responsive Doxorubicin/Curcumin Co-Deliver Alginate Nanodroplets. Colloids and Surfaces B: Biointer-faces, 153, 132-140. https://doi.org/10.1016/j.colsurfb.2017.01.051
|
[33]
|
Baghbani, F., Chegeni, M., Moztarzadeh, F., Hadian-Ghazvini, S. and Raz, M. (2017) Novel Ultrasound-Responsive Chitosan/Perfluorohexane Nanodroplets for Image-Guided Smart Delivery of an Anticancer Agent: Curcumin. Materials Science and Engineering: C, 74, 186-193. https://doi.org/10.1016/j.msec.2016.11.107
|
[34]
|
Wang, P., Yin, T., Li, J., et al. (2016) Ultrasound-Responsive Microbubbles for Sonography-Guided siRNA Delivery. Nanomedicine: Na-notechnology, Biology and Medicine, 12, 1139-1149. https://doi.org/10.1016/j.nano.2015.12.361
|
[35]
|
Alex, M.R.A., Nehate, C., Veeranarayanan, S., et al. (2017) Self Assembled Dual Responsive Micelles Stabilized with Protein for Co-Delivery of Drug and siRNA in Cancer Therapy. Biomaterials, 133, 94-106. https://doi.org/10.1016/j.biomaterials.2017.04.022
|
[36]
|
Teo, J.Y., Chin, W., Ke, X., et al. (2017) pH and Redox Dual-Responsive Biodegradable Polymeric Micelles with High Drug Loading for Effective Anticancer Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 431-442. https://doi.org/10.1016/j.nano.2016.09.016
|
[37]
|
Zhuang, W., Xu, Y., Li, G., et al. (2018) Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 10, 18489-18498. https://doi.org/10.1021/acsami.8b02890
|
[38]
|
Yu, H., Cui, Z., Yu, P., et al. (2015) pH-and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 25, 2489-2500. https://doi.org/10.1002/adfm.201404484
|
[39]
|
Xu, X., Li, L., Zhou, Z., Sun, W. and Huang, Y. (2016) Dual-pH Responsive Micelle Platform for Co-Delivery of Axitinib and Doxorubicin. International Journal of Pharmaceutics, 507, 50-60. https://doi.org/10.1016/j.ijpharm.2016.04.060
|
[40]
|
Wang, Y., Luo, Q., Zhu, W., et al. (2016) Reduction/pH Dual-Responsive Nano-Prodrug Micelles for Controlled Drug Delivery. Polymer Chemistry, 7, 2665-2673. https://doi.org/10.1039/C6PY00168H
|
[41]
|
Sang, M.M., Liu, F.L., Wang, Y., et al. (2018) A Novel Redox/pH Dual-Responsive and Hyaluronic Acid-Decorated Multifunctional Magnetic Complex Micelle for Targeted Gambogic Acid Delivery for the Treatment of Triple Negative Breast Cancer. Drug Delivery, 25, 1846-1857. https://doi.org/10.1080/10717544.2018.1486472
|
[42]
|
Li, J., Yu, X., Wang, Y., et al. (2014) A Reduction and pH Dual-Sensitive Polymeric Vector for Long-Circulating and Tumor-Targeted Sirna Delivery. Advanced Materials, 26, 8217-8224. https://doi.org/10.1002/adma.201403877
|
[43]
|
Yang, H.Y., Jang, M.-S., Gao, G.H., Lee, J.H. and Lee, D.S. (2016) Construction of Redox/pH Dual Stimuli-Responsive Pegylated Polymeric Micelles for Intracellular Doxorubicin Delivery in Liver Cancer. Polymer Chemistry, 7, 1813-1825. https://doi.org/10.1039/C5PY01808K
|
[44]
|
Du, J., Lane, L.A. and Nie, S. (2015) Stimuli-Responsive Nanoparticles for Targeting the Tumor Microenvironment. Journal of Controlled Release, 219, 205-214. https://doi.org/10.1016/j.jconrel.2015.08.050
