1. 引言
超宽带(UWB-ultra-wideband)天线是电子信息战中电子对抗设备的关键部件,在冲激雷达等时域系统中也获得了广泛应用。随着高速电子集成电路的快速发展,为适应小型集成化的需求,超宽带平面天线的研究与应用引人瞩目。超宽带天线的工作频带覆盖3.1~10.6 GHz频段,当临近区域没有干扰信号时,它可充分利用整个超宽带频段工作。然而,如果工作区域内还存在其他窄带工作系统,比如WLAN (5.15~5.35 GHz)和ITU (8.02~8.4 GHz),超宽带频段就可能影响这些窄带系统正常工作,因此,为了降低超宽带系统与这些窄带系统之间的相互影响,具有带阻特征的超宽带天线就应运而生。文献 [1] - [5] 报道了具有双带阻特征的超宽带天线结构,实现的方法可归纳为在辐射贴片或接地面上蚀刻缝隙或增加寄生谐振器。
利用微带线或共面波导馈电的圆环形单极子天线是一种结构简单的超宽带天线,文献 [6] 通过多级阶梯地面结构优化了该种天线的阻抗匹配,从而增加了天线的带宽,实现了超宽带工作,但该文并没有考虑与其他窄带系统的相互干扰影响问题。本文在文献 [6] 工作基础上,通过在天线背面增加两个寄生谐振器,实现了在5.2和8.2 GHz中心频率处的双带阻特性。两个寄生谐振器可分别加载到天线背面实现在两个频率处的带阻特性,并且不影响天线的超宽带工作。
2. 天线设计
天线结构如图1所示,环形天线外半径R = 9.5 mm,内半径r = 5 mm,天线由50 Ω微带线馈电,线宽W4 = 2.7 mm,有限地面长L2 = 12 mm,其他部分设计尺寸如下:L = 33 mm,W = 28 mm,L1 = 12.5 mm,W1 = 4 mm,W2 = 3.5 mm,W3 = 3 mm,h1 = 1.0 mm,h2 = 0.8 mm,h3 = 0.5 mm,u = 19 mm,v = 8.5 mm,t = 1 mm,f = 9 mm,b = 2.82 mm,c = 5 mm,d = 1.5 mm,e = 2.5 mm,g1 = 1 mm,g2 = 3.5 mm。天线介质板厚度1.4 mm,介电常数4.4。
(a) (b)
Figure 1. The structure of UWB monopole antenna (a) front view (b) rear view
图1. 超宽带单极子天线结构(a)前视图(b)后视图
3. 结果和讨论
本文采用HFSS对天线进行了仿真。图2比较了不同级数阶梯时天线反射系数S11,可以看出,不同级数阶梯对天线S11的影响还是比较大的,在2级阶梯时天线获得了相对较好的UWB阻抗匹配。在此基础上本文加载了两种寄生谐振器,实现了双带阻特性。图3给出了同时加载两种谐振器时的S11,可以清楚看出,在5.08~5.33 GHz和7.9~8.4 GHz频段处形成了两个带阻。图4给出了在5.2和8.2 GHz时贴片和谐振器表面电流分布,可以看到,表面电流主要集中在两个谐振器上,天线贴片上电流较小,这表明天线的辐射是很微弱的,因此在5.2和8.2 GHz处产生了两个带阻,降低了与WLAN (5.15~5.35 GHz)和ITU (8.02~8.4 GHz)窄带系统的相互干扰。图5给出了三个频率处的天线方向图。可以看到,H面是近似全向辐射,E面是近似偶极子天线的辐射方向图,低频辐射性能要好于高频时性能。

Figure 2. Simulated S11 with various steps
图2. 不同阶梯地面结构时S11比较

Figure 3. Simulated S11 loaded with two parasitic resonator
图3. 同时加载两种寄生谐振器时S11比较
(a)
(b)
(c)
(d)
Figure 4. 5.2 and 8.2 GHz of surface current distribution of patch and resonators (a) (c) rear view (b) (d) front view
图4. 5.2和8.2 GHz时贴片和谐振器表面电流分布(a) (c)后视图和,(b) (d)前视图
(a)
(b)
Figure 5. Curve: pattern of antenna
图5 天线方向图(a) E面(b) H面
4. 结论
通过在天线背面加载U形和熨斗形寄生谐振器,设计了一种结构简单微带馈电的具有双带阻特性的UWB单极子天线,该天线在5.2和8.2 GHz中心频率处形成了两个带阻,天线辐射性能满足要求。