|
[45]
|
Wang, S., Huang, P. and Chen, X. (2016) Stimuli-Responsive Programmed Specific Targeting in Nanomedicine. ACS Nano, 10, 2991-2994. https://doi.org/10.1021/acsnano.6b00870
|
[46]
|
Shim, M.S. and Kwon, Y.J. (2012) Stimuli-Responsive Polymers and Nanomaterials for Gene Delivery and Imaging Applications. Advanced Drug Delivery Reviews, 64, 1046-1059. https://doi.org/10.1016/j.addr.2012.01.018
|
[47]
|
Tayo, L.L. (2017) Stimuli-Responsive Na-nocarriers for Intracellular Delivery. Biophysical Reviews, 9, 931-940. https://doi.org/10.1007/s12551-017-0341-z
|
[48]
|
Engin, K., Leeper, D., Cater, J., et al. (1995) Extracellular pH Distribution in Human Tumours. International Journal of Hyperthermia, 11, 211-216. https://doi.org/10.3109/02656739509022457
|
[49]
|
Yu, P., Yu, H., Guo, C., et al. (2015) Reversal of Doxorubicin Resistance in Breast Cancer by Mitochondria-Targeted pH-Responsive Micelles. Acta Biomaterialia, 14, 115-124. https://doi.org/10.1016/j.actbio.2014.12.001
|
[50]
|
Kocak, G., Tuncer, C. and Bütün, V. (2017) pH-Responsive Polymers. Polymer Chemistry, 8, 144-176. https://doi.org/10.1039/C6PY01872F
|
[51]
|
Mao, J., Li, Y., Wu, T., et al. (2016) A Simple Dual-PH Responsive Prodrug-Based Polymeric Micelles for Drug Delivery. ACS Applied Materials & Interfaces, 8, 17109-17117. https://doi.org/10.1021/acsami.6b04247
|
[52]
|
Aryal, S., Hu, C. and Zhang, L. (2009) Polymer-Cisplatin Conjugate Nanoparticles for Acid-Responsive Drug Delivery. ACS Nano, 4, 251-258. https://doi.org/10.1021/nn9014032
|
[53]
|
Shen, Y., Jin, E., Zhang, B., et al. (2010) Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 132, 4259-4265. https://doi.org/10.1021/ja909475m
|
[54]
|
Mackay, J.A., Chen, M., McDaniel, J.R., et al. (2009) Self-Assembling Chimeric Po-lypeptide-Doxorubicin Conjugate Nanoparticles that Abolish Tumours after a Single Injection. Nature Materials, 8, 993-999. https://doi.org/10.1038/nmat2569
|
[55]
|
Li, J., Zhang, L., Lin, Y., et al. (2016) A pH-Sensitive Prodrug Micelle Self-Assembled from Multi-Doxorubicin-Tailed Polyethylene Glycol for Cancer Therapy. RSC Advances, 6, 9160-9163. https://doi.org/10.1039/C5RA27293A
|
[56]
|
Tian, H., Tang, Z., Zhuang, X., Chen, X. and Jing, X. (2012) Biodegradable Syn-thetic Polymers: Preparation, Functionalization and Biomedical Application. Progress in Polymer Science, 37, 237-280. https://doi.org/10.1016/j.progpolymsci.2011.06.004
|
[57]
|
Wu, G., Fang, Y., Yang, S., Lupton, J.R. and Turner, N.D. (2004) Glutathione Metabolism and Its Implications for Health. The Journal of Nutrition, 134, 489-492. https://doi.org/10.1093/jn/134.3.489
|
[58]
|
Aluri, S., Janib, S.M. and Mackay, J.A. (2009) Environmentally Responsive Peptides as Anticancer Drug Carriers. Advnced Drug Delivery Reviews, 61, 940-952. https://doi.org/10.1016/j.addr.2009.07.002
|
[59]
|
Xia, J., Du, Y., Huang, L., et al. (2018) Redox-Responsive Micelles from Disulfide Bond-Bridged Hyaluronic Acid-Tocopherol Succinate for the Treatment of Melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 14, 713-723. https://doi.org/10.1016/j.nano.2017.12.017
|
[60]
|
Zhang, Y., Guo, Z., Cao, Z., et al. (2018) Endogenous Albumin-Mediated Delivery of Redox-Responsive Paclitaxel-Loaded Micelles for Targeted Cancer Therapy. Biomaterials, 183, 243-257. https://doi.org/10.1016/j.biomaterials.2018.06.002
|
[61]
|
Sun, C., Li, X., Du, X. and Wang, T. (2018) Redox-Responsive Micelles for Triggered Drug Delivery and Effective Laryngopharyngeal Cancer Therapy. International Journal of Biological Macromolecules, 112, 65-73. https://doi.org/10.1016/j.ijbiomac.2018.01.136
|
[62]
|
Maiti, C., Parida, S., Kayal, S., et al. (2018) Redox-Responsive Core-Cross-Linked Block Copolymer Micelles for Overcoming Multidrug Resistance in Cancer Cells. ACS Applied Materials & Interfaces, 10, 5318-5330. https://doi.org/10.1021/acsami.7b18245
|
[63]
|
Liu, B., Tan, L., He, C., et al. (2018) Redox-Responsive Micelles Self-Assembled from Multi-Block Copolymer for Co-Delivery of Sirna and Hydrophobic Anticancer Drug. Polymer Bulletin, 76, 4237-4257. https://doi.org/10.1007/s00289-018-2600-y
|
[64]
|
Chen, W., Yuan, Y., Cheng, D., et al. (2014) Co-Delivery of Doxorubicin and siRNA with Reduction and pH Dually Sensitive Nanocarrier for Synergistic Cancer Therapy. Small, 10, 2678-2687. https://doi.org/10.1002/smll.201303951
|
[65]
|
Qian, C., Yu, J., Chen, Y., et al. (2016) Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 28, 3313-3320. https://doi.org/10.1002/adma.201505869
|
[66]
|
Zeng, Y., Ma, J., Zhan, Y., et al. (2018) Hypoxia-Activated Prodrugs and Re-dox-Responsive Nanocarriers. International Journal of Nanomedicine, 13, 6551-6574. https://doi.org/10.2147/IJN.S173431
|
[67]
|
Kizaka-Kondoh, S., Inoue, M., Harada, H. and Hiraoka, M. (2003) Tumor Hypoxia: A Target for Selective Cancer Therapy. Cancer Science, 94, 1021-1028. https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
|
[68]
|
Liu, J.N., Bu, W. and Shi, J. (2017) Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia. Chemical Reviews, 117, 6160-6224. https://doi.org/10.1021/acs.chemrev.6b00525
|
[69]
|
Thambi, T., Deepagan, V.G., Yoon, H.Y., et al. (2014) Hypoxia-Responsive Polymeric Nanoparticles for Tumor-Targeted Drug Delivery. Biomaterials, 35, 1735-1743. https://doi.org/10.1016/j.biomaterials.2013.11.022
|
[70]
|
Piao, W., Tsuda, S., Tanaka, Y., et al. (2013) Development of Azo-Based Fluorescent Probes to Detect Different Levels of Hypoxia. Angewandte Chemie International Edition, 52, 13028-13032. https://doi.org/10.1002/anie.201305784
|
[71]
|
Babin, J., Pelletier, M., Lepage, M., et al. (2009) A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angewandte Chemie International Edition, 48, 3329-3332. https://doi.org/10.1002/anie.200900255
|
[72]
|
Fomina, N., Sankaranarayanan, J. and Almutairi, A. (2012) Photochemical Me-chanisms of Light-Triggered Release from Nanocarriers. Advanced Drug Delivery Reviews, 64, 1005-1020. https://doi.org/10.1016/j.addr.2012.02.006
|
[73]
|
Zhao, Y. (2012) Light-Responsive Block Copolymer Micelles. Macromolecules, 45, 3647-3657. https://doi.org/10.1021/ma300094t
|
[74]
|
Baghbani, F. and Moztarzadeh, F. (2017) Bypassing Multidrug Resistant Ovarian Cancer Using Ultrasound Responsive Doxorubicin/Curcumin Co-Deliver Alginate Nanodroplets. Colloids and Surfaces B: Biointer-faces, 153, 132-140. https://doi.org/10.1016/j.colsurfb.2017.01.051
|
[75]
|
Baghbani, F., Chegeni, M., Moztarzadeh, F., Hadian-Ghazvini, S. and Raz, M. (2017) Novel Ultrasound-Responsive Chitosan/Perfluorohexane Nanodroplets for Image-Guided Smart Delivery of an Anticancer Agent: Curcumin. Materials Science and Engineering: C, 74, 186-193. https://doi.org/10.1016/j.msec.2016.11.107
|
[76]
|
Wang, P., Yin, T., Li, J., et al. (2016) Ultrasound-Responsive Microbubbles for Sonography-Guided siRNA Delivery. Nanomedicine: Na-notechnology, Biology and Medicine, 12, 1139-1149. https://doi.org/10.1016/j.nano.2015.12.361
|
[77]
|
Alex, M.R.A., Nehate, C., Veeranarayanan, S., et al. (2017) Self Assembled Dual Responsive Micelles Stabilized with Protein for Co-Delivery of Drug and siRNA in Cancer Therapy. Biomaterials, 133, 94-106. https://doi.org/10.1016/j.biomaterials.2017.04.022
|
[78]
|
Teo, J.Y., Chin, W., Ke, X., et al. (2017) pH and Redox Dual-Responsive Biodegradable Polymeric Micelles with High Drug Loading for Effective Anticancer Drug Delivery. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 431-442. https://doi.org/10.1016/j.nano.2016.09.016
|
[79]
|
Zhuang, W., Xu, Y., Li, G., et al. (2018) Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces, 10, 18489-18498. https://doi.org/10.1021/acsami.8b02890
|
[80]
|
Yu, H., Cui, Z., Yu, P., et al. (2015) pH-and NIR Light-Responsive Micelles with Hyperthermia-Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 25, 2489-2500. https://doi.org/10.1002/adfm.201404484
|
[81]
|
Xu, X., Li, L., Zhou, Z., Sun, W. and Huang, Y. (2016) Dual-pH Responsive Micelle Platform for Co-Delivery of Axitinib and Doxorubicin. International Journal of Pharmaceutics, 507, 50-60. https://doi.org/10.1016/j.ijpharm.2016.04.060
|
[82]
|
Wang, Y., Luo, Q., Zhu, W., et al. (2016) Reduction/pH Dual-Responsive Nano-Prodrug Micelles for Controlled Drug Delivery. Polymer Chemistry, 7, 2665-2673. https://doi.org/10.1039/C6PY00168H
|
[83]
|
Sang, M.M., Liu, F.L., Wang, Y., et al. (2018) A Novel Redox/pH Dual-Responsive and Hyaluronic Acid-Decorated Multifunctional Magnetic Complex Micelle for Targeted Gambogic Acid Delivery for the Treatment of Triple Negative Breast Cancer. Drug Delivery, 25, 1846-1857. https://doi.org/10.1080/10717544.2018.1486472
|
[84]
|
Li, J., Yu, X., Wang, Y., et al. (2014) A Reduction and pH Dual-Sensitive Polymeric Vector for Long-Circulating and Tumor-Targeted Sirna Delivery. Advanced Materials, 26, 8217-8224. https://doi.org/10.1002/adma.201403877
|